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Abstract

Recent studies from us and others suggest that traditionally declarative structures mediate some aspects of the encoding
and consolidation of procedural memories. This evidence points to the existence of converging physiological pathways
across memory systems. Here, we examined whether the coupling between slow oscillations (SO) and spindles, a
mechanism well established in the consolidation of declarative memories, is relevant for the stabilization of human motor
memories. To this aim, we conducted an electroencephalography study in which we quantified various parameters of these
oscillations during a night of sleep that took place immediately after learning a visuomotor adaptation (VMA) task. We
found that VMA increased the overall density of fast (≥12 Hz), but not slow (<12 Hz), spindles during nonrapid eye
movement sleep, stage 3 (NREM3). This modulation occurred rather locally over the hemisphere contralateral to the trained
hand. Although adaptation learning did not affect the density of SOs, it substantially enhanced the number of fast spindles
locked to the active phase of SOs. The fact that only coupled spindles predicted overnight memory retention points to the
relevance of this association in motor memory consolidation. Our work provides evidence in favor of a common
mechanism at the basis of the stabilization of declarative and motor memories.
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Introduction
In the last decades, the function of sleep in memory con-
solidation has received extraordinary attention. There is now
compelling evidence from human and nonhuman studies (e.g.,
Plihal and Born 1997; Rasch et al. 2007; Diekelmann and Born
2010; Schönauer et al. 2015) supporting a role of nonrapid
eye movement (NREM) sleep in both the stabilization and
enhancement of declarative memory (although, see Wamsley
2019; Wang et al. 2021 for recent evidence supporting a similar
benefit of post-training rest). The neural signatures of sleep

dependent consolidation are rapidly being unraveled. We now
know that, during NREM sleep, slow oscillations (SO, ∼1 Hz)
generated in the cortex (Amzica and Steriade 1998; Timofeev
et al. 2000) facilitate the occurrence of thalamic spindles (∼10–
16 Hz) during their excitable up-state (Steriade 2006; Staresina
et al. 2015; Schönauer and Pöhlchen, 2018). A recent study has
in fact shown that the induction of thalamic spindles through
optogenetics potentiates hippocampus-dependent memories
when stimulation is phase-locked with the up-state (active
phase) of SOs, whereas spindle suppression impairs memory
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formation (Latchoumane et al. 2017). The precise synchrony
between fast spindles (≥12 Hz) and SOs, in conjunction with
sharp-wave ripples, a hallmark of the systems consolidation
hypothesis, appears to mediate memory stabilization in a
variety of declarative tasks (Buzsáki, 2015; Maingret et al. 2016;
Ladenbauer et al. 2017; Helfrich et al. 2018; Muehlroth et al. 2019;
Navarro-Lobato and Genzel 2019).

Much less is known about the neural signatures of motor
memory consolidation during sleep. Motor learning encom-
passes motor skill learning (MSL) and motor adaptation. The
first involves the acquisition of new motor plans, whereas the
second involves the recalibration of pre-existing motor plans
(Krakauer et al. 2019). Growing evidence suggests that offline
gains observed in humans during motor sequence learning,
a type of MSL, are linked to the hippocampus (Albouy, King,
et al. 2013; Albouy et al. 2015; Döhring et al. 2017; Schapiro
et al. 2019; Jacobacci et al. 2020) and relate to an increment
in the density of sleep spindles (Nishida and Walker 2007;
Morin et al. 2008; Barakat et al. 2011; Albouy, Fogel, et al.
2013; Boutin et al. 2018). Recent work carried out in rats
indicates that learning an MSL task is associated with neural
replay over the motor cortex, which is often phase-locked
to a SO (Ramanathan et al. 2015) and with an enhancement
of the coupling between spindles (fast and slow) and SOs
(Silversmith et al. 2020). Nevertheless, whether these changes
impact on overnight improvements in performance has not
been explored. Finally, a couple of studies framed under
the synaptic homeostasis hypothesis (SHY), according to which
synaptic weights potentiated during wake are downscaled by
sleep, have shown that visuomotor adaptation (VMA) increases
the power of slow delta waves (∼1–4 Hz) during the early
portion of NREM sleep (Huber et al. 2004; Landsness et al.
2009). Yet, whether the synchrony between SOs and spindles is
relevant for the consolidation of adaptation memories remains
unknown.

In this study, we examined if VMA modulates sleep spin-
dles and their coupling with SOs during NREM sleep. Given
the role of fast spindles in the consolidation of declarative
memories, we also explored the contribution of fast and slow
spindles to this process. We have previously shown behavioral
evidence supporting the diurnal consolidation of VMA mem-
ories within a 6-h window (Lerner et al. 2020). We have also
reported that, during this period, the increment in the func-
tional connectivity between motor and parietal areas contralat-
eral to the trained hand predicts overnight memory retention
(Della-Maggiore et al. 2017). Here, we addressed whether these
local changes in brain activity are further modulated by sleep.
To this aim, we took advantage of a protocol focused on the
close proximity between learning and sleep, which is known to
improve overnight memory retention in declarative and motor
tasks (e.g., Schönauer et al. 2015; Sawangjit et al. 2018). After
a night of familiarization, volunteers performed a VMA ses-
sion or a control session, and we quantified the density of
spindles (fast and slow) and the coupling between spindles
and SOs during NREM sleep. If, as proposed by the systems
consolidation hypothesis, the level of coupling between these
oscillations is critical for memory stabilization, then the spin-
dle–SO coupling should predict overnight memory retention.
Furthermore, to examine the possibility proposed by the SHY,
that VMA memories may undergo synaptic downscaling, we
also quantified the power of delta waves (∼1–4 Hz) early during
NREM sleep.

Materials and Methods
Participants

Ten healthy volunteers (five females, age: [mean ± standard
error {SE}] 24.3 ± 0.98 years old) complied with the sleep
requirements (see below) and completed the whole study.
All subjects were right-handed as assessed by the Edinburgh
Laterality Questionnaire (Oldfield 1971), and none of them
declared neurological or psychiatric disorders. All potential
participants were asked to fill the Pittsburgh Sleep Quality
Questionnaire (Buysse et al. 1989) and were evaluated on the
Epworth Drowsiness Scale (Johns 1991). Only subjects fulfilling
the criteria for good sleep quality based on the last two indices
were included in the study. Participants were instructed to
maintain a regular sleep schedule and to avoid drinking alcohol
and coffee during the duration of the experiment. This was
monitored through self-recorded spreadsheets provided by the
researcher.

All volunteers signed the informed consent approved by
the Ethics Committee of the Hospital de Clínicas, University of
Buenos Aires (approved on 24 November 2015 and renewed every
year), which complies with the Declaration of Helsinki in its
latest version and with the National Law on the Protection of
Personal Data.

Experimental Paradigm

The VMA task has been described in detail elsewhere (Villalta
et al. 2015; Lerner et al. 2020) and will be briefly summarized
here. Subjects performed a center-out task consisting of moving
a cursor from a start point in the center of a computer screen
to one of eight visual targets arranged concentrically 45◦ from
each other using a joystick (Fig. 1A). The latter was controlled
with the thumb and index finger of the right hand, while vision
of the hand was occluded.

Participants were instructed to make a shooting movement
to each target, which were presented one at a time, following
a pseudorandomized order (i.e., without following a sequence).
As in our previous studies (Villalta et al. 2015; Lerner et al. 2020),
cursor feedback was provided continuously from the trial onset
throughout the shooting movement (without leaving a trace),
and subjects were instructed to make shooting movements
through the target, starting as fast as possible from target onset.
To avoid online corrections that would lead to submovements,
the joystick’s gain was set to 1.4 so that a displacement of 1 cm of
the tip of the joystick moved the cursor on the screen by 1.4 cm.
According to previous pilot data from our lab, this gain yields
straight paths with little or no online corrections (reported in
Villalta et al. 2015). One cycle consisted of eight trials in which
subjects made pointing movements to each of the eight targets,
and there were 11 cycles per block.

Subjects performed three different types of trials through-
out the study. During perturbed trials a clockwise 45◦ visual
rotation was imposed to the cursor relative to the movement
of the hand (see Fig. 1A, right panel). During null trials, that
is, unperturbed trials in which no visual rotation was applied,
the movement of the cursor directly mapped onto the hand
movement. Finally, during error-clamp (EC) trials, visual cursor
feedback was manipulated to provide fake “straight” paths to
the target, which mimicked those generated during correct trials
by projecting the actual movement to the straight line with
some additional variability (pointing direction error = 0 ± 10◦;
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Figure 1. Experimental setup and experimental design. (A) Experimental setup. Subjects sat on a chair and performed center-out movements to one of eight visual
targets using a joystick controlled with their right hand (Left panel). Targets were presented one at a time, following a pseudorandomized order. The right panel is a

cartoon representing the visual display; it illustrates the effect of applying the visuomotor rotation (α) over the movement direction of the hand and the cursor as a
function of training (cycles). As adaptation progressed over cycles of practice, subjects learned to bring the cursor to the target. (B) Experimental design. All subjects went
through an initial session of familiarization, followed by a VMA session and a control session (CTL), each separated by 1 week. The order of VMA and CTL sessions was
counterbalanced. During the familiarization session, they performed seven blocks of null trials (N). During the VMA session, they performed one block of null trials

followed by six blocks of perturbed trials in which a visual rotation was applied (ROT). On Day 2, retention was assessed using two EC cycles, and then they readapted
to the same perturbation (6ROT) and were subsequently washed out (3N). During the CTL session, subjects performed the corresponding number of blocks without
the visual rotation (N). Sleep was monitored overnight with PSG, starting approximately 10 min after performing the task on Day 1.

mean ± standard deviation). EC trials prevent further learning
and allow estimating memory retention based on the inter-
nal state of the motor system (Criscimagna-Hemminger and
Shadmehr 2008; Villalta et al. 2015).

Recent data from our lab using an anterograde interference
protocol suggest that consolidation of VMA memories takes
place around 6-h postlearning (Lerner et al. 2020). This time
window coincides with the period during which VMA mem-
ory retention, assessed with EC trials, passively decays expo-
nentially until it reaches an asymptote about 6-h postlearn-
ing. Here, we assessed memory retention overnight, 8-h post-
training, as a measure of memory consolidation. The VMA task
was implemented in MATLAB (The MathWorks, Inc) using the
Psychophysics Toolbox v3 (Brainard 1997; Kleiner et al. 2007).

Experimental Design

We conducted a longitudinal experiment following a within-
subjects repeated-measures design, consisting of three sessions
that were separated by 7 days each (Fig. 1B): 1) a familiarization
session during which subjects performed the center-out task
during null trials (N), that is, in the absence of the visual rotation,
2) a VMA session in which subjects adapted to a visual rotation
(ROT), and 3) a control session (CTL) in which subjects performed
the center-out task in the absence of the optical rotation (N).
Thus, the CTL condition served to control for the sensorimotor

processing involved in performing the center-out task using a
joystick.

We chose a repeated measures design to reduce interindivid-
ual variance and to improve statistical power. After the familiar-
ization session, subjects were randomly assigned to the VMA or
the CTL condition, each of which took place on a different day
and week. The order was counterbalanced so that half of the
volunteers performed the VMA condition first and the other half
performed it second. The familiarization session was included
for two reasons. First, given that subjects have an internal bias
for movement direction, adaptation may even take place in the
control condition (e.g., Della-Maggiore et al. 2017). The familiar-
ization session thus served as a first approximation to practice
with the joystick and to get acquainted with the experimental
paradigm in the absence of the optical rotation. Second, Tamaki
and collaborators (2016) have shown that subjects do not sleep
well during the first night in a new environment. Familiariza-
tion with the experimental setup thus aimed at improving the
polysomnographic (PSG) recordings.

Participants arrived to the sleep laboratory at 9 pm and
electroencephalography (EEG) electrodes were placed over their
scalp following the 10-20 montage. Next, they performed the
center-out task and went to bed approximately 10 min later for
a full night of sleep. A PSG recording was obtained through-
out the night. During the familiarization session, participants
performed seven blocks of the task without any perturbation
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(7N). During the VMA and CTL sessions, subjects performed the
task before (Day 1) and after (Day 2) a full night of sleep. In
the VMA session, on Day 1, they performed one block of null
trials (1N) followed by six blocks of perturbed trials in which
the visuomotor rotation was applied (6ROT). On Day 2, they
performed two cycles of EC trials to assess retention, which was
followed by six blocks of perturbed trials (6ROT) and three blocks
of null trials (3N) to washout. The CTL session followed the same
experimental protocol but the visual rotation was not applied
(7N on Day 1, followed by EC + 9N on Day 2). In all cases, the level
of vigilance before performing the task was assessed using the
Stanford Sleepiness Scale (SSS) (Hoddes et al. 1973).

PSG Recordings

Eleven surface EEG electrodes were placed over prefrontal,
motor, and parietal areas (FC1, FC2, FC5, FC6, C3, C4, P3, and
P4) and over the midline (Fz, Cz, and Pz). Electrodes were
mounted following the standard 10-20 arrangement (Modified
Combinatorial Nomenclature; Oostenveld and Praamstra 2001).
Both mastoids were used as references. In addition to EEG
electrodes, two electrodes were placed over the periorbital
area of both eyes and two additional electrodes were placed
over the chin to measure electrooculography (EOG) and
electromyography (EMG), respectively. All signals were acquired
at 200 Hz, using the Alice 5 EEG equipment (Philips Respironics,
PA, EEUU).

EEG Processing

EEG signal was bandpass-filtered between 0.5 and 30 Hz
using a FIR filter (“eegfiltnew” function) from the MATLAB’s
toolbox EEGLAB (Delorme and Makeig 2004), and then processed
with the Artifact Subspace Reconstruction algorithm (Mullen
et al. 2015) to remove transient and large-amplitude artifacts
(“clean_rawdata” function from EEGLAB; threshold = 30). EOG
and EMG signals were also bandpass-filtered in order to
facilitate sleep scoring (filter cutoff frequencies: EOG = 0.5–
15 Hz; EMG = 20–99 Hz). All PSG recordings were sleep-staged
manually according to standard criteria of the American
Academy of Sleep Medicine (Iber 2004). Namely, 30-s epochs
were classified as either wake (W), NREM (NREM1, NREM2, and
NREM3), or rapid eye movement (REM) stage. Stage classification
was carried out by two independent scorers. Epochs for which
they differed on the classification were defined upon reaching a
consensus. After stage classification, sleep architecture was
determined based on the following measures, expressed in
minutes: total sleep time, sleep latency (latency to NREM1), REM
latency, total wake time, wake after sleep onset (WASO), and
time in NREM1, NREM2, NREM3, and in REM. Sleep efficiency was
also computed as the percentage of total sleep time relative to
the time interval between lights-off and lights-on (%). Movement
artifacts on the filtered EEG signal were detected by visual
inspection and were manually rejected.

SOs (0.5–1.25 Hz) and sleep spindles (10–16 Hz) were automat-
ically identified from the EEG signal corresponding to the stages
NREM2 and NREM3 by using previously reported algorithms (see
below).

Detection of SOs
The algorithm implemented to detect SOs was based on that
reported by Mölle and collaborators (2011) and Antony and
Paller (2016). EEG signal was bandpass-filtered between 0.5 and

1.25 Hz. To quantify SOs, we first identified zero crossings of
the EEG signal and labeled them as positive-to-negative (PN) or
negative-to-positive (NP). Those EEG segments between two NP
zero crossings were considered SOs if they lasted between 0.8
and 2 s. Next, we computed the peak-to-peak (P-P) amplitude
as the difference between the positive peak and the negative
peak; this operation always returned a positive number. Finally,
we determined the median of the P-P amplitudes for each
channel, each subject, and each session and retained those
SOs with a P-P amplitude greater than the median value
(Mizrahi-Kliger et al. 2018).

Sleep Spindles Detection
The algorithm implemented to detect sleep spindles was based
on that reported by Ferrarelli et al. (2007) and Mölle and collabo-
rators (2011). It was run through each channel for each session.
First, EEG signal was bandpass-filtered between 10 and 16 Hz
before calculating the instantaneous amplitude (IA) and instan-
taneous frequency by applying the Hilbert Transform (Tort et al.
2010). The IA was used as a new time series and was smoothed
with a 350 ms moving average window. Next, those segments of
the IA signal that exceeded an upper magnitude threshold (90th
percentile of all IA points) were labeled as potential spindles.
The beginning and end of potential spindles were defined as the
time points in which the signal dropped below a lower thresh-
old (70th percentile of all IA points). Potential spindles with a
duration between 0.5 and 3 s were labeled as true spindles;
mean frequency, duration, and maximum P-P amplitude were
calculated for each true spindle. Finally, spindles were further
classified into two types according to their mean frequency:
slow spindles with a frequency <12 Hz and fast spindles with
a frequency ≥12 Hz (Mölle et al. 2011; Cox et al. 2017).

Coupling between SOs and Spindles
After identifying spindles and SOs, we looked for spindles that
occurred during a SO. We quantified spindle–SO couplings
according to the following criterion: If a spindle had its
maximum P-P amplitude during the course of a SO, it was
counted as a spindle–SO coupling.

To characterize further the level of association between these
oscillations, we explored the phase of the SO at which the
spindle occurred by using the method reported by Tort et al.
(2010) and Niknazar et al. (2015). To this end, the instantaneous
phase (IP) of each SO was first obtained through the Hilbert
transform. The IP of an oscillation varies in a range of ±π

radians, so we arbitrarily fixed the SO’s positive peak to 0 radian
and the negative peak to either +π or −π radians (PN and NP zero
crossings occurred at +π/2 and −π/2 radians, respectively). The
phase relationship for each spindle–SO coupling was defined as
the phase of the SO at which the spindle developed its maximum
P-P amplitude. This algorithm was applied to each channel of
each session.

Data Analysis

Behavior
Motor performance was measured based on the movement
direction of the joystick relative to the line segment connecting
the start point and target position (pointing angle). Trials in
which the pointing angle exceeded 120◦ were excluded from
further analysis. Given that trials were structured in cycles of
eight targets, trial-by-trial data were converted into cycle-by-
cycle time series by computing the median pointing angle for
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each cycle and each subject. To assess memory retention for
each subject, the pointing angle for each EC cycle was expressed
as a percentage of the pointing angle asymptote (defined as the
median of the last block of learning) and was then averaged.

EEG Signal
SO and spindle measures. As described above, SOs and spindles
were automatically identified from the EEG signal that was
previously classified as NREM2 and NREM3. Given that some
electrodes came off after the first 2 h of EEG recording, we
focused the EEG analysis on the first sleep cycle, which was
defined as the signal spanned between the onset of NREM1
and the end of the first REM cycle (note, however, that only
the EEG signal corresponding to the NREM2 and NREM3 periods
were analyzed in this study). The following measures were
computed for sleep spindles: duration (ms), mean frequency
(Hz), P-P amplitude (μV), and density of fast and slow spindles
(number of sleep spindles per minute of NREM2 or NREM3 sleep).
Density was also computed for SOs (number of SOs per minute
of NREM3 sleep). To characterize the spindle–SO coupling, we
computed the proportion of coupled spindles, the density of
spindles coupled with a SO (number of spindle–SO couplings per
minute of NREM3 sleep), and their coupling phase.

To assess how these measures differed between VMA and
CTL, we computed their relative difference according to the
function ((VMA − CTL)/CTL∗100) for each EEG channel and each
subject. We first conducted a global statistical analysis on this
measure across the 11 electrodes for each of the sleep metrics
of interest. To illustrate the spatial distribution of the effects,
we report the results for VMA, CTL, and their relative difference
in topographic maps (MNE-Python; Gramfort et al. 2013). Fur-
thermore, to explore the possibility of a local—contralateral—
modulation (Nishida and Walker 2007; Johnson et al. 2012; Del-
la-Maggiore et al. 2017; Geva-Sagiv and Nir 2019), we also con-
ducted separate statistical analyses on the data pooled across
the channels of the left hemisphere (LH: electrodes FC1, FC5, C3,
and P3) and right hemisphere (RH: electrodes FC2, FC6, C4, and
P4). Given that the midline may capture electrical activity from
both hemispheres, it was excluded from this analysis.

In order to study the level of synchrony between fast spindles
and SOs, we determined the phase of the SO at which the spindle
yielded its maximum P-P amplitude and contrasted the level of
grouping of spindles around the mean phase for the VMA and
CTL sessions. Specifically, we first computed the mean coupling
phase for each subject and across subjects in polar co-ordinates
and displayed them in circular plots. The level of synchrony
was then assessed by comparing the variance of the individual
coupling phase around the mean across sessions.

To illustrate the synchrony and phase relationship between
SOs and spindles, the grand average of the EEG signal filtered in
the SO frequency band (0.5–1.25 Hz) and the grand average of the
fast sleep spindles frequency band (12–16 Hz) were graphically
overlaid, time-locked to the spindle’s maximum amplitude.

Delta power. Previous studies (Huber et al. 2004; Landsness et al.
2009; Wilhelm et al. 2014) have shown that training on a VMA
reaching paradigm induces a local increase in the power of delta
(1–4 Hz) over the anterior and medial portions of the posterior
parietal region during the beginning of NREM sleep. The authors
have interpreted this finding within the frame of the SHY of
slow-wave sleep (Tononi and Cirelli 2003, 2006). According to
SHY, the membrane potential of cortical neurons oscillates at a
slow frecuency, which can be measured as an increment in the

power of the delta band. The delta activity is homeostatically
regulated, increasing after wakefulness and returning to base-
line during sleep (Tononi and Cirelli 2006). It has been suggested
that delta homeostasis may reflect synaptic changes underlying
a cellular need for sleep (Tononi and Cirelli 2003). If this was so,
local synaptic changes induced during learning should lead to
an increment in delta activity that may benefit neural function.
Thus, empirically, SHY would manifest as an increment in the
power of delta during the beginning of sleep that decreases as
the night progresses (Tononi and Cirelli 2006).

To test this hypothesis in our data, we followed the same
preprocessing steps (Huber et al. 2004), that is, computed the EEG
power density for the first and last 30-min periods of artifact-
free NREM sleep and then averaged it for each period within
the bandwidth of the delta waves (1–4 Hz). This was carried out
for each channel and each session (VMA and CTL). The value
corresponding to each channel was then normalized by the
average of all channels. As for the other sleep metrics, relative
changes in the power of delta activity were computed using the
function ((VMA − CTL)/CTL∗100).

Statistical Analysis

The sample size of this study (n = 10) was determined based on
a priori power analysis (simulation approach based on DeBruine
and Barr 2021 and Kumle et al. 2021) conducted on the study
by Huber and collaborators (2004) in which they examined the
impact of VMA on the power of delta oscillation (1–4 Hz) by using
the same within-subject experimental design and a similar
experimental paradigm.

Parametric statistics were used to analyze all metrics of inter-
est. Analyses were carried out using R (version 3.4.1; R Core Team
2017) in “RStudio” (Rstudio Team 2015). Statistical differences
were assessed at the 95% level of confidence (alpha = 0.05), and
were carried out by fitting linear mixed models (LMM; using
the “lmer” function implemented in the “lme4” package in R;
Bates et al. 2015). Random intercepts and random slopes of
LMMs were estimated for each subject to take into account
the repeated measures across sessions. The response variable
was either the relative difference between sessions ((VMA −
CTL)/CTL∗100) or the measures corresponding to the VMA and
CTL conditions. The fixed effects were the condition (VMA or
CTL), sleep stage (NREM2 or NREM3), the type of spindle (fast
or slow), the hemisphere (LH or RH), the sleep stage by spindle-
type interaction, and the hemisphere by sleep stage interaction,
depending on each analysis.

Our LMM models included the data from each electrode
as replications (the LMM takes into account the dependence
between replications through the estimation of random effects;
Bates et al. 2015). To assess the statistical significance of fixed
effects, we used F tests or t-tests with Kenward-Roger’s approx-
imation of the degrees of freedom to obtain the corresponding P
values (Halekoh and Højsgaard 2014). Note that in cases where
the value of a replication deviates beyond 2.5 median absolute
deviation (Leys et al. 2013), the degrees of freedom may not result
in an integer.

To analyze the phase relationship between spindles and SOs,
the Rayleigh test was used to establish whether the sample dis-
tribution of phases was uniform or unimodal for each condition
(Pewsey et al. 2013). The null hypothesis is that observations are
uniformly distributed. Thus, a significant Rayleigh test is indica-
tive of a preferred phase relationship between spindles and SOs.
To compare the preferred mean phase between the VMA and
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Table 1 SSS; shown are the mean and SE of SSS scores assessed during the VMA and CTL conditions before doing the motor task; statistical
results, using t-tests, show that the score in all sessions was ≤ 3, consistent with a mental state of vigilance

SSS One sample t-test

Mean score SE t P

CTL Day 1 3.0 0.42 0 0.5
Day 2 2.2 0.29 −2.75 0.98

VMA Day 1 2.7 0.42 −0.71 0.75
Day 2 2.4 0.31 −1.96 0.96

CTL conditions, we used the Watson-Williams Test for von Mises
distributions. The null hypothesis is that both conditions share a
common mean phase; hence, a significant result indicates that
the phase differs across conditions. Finally, to assess whether
the level of grouping of the phase differed across conditions,
we used the Fisher’s test for Von-Mises distributions. This test
evaluates the common concentration of the phases around the
mean between conditions. The null hypothesis is that samples
are equally concentrated. Therefore, a significant test indicates
that the concentration of the phases around the mean differs
across conditions. All tests were implemented in the “circular”
R package (Agostinelli and Lund 2017).

Finally, to examine if the density of SO-coupled and uncou-
pled spindles predicted overnight memory retention, a Pear-
son correlation was computed for each measure and was cor-
rected for multiple comparison using the Bonferroni correction
(adjusted alpha level = 0.025 to correct for two correlations). We
computed accurate confidence intervals (CIs) of the correla-
tion coefficient based on the empirical distribution generated
using the Bootstrap approach (Efron and Tibshirani 1993), which
has no a priori assumptions about the data distribution. We
calculated the percentile bootstrap 95% CIs for the correlation
between the relative change in density of spindle–SO couplings
and uncoupled fast spindles with overnight memory retention.
Pairs of observations from each sample were initially resam-
pled with replacement, and their correlation coefficient (r) was
obtained. This procedure, which was repeated 1000 times, gener-
ated a distribution for the correlation coefficients. To determine
the 95% confidence limits, we then sorted the resulting distribu-
tion of r and took the values falling at the 2.5 and 97.5 percentiles
as our confidence limits.

Results
To study the impact of VMA on brain oscillations, we quantified
the sleep metrics described above during the period of NREM of
the first sleep cycle. We also examined the sleep architecture to
assess whether learning affected any sleep stage/s differentially.

Behavioral Results

All volunteers learned to compensate the visual rotation during
the VMA session (Fig. 2A) and, on average, retained 56 ± 10.5%
(mean ± SE) overnight (Fig. 2B). In the CTL condition, in which no
perturbation was applied, pointing angle oscillated around zero
(mean ± SE: 0.38◦ ± 6.04◦) during EC trials.

The degree of vigilance assessed using the SSS yielded scores
below 3 (Day 1 and Day 2 for CTL and VMA sessions = P > 0.5),
consistent with a mental state of alertness both before perform-
ing the task at night and the day after (see Table 1).

Figure 2. Behavioral performance. (A) Learning curves. Shown is the mean ± SE

of the pointing angle (degrees) for the VMA (light gray shade) and CTL (dark
gray shade) conditions during Day 1. All volunteers learned to compensate the
visual rotation during the VMA condition. (B) Memory retention. Memory retention
was assessed on Day 2 as the pointing angle for each EC cycle expressed as a

percentage of the pointing angle asymptote and was then averaged.

Effect of VMA on Sleep Architecture

We found no significant differences in sleep architecture across
sessions for any of the computed measures, suggesting that
adaptation did not modulate the intrinsic sleep structure. Their
corresponding scores and statistics are displayed in Table 2.
The average (mean ± SE) sleep architecture for the first sleep
cycle was: NREM1 = 17.4 ± 3.76 min; NREM2 = 30.1 ± 6.73 min;
NREM3 = 44.2 ± 4.59 min; REM = 15.9 ± 2.85 min; total sleep =
107.6 ± 12.43 min.

VMA Modulates the Density of Fast Spindles during
NREM3

We first looked at the impact of VMA on the intrinsic features of
spindles, that is, frequency, duration and P-P amplitude during
the first cycle of NREM sleep. No statistical differences were
found for frequency (LMM stats, main effect of session: F(1,
8.73) = 0.04, P = 0.84), duration (LMM stats, main effect of session:
F(1, 8.99) = 0.07, P = 0.80), or amplitude of sleep spindles (LMM
stats, main effect of session: F(1, 8.48) = 0.12, P = 0.74).

Next, we examined the global effect of adaptation learning
on spindle density during NREM sleep. Previous work has dis-
tinguished between two types of spindles according to their
spatial distribution and intrinsic frequency (Mölle et al. 2011;
Cox et al. 2017). Fast spindles, which have been linked to mem-
ory consolidation (Barakat et al. 2011; Ladenbauer et al. 2017;
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Local Spindle–SO Coupling Predicts Motor Memory Solano et al. 7

Table 2 Sleep architecture

Measure Familiarization CTL VMA LMM

Mean SE Mean SE Mean SE F P

Total sleep time (min) 376.40 23.97 386.10 8.91 386.85 12.76 0.18 0.83
Sleep efficiency (%) 81.90 5.27 87.36 2.19 86.57 3.11 1.01 0.38
Sleep latency (min) 18.20 4.95 18.40 4.35 16.05 3.40 0.34 0.71
REM latency (min) 132.60 20.81 105.00 9.88 123.85 15.66 1.09 0.35
Total wake time (min) 80.35 24.50 54.80 9.67 58.75 14.48 1.01 0.38
WASO (min) 42.95 19.93 33.10 8.95 29.50 6.40 0.41 0.67
NREM1 (min) 43.35 7.43 53.30 9.69 53.35 5.14 1.17 0.33
NREM2 (min) 157.30 17.68 157.25 11.48 150.15 14.70 0.19 0.82
NREM3 (min) 100.25 12.27 100.15 7.45 105.90 7.43 0.15 0.86
REM (min) 75.50 10.92 75.40 9.23 77.45 8.48 0.03 0.97

Note: Shown are the mean and SE corresponding to the sleep measures listed in the first column for the familiarization, VMA, and CTL conditions. The last column
depicts the statistics and P values yielded by comparing the three conditions using LMMs. All measures are depicted in minutes except for sleep efficiency, defined as
the percentage of total sleep time relative to the time interval between lights-off and lights-on (%).

Figure 3. VMA modulates the density of fast spindles during NREM3. The bar
plot depicts the relative difference in the density of fast and slow spindles
(mean ± SE) between VMA and CTL sessions ((VMA − CTL)/CTL∗100) during

NREM2 and NREM3. VMA increased the density of fast spindles during NREM3.
∗∗P < 0.01 indicates the sleep stage by spindle-type interaction.

Helfrich et al. 2018; Muehlroth et al. 2019; Navarro-Lobato and
Genzel 2019), are distributed over centro-parietal areas and have
a frequency ≥12 Hz, whereas slow spindles are distributed over
frontal areas and have a frequency <12 Hz. Here, we explored
whether VMA differentially modulated fast and slow spindles.
In humans, motor sequence learning has been associated with
an increment in the density of fast spindles during NREM2 (e.g.,
Boutin et al. 2018). Given that we were interested in study-
ing both the number of spindles and their coupling with SOs,
which are more prominent during NREM3, we quantified spindle
density in both sleep stages.

Figure 3 depicts the effect of VMA on the density of fast and
slow spindles during NREM2 and NREM3 (relative change in
density, mean ± SE: NREM2: fast spindles = −1.33 ± 3.76%, slow
spindles = −3.39 ± 3.28%; NREM3: fast spindles = 22.59 ± 4.21%,
slow spindles = −3.42 ± 1.59%). We found a significant stage by
spindle-type interaction (LMM stats: F(3, 14.81) = 8.89, P = 0.001,
followed by a one sample t-test for fast spindles during NREM3
versus zero: t(9.68) = 3.57, P = 0.005), suggesting that only the
density of fast spindles during NREM3 was modulated by adap-
tation learning.

Figure 4 illustrates the topographic distribution of fast and
slow spindle densities for the VMA and CTL sessions (first two
columns) as well as for the relative change between them ((VMA
− CTL)/CTL∗100). Note that, for both VMA and CTL sessions,
fast spindles were observed over parietal and central brain
regions, whereas slow spindles were distributed more frontally.
Especially salient was the strong modulation of VMA on the
density of fast spindles (up to 36%) during NREM3 (third col-
umn), characterized by a somewhat asymmetric pattern. Quan-
tification of this effect between LH and RH yielded a signif-
icant difference, with the LH showing higher density of fast
spindles than the RH (relative change in density, mean ± SE:
LH = 30.21 ± 6.35%; RH = 14.97 ± 5.33%; LMM stats: main effect
of hemisphere: F(1, 10.9) = 5.06, P = 0.046). In sum, our findings
show that VMA increases the density of fast spindles during
NREM3 most preponderantly over the contralateral hemisphere
to the trained hand.

Effect of VMA on Slow-Wave Sleep

After studying the activity of sleep spindles, we explored the
impact of adaptation learning on slow-wave sleep. Previous
work aimed at testing SHY in VMA, using a reaching paradigm
(Huber et al. 2004), identified an increment in the power of delta
during the first 30 min of NREM sleep that decreased there-
after. The authors interpreted this phenomenon as reflecting
an improvement in the signal-to-noise ratio of strongly potenti-
ated—relevant—synapses. To examine the possibility that mem-
ories formed with practice in our experimental paradigm may
undergo synaptic downscaling during sleep, we followed the
analytical approach by Huber and collaborators (see Materials
and Methods).

As revealed by Figure 5, VMA increased the power of delta
locally, in an interhemispheric manner, during the first 30 min
compared with the last 30 min of NREM sleep (LMM stats for
hemisphere by segment interaction: F(1, 120.4) = 4.09, P = 0.045).
This finding is consistent with the SHY as a potential mecha-
nism mediating memory stabilization during sleep.

Next, we examined whether VMA modulated the density of
SOs (∼1 Hz) during the first sleep cycle. Given that SOs are the
hallmark of NREM3 and that, as observed in the previous section,
sleep spindles were mostly modulated during NREM3, we quan-
tified SOs during this stage (Riedner et al. 2007; Mölle et al. 2011).
We found that VMA did not increase the density of SOs above
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Figure 4. Topographic distribution of the density of fast and slow spindles during NREM2 and NREM3. Shown are the topographic plots for the density of fast and

slow sleep spindles (number per minute) corresponding to the VMA session, the CTL session, and their relative difference (VMA/CTL) during NREM2 (upper two rows)
and NREM3 (lower two rows). Relative differences between VMA and CTL were computed according to the function ((VMA − CTL)/CTL∗100). Color bars represent the
density of sleep spindles for the VMA and CTL conditions and their percent change, respectively. Only the density of fast spindles during NREM3 was modulated by
adaptation learning (LMM stats: F(3, 14.81) = 8.89, P = 0.001, followed by a one sample t-test for fast spindles during NREM3 vs. zero: t(9.68) = 3.57, P = 0.005).

that observed in the control condition (Fig. 6A; relative change
in density, mean ± SE: NREM3 = −1.9 ± 0.77%; one sample t-test
versus zero: t(9.02) = −1.07, P = 0.31).

VMA Modulates the Coupling between Fast Spindles
and SOs

So far, we have shown a local modulation of adaptation learn-
ing on the density of fast spindles during NREM3 but not on
the density of SOs. To explore the relevance of the spindle–SO

coupling in the consolidation of motor memories, we quantified
the amount of spindles locked to a SO during NREM3. Given that
only fast spindles were modulated by sleep, we examined the
effect of adaptation learning on fast spindle–SO couplings. Even
though the proportion of fast spindles coupled with a SO was
similar across VMA and CTL sessions (proportion of fast spindles
coupled to a SO, mean ± SE: VMA = 31.1 ± 1.1%, CTL = 33.7 ± 1.4%;
LMM stats, main effect of session: F(1, 8.99) = 1.01, P = 0.34),
VMA significantly increased the global density of spindle–SO
couplings during NREM3 relative to the control (relative change
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Local Spindle–SO Coupling Predicts Motor Memory Solano et al. 9

Figure 5. VMA modulates the power of delta activity early during NREM sleep. Shown are the topographic plots for the normalized delta power (1–4 Hz) during the first

30 min (top) and the last 30 min (bottom) of NREM sleep for VMA and CTL sessions and for their relative difference (VMA/CTL). Relative differences were computed
according to the function ((VMA − CTL)/CTL∗100). Color bars represent the normalized power for the VMA and CTL conditions and the percent change, respectively.
As observed for the rest of the metrics quantified in our study, sleep increased the power of delta in an interhemispheric manner, contralateral to the trained hand,

during the first versus the last 30 min of NREM sleep (P = 0.045).

in density, mean ± SE = 17.48 ± 5.21%; one sample t-test versus
zero: t(8.23) = 2.62, P = 0.03). The topographic distribution corre-
sponding to this effect is illustrated in Figure 6B.

Further statistical analysis on the relative difference between
VMA and CTL yielded a strong interhemispheric modulation,
suggesting that this effect was driven by the hemisphere
contralateral to the trained hand (relative change in density,
mean ± SE: LH: 26.42 ± 9.09%, RH: 1.81 ± 5.88%; LMM stats, main
effect of hemisphere: F(1, 13.8) = 7.03, P = 0.019; followed by a
one sample t-test for the spindle–SO coupling in the LH versus
zero: t(15.03) = 3.551, P = 0.001).

To examine whether the increment in the fast spindle–SO
coupling in fact promoted memory stabilization, we next corre-
lated the relative change in the density of fast spindles associ-
ated with a SO during NREM3 with overnight memory retention.
To establish further the specificity of this phenomenon, we
contrasted this result with that obtained from correlating the
relative change in the density of “uncoupled” fast spindles with
memory retention. Figure 7 illustrates the correlation for these
measures and the corresponding 95% CIs (Fig. 7A,B) as well as
the bootstrapped distribution (Fig. 7C,D). Only fast spindles asso-
ciated with a SO predicted overnight memory retention (Pearson
correlation: Coupled fast spindles: r1 = 0.73, CI [0.33 0.95], P = 0.036,
after adjusting by Bonferroni for two comparisons; Uncoupled fast
spindles: r2 = −0.23, CI [−0.68 0.28], P = 0.99, after adjusting by
Bonferroni for two comparisons).

In sum, we found that VMA modulates the density of spindles
but not their frequency, duration, or amplitude during NREM
sleep. This effect was specific for fast spindles during NREM3.
Although VMA did not affect the density of SOs, it substan-
tially increased the fast spindle–SO coupling, suggesting that
adaptation learning may rather boost the ability of SOs to
promote thalamic spindles. Remarkably, adaptation modulated

the degree of this coupling locally in an interhermispheric
manner, that is, contralateral to the trained hand. The fact
that only fast spindles coupled with a SO predicted overnight
memory retention points to this association as a potential
signature of motor memory consolidation.

Phase Relationship between Sleep Spindles and SOs

Previous studies have shown that learning may influence the
degree of synchrony between SOs and spindles, reflected in the
level of grouping of spindles around the active phase of the SO
(Mölle et al. 2009, 2011). To investigate whether the modulation
of the fast spindle–SO coupling observed in Figure 6B was asso-
ciated with a change in the degree of synchrony, we determined
the phase of the SO at which the spindle yielded its maximum P-
P amplitude and contrasted the level of spindle grouping around
the mean phase for the VMA and CTL sessions.

Figure 8 illustrates a consistent phase relationship between
SOs and fast spindles for both the CTL and VMA sessions
(Rayleigh nonuniformity test. CTL: r = 0.79, P < 0.001; VMA:
r = 0.96, P < 0.001). In accordance with the declarative literature,
fast spindles occurred locked to the active phase of the SO,
close to its positive peak (Amzica and Steriade 1998; Steriade
and Amzica 1998; Rasch and Born 2013; Ladenbauer et al. 2017;
Helfrich et al. 2018; Muehlroth et al. 2019). In addition, we found
that the preferred synchronization phase between spindles and
SOs (Watson-Williams Test for von Mises Distributions, F(1,
18) = 2.59, P = 0.12) and the level of grouping around the mean
phase (Fisher’s test for von Mises Distributions, F(1, 18) = 0.85,
P = 0.37) did not differ across VMA and CTL.

In sum, we showed that fast spindles occurred mainly during
the active phase of SOs independently of the condition (CTL
or VMA). Even though VMA increased the coupling between
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Figure 6. VMA modulates the spindle–SO coupling during NREM3. (A) VMA did not impact on the density of SOs. Shown are the topographic plots for the density of SOs
for the VMA and CTL sessions and their relative difference (VMA/CTL). We found that VMA did not modulate the density of SOs during NREM3 of the first cycle of
sleep (one sample t-test vs. zero: t(9.02) = −1.07, P = 0.31). (B) Local modulation of spindle–SO coupling. Shown are the topographic plots for the density of fast spindles

coupled with a SO for the VMA and CTL sessions and their relative difference (VMA/CTL). VMA significantly increased the global density of spindle–SO couplings during
NREM3 (one sample t-test vs. zero: t(8.23) = 2.62, P = 0.03). Relative differences were computed according to the function ((VMA − CTL)/CTL∗100). Color bars represent
the density of these metrics for the VMA and CTL conditions and their percent change, respectively.

SOs and spindles, it did not influence their level of synchrony,
suggesting that this parameter may not provide relevant infor-
mation regarding motor memory stabilization.

Discussion
The degree of coupling between SOs and spindles appears to
be critical for sleep-dependent systems consolidation of declar-
ative memories. Here, we examined whether this mechanism
operates in the stabilization of motor memories. To this end, we
measured the impact of learning a VMA task on the density of
SOs, spindles, and their coupling during NREM sleep. Adaptation
modulated both the fast spindle density and the degree of fast
spindle–SO coupling locally, contralateral to the trained hand
during NREM3. Remarkably, the density of fast spindles asso-
ciated with SOs, but not uncoupled spindles, predicted mem-
ory retention overnight, underscoring the importance of this
association in the stabilization of procedural memories. Further-
more, adaptation learning increased the power of delta early
during NREM sleep, which decreased thereafter, suggesting that
VMA may also induce synaptic downscaling locally over the
contralateral hemisphere.

The time course of adaptation memory consolidation has
remained somewhat elusive for over a decade (Bock et al. 2001;
Goedert and Willingham 2002; Caithness et al. 2004; Krakauer
et al. 2005; although, see Shadmehr and Brashers-Krug 1997).
This likely stems from the failure of retrograde interference
protocols at unveiling a gradual recovery of the memory trace in
this type of learning (for a comprehensive literature review, refer

to Krakauer et al. 2019). Using an alternative anterograde inter-
ference approach, we have recently shown evidence supporting
the stabilization of VMA memories within a 6-h window post-
training (Lerner et al. 2020). This time window is in line with that
reported for motor sequence learning (Walker et al. 2003; Kor-
man et al. 2007; Cantarero et al. 2013). Tracking functional con-
nectivity during this period has allowed us to identify a network,
including motor, premotor, and posterior parietal areas, mostly
contralateral to the trained hand, which peaks at about 6-h post-
training and predicts overnight memory retention (Della-Mag-
giore et al. 2017). Using the same experimental paradigm, here,
we identified a sleep-related modulation of brain oscillations
over these cortical areas that also predict overnight memory
retention. The anatomical congruency is consistent with the
hypothesis that sleep promotes the consolidation of memory
representations in local networks that may be active during
learning (e.g., Klinzing et al. 2019).

There are some major differences worth noticing regarding
the neural signatures modulated by learning in our experimen-
tal paradigm compared with motor sequence learning. So far,
sleep consolidation of motor sequence learning has been linked
to changes occurring during NREM2. For example, offline gains
in performance correlate positively with the density of sleep
spindles (Nishida and Walker 2007; Boutin et al. 2018) as well
as with the amount of time spent in NREM2 (Walker et al. 2002;
Nishida and Walker 2007). This is in sharp contrast with our
study in which VMA modulated the number of spindles exclu-
sively during NREM3. Another important discrepancy between
the two types of motor learning is the actual EEG signal affected
by training. Overnight improvements in performance associated
with motor sequence learning have been linked to an increment
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Local Spindle–SO Coupling Predicts Motor Memory Solano et al. 11

Figure 7. Fast spindles coupled with SOs predict motor memory. Top panel.
Correlation between the % change ((VMA − CTL)/CTL∗100) in the density of
fast spindles coupled (A) and uncoupled (B) with SOs and overnight memory

retention. Shown are the dots representing the mean across all four electrodes
of the LH for each subject and the corresponding regression lines. Dashed
lines depict the limits of the percentile bootstrap 95% CI. P values corrected by
Bonferroni (alpha/2) are 0.036 and 0.99, respectively. Only fast spindles coupled

with SOs predicted overnight memory retention. Bottom panel. Distribution of the
correlation coefficients between memory retention and the percentage change
in the density of coupled (C) or uncoupled (D) fast spindles, generated after 1000

bootstrap iterations. Vertical black lines indicate the lower and upper limits of
the 95% CI.

in the density of uncoupled sleep spindles (Nishida and Walker
2007; Boutin et al. 2018), whereas in our work, only spindles
coupled to a SO predicted overnight memory retention. It is
important to remark, however, that an enhancement of the
coupling between spindles and SOs has also been described in
rodents for a type of MSL involving reaching and grasping a
pellet through a slit (Silversmith et al. 2020). Further work will
be needed to systematically compare motor tasks and estab-
lish whether these apparent discrepancies reflect mechanistic
differences inherent of the type of learning, the experimental
design (e.g., the time elapsed between training and sleep), and/or
the sleep stage analyzed (NREM2 vs. NREM3).

Our results show a strong association between the increase
in the number of coupled fast spindles and the ability to retain
information overnight. The fact that uncoupled spindles were
not related to memory retention suggests that only coupled
spindles may have promoted memory consolidation. How may
the coupling between SOs and fast spindles drive motor memory
stabilization? Using two-photon imaging, Niethard and collab-
orators (2018) found that cortical pyramidal neurons are more
sensitive to excitatory inputs during the coupling of these oscil-
lations than during their occurrence alone, which may facili-
tate dendritic plasticity. It has been proposed that it is during
these events that newly encoded representations are reactivated
(Steriade et al. 1998). This hypothesis finds support in an MSL
study carried out in rodents (Ramanathan et al. 2015), showing

task-related neural replay in close temporal association with
fast spindles and SOs. We speculate that a similar mecha-
nism based on neural reactivation (Robertson and Genzel 2020)
may explain why coupled but not uncoupled spindles predicted
overnight memory retention.

The spindle–SO coupling has been proposed as a key asso-
ciation enabling systems consolidation of declarative memo-
ries. According to the systems consolidation hypothesis, newly
encoded memories, initially stored in hippocampal and cortical
networks, are reactivated during slow-wave sleep (SWS) and
are gradually integrated with existing memories at the systems
level. This process is thought to depend on the close synchrony
between SOs, sleep spindles, and hippocampal ripples (Rasch
and Born 2007; Diekelmann and Born 2010). Another—not mutu-
ally exclusive—account of memory consolidation is the SHY,
according to which synaptic weights potentiated during learning
are downscaled by sleep (Tononi and Cirelli 2003). By focusing
on the renormalization of cortical synapses during SWS, SHY
emphasizes the role of sleep in forgetting (Feld and Born 2017),
thereby improving the signal-to-noise ratio for strongly potenti-
ated synapses. This process is thought to avoid saturation and
benefit memory consolidation. Empirically, SHY would mani-
fest as an increment in the power of delta oscillations during
the beginning of sleep that decreases as the night progresses
(Tononi and Cirelli 2006; although, see Kuhn et al. 2016 for a
theta account of SHY). Our results are in line with both accounts:
we found that learning modulated the coupling between fast
spindles and SOs as well as the power of delta early during NREM
sleep. This opens the possibility that sleep may contribute both
to the consolidation of VMA memories as well as the forgetting
of irrelevant information.

Finally, it is important to acknowledge that, unlike the work
by Tononi and collaborators (Huber et al. 2004; Landsness et al.
2009), a couple of labs have failed to find a beneficial effect of
sleep on motor adaptation (Donchin et al. 2002; Doyon et al. 2009;
although, refer to Cai and Rickard 2009 for evidence questioning
the role of sleep in motor memory consolidation). Yet, we want
to emphasize that these studies show substantial methodolog-
ical differences. For example, Donchin and collaborators used
force-field adaptation, an experimental paradigm that differs
from VMA in many parameters (such as the level of explicit
processing), due to the distinct— proprioceptive —nature of the
perturbation (Krakauer et al. 1999; Krakauer et al. 2019). On the
other hand, Doyon and collaborators implemented large mirror
rotations (180◦) that, unlike the small rotation used in our study,
are learned and consolidated through different mechanisms
(Bédard and Sanes 2011; Gutierrez-Garralda et al. 2013; Telgen
et al. 2014). In fact, mirror reversal learning is associated with
shifts in time–accuracy tradeoff and offline gains, features that
are more common to skill learning tasks than to VMA tasks.
Beyond the differences in the experimental paradigms, none of
these studies controlled the timing between training and sleep
in the way that we and Tononi and collaborators did (practically,
10 min took place between the end of training and bedtime). The
close proximity between these events may be key to achieve a
stronger benefit of sleep (e.g., Schönauer et al. 2015; Sawangjit
et al. 2018).

In conclusion, we have shown that VMA modulates the den-
sity of fast spindles and the level of coupling between fast spin-
dles and SOs in a contralateral manner during NREM3. Interest-
ingly, only fast spindles associated with SOs predicted memory
retention overnight, pointing to a role of this coupling in motor
memory consolidation. In addition, the increase in delta power
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Figure 8. Fast spindle–SO synchrony for VMA and CTL. Shown are the polar plots (left) and the overlaid of fast spindles onto a SO (right) for VMA and CTL. Polar plots
illustrate the mean coupling phase between fast spindles and SOs for each subject (gray lines/black dots) and across all subjects (dark gray arrow), corresponding to
the LH. Signal overlays depict the grand average of EEG signal for fast spindle–SO coupling events time locked to the spindle’s maximum amplitude (time = 0.0), where
the gray line is the signal filtered in the SOs frequency band (0.5–1.25 Hz) and the dark gray line is the signal filtered in the fast spindles band (12–16 Hz).

during the initial portion of NREM sleep is consistent with the
SHY, suggesting that both these processes may be involved in
the stabilization of VMA. Our findings open the possibility of
common mechanisms operating at the basis of procedural and
declarative memory.
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