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Introduction: The search for the “neural code” has been a fundamental quest in

neuroscience, concerned with the way neurons and neuronal systems process

and transmit information. However, the term “code” has been mostly used

as a metaphor, seldom acknowledging the formal definitions introduced by

information theory, and the contributions of linguistics and semiotics not at all.

The heuristic potential of the latter was suggested by structuralism, which turned

the methods and findings of linguistics to other fields of knowledge. For the

study of complex communication systems, such as human language and music,

the necessity of an approach that considers multilayered, nested, structured

organization of symbols becomes evident. We work under the hypothesis that

the neural code might be as complex as these human-made codes. To test this,

we propose a bottom-up approach, constructing a symbolic logic in order to

translate neuronal signals into music scores.

Methods: We recorded single cells’ activity from the rat’s globus pallidus pars

interna under conditions of full alertness, blindfoldedness and environmental

silence. We analyzed the signals with statistical, spectral, and complex methods,

including Fast Fourier Transform, Hurst exponent and recurrence plot analysis.

Results: The results indicated complex behavior and recurrence graphs

consistent with fractality, and a Hurst exponent >0.5, evidencing temporal

persistence. On the whole, these features point toward a complex behavior

of the time series analyzed, also present in classical music, which upholds

the hypothesis of structural similarities between music and neuronal activity.

Furthermore, through our experiment we performed a comparison between

music and raw neuronal activity. Our results point to the same conclusion,

showing the structures of music and neuronal activity to be homologous. The

scores were not only spontaneously tonal, but they exhibited structure and

features normally present in human-made musical creations.

Discussion: The hypothesis of a structural homology between the neural code

and the code of music holds, suggesting that some of the insights introduced by

linguistic and semiotic theory might be a useful methodological resource to go

beyond the limits set by metaphoric notions of “code.”
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1. Introduction

From at least the beginning of the twentieth century, language
has been moving to the forefront of research on both the sciences
and the humanities. Furthered by parallel advances in analytical
philosophy and the sciences of language, this “linguistic turn”
gave birth to research programs in many disciplines, from literary
theory to biology, from sociology and anthropology to architecture,
from engineering to music, especially during the apex of the
intellectual movement called “structuralism,” between the end
of the fifties and the beginning of the seventies (Rorty, 1979;
Eagleton, 1983; Dosse, 1998). The structural approach aimed to
apply formal procedures to empirical data in order to turn them
into logico-mathematical models that might be expressed/derived
through series of transformations. Its research agenda proposed
that language - or rather the formal models of language built
by structural linguistics and phonology - could be used as
a basis to build homologous models of empirical phenomena
potentially involving any kind of communication1 (Jakobson,
1962; Trubetzkoy, 1969; de Saussure, 2011). Communication, in
turn, implies the notion of “code,” defined as “a set of symbols
and the rules for their combination, which can be used to
represent a pattern of information” (Uttal, 1969; Eco, 1978).
However appealing, the idea of a straightforward, single-level
code as a sufficient representation of communication processes is
too simplistic for most applications and has been progressively
discarded and replaced with the concept of multiplexed codes,
particularly in neuroscience (Andres, 2015). The necessity of
such an approach becomes evident in the analysis of the most
elaborate of codes produced by human beings: language and
music. Both constitute complex communication systems, which
exhibit a multilevel and layered structure that brings about
interrelated effects at the cognitive, affective and intersubjective
levels.2 Approaches and tools suitable for the analysis of these
rich and nuanced codes have been proposed both on the side
of social sciences - by linguistics, which in turn gave birth
to structuralism - and mathematics - with the development of
fractal formalisms. As early as 1975, Voss and Clarke (1975)
proposed fractal characteristics as defining traits in the creation of
algorithmic music, and fractal properties have been widely studied
both in musical pieces (in particular in the classical genre) and in
neuronal signals (Trulla et al., 2018; Rolla et al., 2021).

On the other hand, the term “neural code” has been frequently
applied in neuroscience to the process of coding and decoding
of information by neurons, as well as the transmission of this
information through neural networks (Gerstner et al., 1997; Naci
et al., 2014; Andres et al., 2015). However, in many cases,
approaches to “code” follow the metaphors that happen to be
current (Turner, 1975). A poignant critique warning about the

1 “Homologous” within the context of the structuralist approach means
that the codes in question share basic structural features, which in the case
in point are expressed as complex mathematical properties. It does not imply
strict commensurability or isomorphism (Lévi-Strauss, 1955).

2 Regarding this point, it should be taken into account that the term
“structure” is deployed with different meanings in different disciplines, all
of which converge and affect directly the work undertaken in the present
paper: linguistics, anthropology, music and compositional analysis, fractal
geometry and time series analysis. We use the term in its most general sense
of a system of relationships.

pitfalls of a metaphoric approach to cognition and neuroscience
can be found in a recent article by Cobb (2021). The arguments
are particularly appropriate to the casual treatments of “code” made
frequently in neuroscience, which seldom acknowledge the specific
conceptual treatment introduced by linguistics and semiotics
several decades ago to deal with matters such as the distinction
between signal and symbol, the difference between information
and signification or the problems related to the relationships
between syntax, semantics and behavior (Eco, 1978). Historically,
the neuroscientific approach has tied meaning to context, in terms
of standardized experimental settings mainly designed to deal
with sensory systems. Classic research in the field was conducted
by Uttal, one of the pioneers in defining and applying the idea
of code to sensory neural systems (Uttal, 1969). As much as
this foundational work set the basis for current views on the
sensorimotor system and led to a thriving field of applications
on neural control and brain-machine interfaces, a notion of code
consistent with linguistic and semiotic developments should move
forward the analysis of signification as a property intrinsic to
the multilayered structure of codes themselves. Something similar
happens with concepts such as entropy and information applied to
the problem of communication between neurons. Even when they
have allowed for the quantitative study of neural processes, they run
the risk of impoverishing the analysis, since they may not account
for the different superimposed systems that can be deployed to
produce meaning.

We work under the hypothesis that the neural code shares
some properties with the most complex and multilayered encoding
systems of human making: music and language. To test this
hypothesis, we conduct an experiment that reverts the process
undertaken by original structuralist analysis. Instead of going
downwards in search of the human mind by the way of its most
complex productions, we build a bottom-up approach, starting
from the lowest level of abstraction - i.e., neuronal signals - and
constructing a symbolic logic in order to translate those signals
into music scores (Church, 1936). The experiment allows for a
meaningful comparison between music and raw neuronal activity
which suggests, when subjected to mathematical analysis, that their
structures are in fact homologous. This lends credence to the
original insights of the structuralist perspective from a novel point
of view and opens up the possibility of using a linguistic approach
for the analysis of the neural code.

2. Materials and methods

2.1. Experimental procedure

The neuronal recordings used for the present work were
originally produced within an experimental Parkinson’s research
protocol that followed the partial-lesion model originally described
by Sauer and Oertel (1994). The signals analyzed correspond
to microelectrode recordings (MER) obtained from adult rats
weighing 250–350 g. assigned to the control group of the
aforementioned protocol (Andres et al., 2014). The goal of
the experiments was to record the spontaneous activity of the
globus pallidus pars interna (GPi, previously called entopeduncular
nucleus) under conditions of alertness, environmental silence and
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blindfoldedness.3 Optimal anesthetic and analgesic medication
was used for the recording surgeries, with a three-drug profile
consisting of a combination of tramadol, lidocaine and chloral
hydrate. Following anesthesia, animals were placed in a restraining
device built ad hoc with semi-rigid plastic and a high-quality
thermal insulator on the inside. Once the animals were placed,
fixed to the stereotactic frame and ready for surgery, we waited
until they were completely awake, given the objective was to record
spontaneous neuronal activity under complete alertness. The
awakening process was monitored periodically with a standardized
evaluation of the tail reflex. The purpose of the device was to
minimize the animals’ discomfort during the surgery. During
the whole procedure animals remained only loosely bound. If
they didn’t relax but attempted to move, that was considered
an endpoint and the recording surgery was terminated. During
the whole surgical procedure, the eyes of the animals were
covered and all surgeries were conducted in identical conditions of
environmental silence. Recording coordinates fell within the limits
defined as the GPi by the last edition of Paxinos and Watson’s
(1997) Atlas. Neuronal recordings were obtained using glass-
insulated platinum/iridium (Pt/Ir 80/20%) microelectrodes with
nominal impedance of 0.8 – 1.2 megohms (mTSPBN-LX1, FHC
Inc, Bowdoin, ME, USA). Signals were amplified, conditioned and
monitored with an analog oscilloscope, digitized with a dedicated
acquisition system (1401 plus, CED) and saved in a computer
running Spike 2.0 software. The sampling rate was 20 kHz and total
amplification including probe was×10,000, checked with a built-in
calibration signal of 1 mV p-p at the beginning of each experiment.

2.2. Signal analysis

Signals were processed offline. Spikes were extracted and
classified using the algorithm developed by Quian Quiroga et al.
(2004). Single units were used to construct time series of interspike
intervals (ISI) in the following way:

X = {(xi+1−xi), ..., (xn−xn−1)},

with xi corresponding to the times of occurrences of successive
spikes. Thirty seconds of recording following the application of
the tail-stimulus were discarded from each time series in order to
warrant stationarity. Time series were used for statistical, spectral
and non-linear analysis as described below. All calculations were
performed with custom code run on Matlab R©.

2.2.1. Statistical analysis
Basic descriptive statistics were calculated for every time series:

mean, standard deviation, mode, median, percentiles, skewness
and kurtosis. The Anderson–Darling test was used to check

3 The use of GPi neurons for this experiment is particularly suitable, since
the GPi is a deep brain structure related not only to motor, but also to
higher functions, such as associative and affective functions (Lanciego et al.,
2012). The fact that the neuronal activity was recorded in control animals
while awake excludes any potential effect of drugs in our results. Further
experimental details can be found in Andres et al. (2014). The extrapolation
of results to the human brain should always be made with caution, but
mammalian models are the closest option for an invasive exploration of the
healthy human brain.

whether neuronal activity was normally distributed. Histograms
were adjusted to various models to find the best fit of the probability
distribution of neuronal activity. All results are presented as
mean± standard error of the mean (SEM).

2.2.2. Spectral analysis
The spectral properties of the time series were analyzed with

a Fast Fourier Transform (FFT). For each time series, a running
average with a 30-point window was applied to smoothen the
signal, shortening it 30 points on the right end. Subsequently, the
amplitude of the FFT was plotted on a double logarithmic graph.
Since power spectra of systems with a complex behavior obey a
power law like the following:

P(ω) ∝ ω−β,

the double logarithmic plot can be used to recover the spectral
exponent β as the slope of the linear regression to the spectrum.
Linear regressions were only accepted when the regression
coefficient R2

≥ 0.8.

2.2.3. Hurst exponent
We calculated the Hurst exponent based on the classic method

of rescaled range analysis. This exponent captures the long-term
memory effects present in time series and can be extracted from the
following relation:

R
S
∝ τH,

where R is the signal range, S the standard deviation, τ the
temporal scale and H the Hurst exponent. Plotting this relation
in double logarithmic axes, the exponent H is obtained as the
slope from the linear regression. Linear regressions with R2 < 0.8
were discarded from the present study. Interestingly, a formal
relation is verified between the Hurst and the spectral exponents,
namely H and β: for processes that can be modeled by a fractional
Brownian motion (fBm) and when 0 < β < − 1, the exponent
H =

β+1
2 (Mandelbrot, 1985; Wu et al., 2015). This allows for

a direct comparison between results obtained with rescaled range
and spectral analysis. We performed this comparison and expressed
the results as a percentage for the difference of H obtained by both
methods.

2.2.4. Recurrence plots
The unthresholded recurrence plot was calculated applying the

method published by Yang (2011). A color scheme was used to
represent the value of the norm between ISI xi and xi+τ separated
by a time distance (in indexed time units) of τ. Plots were calculated
for three different data lengths (n = {102, 103, 104

}) in order to
look for self-affine properties.

2.3. Music composition

A symbolic logic was created in order to translate the recorded
signals into music scores. Starting from the neuronal time series,
a coarse graining was applied, discretizing the series range in 12
intervals of equal amplitude, and semitones ranging from C to
B were assigned to each of the successive segments. To achieve
meaningful results from a musical standpoint, notes’ duration was
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set to quaver as the default value, except for repeated intervals
of the smallest value, in which case the number of successive
ISI was added to account for a duration of breve, semibreve,
minim, and so on. The musical piece presented here was built
with signals obtained from three neurons (segments labeled
N1, N2, N6, Figure 1), alternatively used as melodic line and
counterpoint to produce musical texture. Signal segments were
selected randomly from MER recordings. We then performed
a compositional analysis following the principles of structural
hearing set by Salzer (1982). These principles state that harmonic
progressions (typically expressed as I - IV - V intervals) are
present in semiphrases, phrases, sections or whole movements
of a musical piece, i.e., harmony is expressed at different
scales and in nested structures, akin to self-affine properties.
We applied this analysis to the sheet music produced, looking
for harmonic progressions, motives, tension and resolution, and
most importantly, patterns that might resemble human-made
music.

3. Results

Eleven neuronal recordings were obtained under the conditions
outlined above. Descriptive statistics are presented in Table 1. As
can be expected for neuronal activity of the GPi, the histograms
of the time series were positively skewed, i.e., asymmetric to
the left. The Anderson–Darling test rejected the null hypothesis
of a gaussian distribution for every signal with a significance
level higher than 0.05. Logistic (y = A1+A2

1+(x/x0)
p + A2), poissonian

(y = y0 +
e−r
·rx

x! ) and exponential (y = y0 + AeR0x) functions
were tried to fit the histograms. Among the functions tried, the
only one able to fit every case was the exponential function, with
an R2

≥ 0.8 in 9 out of 11 cases. Figure 2 shows the histogram
of a sample time series of neuronal activity and the corresponding
fit. From the power spectra an exponent −β ≥ 0.05 ± 0.02
was recovered, exhibiting the complex behavior of the time series,
with R2

≥ 0.8 for every case (Figure 3). The Hurst exponent
exhibited a value of H > 0.5 (H = 0.7 ± 0.02) also for every
case, showing that the neurons are persistent in terms of their long-
term behavior (Figure 4). Recurrence plots displayed the typical
behavior of complex systems, with a grid dominated mainly by
vertical and horizontal lines and without strong diagonals, in a
multicolored scheme related to the long-term correlations present
in the signals (Figure 5). Furthermore, recurrence plots built at
scales of increasing size (102, 103, 104 data) were qualitatively
similar, lending further evidence to the fractal (self-affine) nature
of the neuronal activity studied, in addition to the behavior of
both β and H exponents. The calculation of H with the spectral
method (i.e., applying the aforementioned relation to the value
of β) elicited a value of H = 0.52 ± 0.16, still within the
temporal persistence range, with a difference of 18% between
methods.

Segments of MER from three neurons were used to compose
a musical piece following the procedure described previously;
an average of 182 intervals were used from each signal (N1 :

247 ISI, N2 : 168 ISI, N6 : 130 ISI). A compositional analysis of
the piece, from a structural audition standpoint, elicited the results
presented in Figure 1 (Salzer, 1982). The process of translating

neuronal signals to musical notation produced a repertoire of
set melodies. The samples selected from such repertoire to work
as the main melodic line and as their counterpoint, respectively,
established what we may call an interneuronal musical dialogue.
Through this dialogue, neuronal utterances became related in a
meaningful fashion, following a melodic line articulated as a mosaic
of preexisting tunes. From design, and according to standard
procedures of musical composition, the piece is divided in an
eight-bar phrase structure. The score resulting from neuronal
activity can be considered, from a musical point of view, an
invention. Technically, this refers to a short composition in two-
part counterpoint resembling a fugue, although simpler in structure
(Bas, 1990).

Although the neuronal signals used as a basis for the
musical score were selected randomly, the criteria guiding the
creative process was the musical principle of “filling up space,” a
compositional resource based on compensation of long-duration
musical notes by means of shorter notes, in a search for continuity
of melodic discourse in a counterpoint of two or more voices. In
this way, since the melody taken as the starting point in bars 1–8
has a minimalist quality (N1), the one chosen as its counterpoint
(N2) was selected according to its potential for complementing the
melodic and rhythmic patterns of the first. Interestingly enough,
even when we did not set out explicitly to build transitions or
bridges between musical segments, they appeared spontaneously,
as a result of the very structure of the piece and the nature of
the signals themselves. For an example, note the bridge between
bars 8 and 9, where we find a chromatic descent transition to
the C in the latter. After this, a swapping takes place, in which
N2 moves from treble clef to bass clef. Throughout the piece, the
note C works as a harmonic attraction point, a fulcrum, drawing
the melody to itself in an oscillation of movements deployed in
recurring motifs and phrases (e.g., in bars 1–3 in treble clef and bass
clef, and also in bass clef in bars 10–20, among others). A harmonic
analysis shows the semitone (especially the one between C and
C#) to be a recurring feature of the score (n.b. the chromatic
bridge in bar 8). The sequence C - C# - C appears time and again,
which constitutes a stylistic element called ascending chromatic
ornamentation. Other prominent intervals can be found, as the
major fifth intervals in bars 4, 15 and 24, which also appears
elsewhere in the piece, or the augmented fourth interval (e.g., bars
26 and 32). These recurring patterns found in different neurons
amount to a resemblance of style (e.g., bars 4 and 15 in treble
clef, or 5, 8 and 27 in the bass clef, an expression that builds
musical tension). Motifs even become embellished and elaborated:
the musical motifs presented in bars 1 and 2, for instance, are
elaborated in bars 3–5, ending with a phrase tail in bars 6–9 (treble
clef). Analogously, the motif in bars 9–10 are further elaborated
in bars 11 and 13 concluding in a tail in bars 14–16 (treble
clef). Interestingly, the same motifs and sequences are present in
different signals (originated by different neurons) evidencing what
can be construed as a dialogue between them. Taken together,
these features, if found on the work of a human composer, would
point to a certain stylistic coherence, a compositional grammar
or authorial mark susceptible to further development in terms of
an oeuvre. Note in this respect the tail-end of the musical phrase
in bars 6 and 7, which works as a sort of coda leading to a
satisfactory resolution.
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FIGURE 1

Musical score produced by transcribing neuronal signals using a symbolic logic and its compositional analysis. Randomly selected segments of
neuronal signals were used for this construction (labeled N1,N2,N6 in the music sheet). Note how several musical elements appear recurrently in
segments produced from different neurons (e.g., bar 14 on treble key and 25 in bass key). The leit motiv of the piece is C - C# - C, with a constant
direction toward C, which works as the piece’s fulcrum. From a pure stylistic point of view the finale on C# may be interpreted as an unexpected
finale, redolent of a modulation at the last bar to the ionian mode, typical of Bach (e.g., Bach Nr. 2 BWV 847 c-Moll).

4. Discussion

As we have stated previously, we set out to construct an
experiment allowing for a comparison between music and raw
neuronal activity. Through a bottom-up approach, starting from
neuronal signals and constructing a symbolic logic in order to
translate them into music scores, we show that their structures
are homologous, that is they share basic structural properties.
A lot of work has been devoted to the mathematical structure
of music, dealing with different genres even when most of the

literature has focused on classical music (Wu et al., 2015). In
general terms, scale-free and fractal properties have been studied
across styles and composers. Two features in particular have
been covered more or less extensively, namely the spectral (β)
and Hurst (H) exponents, both of which describe the complex
properties of a system and are related to fractal geometry and
self-affinity. The spectral exponent characterizes power spectra
that decay following a power law 1/β, typical of systems with
complex behavior. This kind of behavior has been found in neural
systems at different scales (neuronal, microcircuitry and brain
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TABLE 1 Statistical properties of the time series analyzed.

Time series length 16887± 5548 ISI

Mean 130.89± 29.59 ms

Standard deviation 179.07± 53.02 ms

Skewness 2.21± 0.23 ms3

Kurtosis 8.23± 5.25 ms4

Mode 14.92± 7.48 ms

Minimum 1.05± 0.67 ms

Maximum 1626.39± 453.82 ms

Median 61.99± 15.70 ms

Percentile 25 15.63± 5.76 ms

Percentile 75 175.38± 43.55 ms

Results are presented as mean± standard error of the mean.

FIGURE 2

Histogram of a sample time series of neuronal activity and
corresponding fitting. As for every case studied, the distribution is
positively skewed (asymmetric to the left) and non-gaussian. The
logistic (y = A1+A2

1+(x/x0)p
+ A2), poissonian (y = y0 +

e−r ·rx
x! ) and

exponential (y = y0 + AeR0x) functions were tried to fit the
distribution; the best fit corresponded to an exponential function of
the form y = 14, 31 + 3483, 86 · e−0,008·x.

levels), and is also a typical feature of classical musical pieces
(Hsü and Hsü, 1990, 1991; Bedard et al., 2006; Liu et al., 2013;
Plenz et al., 2021). In fact, in their foundational paper, Voss and
Clarke (1975) went as far as proposing that a 1/f power spectrum
should be the defining trait in the creation of algorithmic music.
Furthermore, different authors have argued that 1/f noise is a
required feature of pleasant music (Teixeira Borges et al., 2019).
This kind of spectral decay has been found in compositions by
Bach, Brahms, Mozart and Beethoven; the Hurst exponent, in turn,
has been calculated for Bach, Mozart, Palestrina, Haydn, Dvorak
and Shostakovich, among others (Wu et al., 2015; González-
Espinosa et al., 2017). Regarding the latter, introduced by Hurst
(1956) in his cardinal paper, it is known to capture the long-term
memory effects present in time series, allowing for classification
of complex systems according to their persistent/antipersistent
behavior (H > 0.5 and H < 0.5, respectively). It should be noted
that the Hurst and spectral exponents are formally related, allowing
for a mutual transformation. That is, while H is usually calculated
with the rescaled range analysis (employed by us) or the detrended
fluctuation analysis methods, it can also be obtained through

FIGURE 3

Double logarithm of the power spectrum with the corresponding
linear fit of a sample time series of neuronal activity. An exponent
−β = 0.11 was recovered, indicating a complex behavior. Since
time series are expressed in numbered intervals, the power
spectrum exhibits arbitrary units (a.u.).

FIGURE 4

A rescaled range analysis was applied for the calculation of the
Hurst exponent; the figure shows the implementation for a sample
time series. The exponent was recovered as the slope of the linear
regression fit to the relation between R/S and τ in double
logarithmic axes, where R is the signal range, S the standard
deviation and τ the temporal scale. For this sample case H = 0.73.

spectral analysis. In practice, the simultaneous calculation of β and
H provides a way of corroborating the robustness of the results
and of finding bounds to the value of H. In the present work, we
obtained values of H > 0.5 through both procedures, indicating
persistent temporal properties of the neuronal time series. This is
coincident with observations of classical music, in which H also
exhibits persistence in a vast majority of cases (González-Espinosa
et al., 2017). Taken together, these observations point toward
mathematical similarities between neuronal activity and music, and
also highlight the role of complex and scale-free properties in both
domains.

Scale invariance and fractal properties in musical pieces have
been found using other methods as well. In a recent work, Rolla
et al. (2021) provide an in-depth analysis of fractality of 21
musical pieces from various composers, including Chopin, Haydn,
Clementi, Mozart, Schubert, Brahms and Beethoven. Applying a
network analysis, the authors emphasize that scale-free properties
of music are present in the harmonic domain as much as in
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FIGURE 5

Colored recurrence plots of a sample neuronal signal for increasing
data sizes (n = 102, 103, 104). The self-affine properties of the time
series are evident from the qualitatively similar behavior of the plots
at increasing lengths.

pitch and rhythm. Another work on pieces by Bach, Mozart
and Beethoven showed that recurrence plots evidence a form of
determinism and propose that determinism shows a progression
toward the end of the pieces (Fukino et al., 2016). Trulla et al. (2018)
also analyzed musical consonance and dissonance using recurrence
plots and the notion of self-similarity. Although recurrence plots
are not an ideal tool for quantitative analysis, they provide a friendly
visual representation of time series at various scales. We calculated
unthresholded recurrence plots of neuronal activity for increasing
data lengths (102, 103, 104), obtaining similar qualitative features
for all the scales studied. These results support the hypothesis of
local and global similarities in the structure of the studied signals
(self-affinity) and are once again consistent with the observations
in classical music.

For a thorough assessment of the present work, some technical
points need to be addressed regarding the validity of interpretations
built on extremely small data sets or short time series, as well
as the relationship between the results, the translation criteria

and the symbolic logic employed. Regarding sample size and
time series length, too often the necessary conditions for the
implementation of a method are overlooked, paradoxically leading
to excessive demands on the side of data quality, based on
the premise that overly long, regular, and abundant data would
eventually allow for the implementation of any method. However,
real data present effective challenges and constraints. Studying
statistical, spectral, and non-linear properties of neuronal activity,
we show that these properties are consistent with the presence of
fractality and self-affinity in neuronal recordings of the rat’s GPi.
All the numerical methods applied in our work are vulnerable
to the number of data analyzed, with results depending on
the size of data sets. This is compounded when looking for
self-affine properties, since multiple scales need to be analyzed,
making the data size problem even more critical. An approach
that may allow for conclusions to be drawn from sets in the
order of 102 data, capable of providing new insights into a
systems’ behavior, would be unfathomable in the field of time
series analysis. Working across disciplines and applying a novel
method, we were able to present a rigorous analysis of a neuronal
signal by the way of structural hearing, with as few as 100–
200 data points. The fact that patterns of neuronal activity
(a central theme on neuroscientific endeavors) were found by
means of compositional analysis, compared between different
neurons and interpreted as a language is both surprising and
revealing. This points to the potential heuristic fecundity of
a theoretical and methodological dialogue between linguistics,
semiotics, mathematics and neuroscience.

A second technical issue that needs to be addressed involves
the possibility that the results presented might be a reflection of
the translation method and the symbolic logic chosen. To a certain
degree this can be considered to be the case, since the goal of our
experiment was to show that such a translation is indeed possible.
This should by no means be taken as a suggestion that our method
is the only valid one, or that its results constitute the only valid
solution to the problem presented. On the contrary, the idea of
our work is to show a homology between the communication
system used by neurons and complex human communication
codes, which enables the translation between the former and the
latter. Other attempts have been made on the creation of music
from brain signals, the analysis of said signals in terms of musical
notation or the resource to music as illuminating analogy. Baslow
(2009), for instance, in his analysis of neuronal communication
in terms of a spike/pause “language,” translates signals in terms
of electronically generated musical notes based on frequency
equivalents. Other researchers have dealt with the commonalities
between the processing of language and music or the neural
correlates of music performance or appreciation (Globerson and
Nelken, 2013; Sutherland et al., 2013; Tierney and Kraus, 2013;
Chiang et al., 2017). Our own approach, in turn, is marked by a
homologic use of both compositional theory and structural hearing,
harking from musical theory, and made possible by wide and
far-reaching interdisciplinary cooperation.

This work echoes a long-standing program from the social
sciences known as “structuralism.” Inspired by the early advances
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in formalization achieved by structural linguistics (and phonology
in particular), structuralists, originally in France but later in
other latitudes as well, set to apply the methods and findings
of this discipline to other fields of knowledge, with the
intention of constructing rigorous relational models susceptible
to mathematical and/or logical treatment (Jakobson, 1962;
Trubetzkoy, 1969; de Saussure, 2011). Claude Lévi-Strauss (1908–
2009), the most ambitious of its proponents strived for an
overarching science of the systems of meaning/signification (i.e.,
“codes”) called “semiotics” that would translate and inscribe models
built for specific dominions into homologous and more abstract
“structures” susceptible to an axiomatic formulation and deductive
procedures of inference (Eco, 1978). The main assumptions of Lévi-
Strauss’ perspective are dependent on his claim that linguistics,
a human science, has achieved a formal status (and therefore
a rigor) comparable to “natural” or “physical” sciences, leading,
pointing and paving the way for other endeavors from the human
(or social) domain, whose objects may be subjected to analogous
treatment. In his case, as an anthropologist, these subject matters
featured, prominently, kinship systems, social organization and
classification systems and mythology (Lévi-Strauss, 1955, 1969,
1971, 1983a,b,c,d, 1988a,b, 1996, 2021). It must be stressed
that, unlike many researchers aligned with the aforementioned
“linguistic turn,” Lévi-Strauss’ resource to linguistics went beyond
persuasive analogies. Contrariwise, his application of linguistic
procedures strived to keep as strict a correspondence with his
methodological sources of inspiration as possible. From his point
of view, this is theoretically justifiable on the grounds that linguistic
and phonological models not only encode the structure of language,
but ultimately that of the human mind as well. Furthermore, as
Lévi-Strauss himself has repeatedly argued, music, inasmuch as
it can be considered a formal and relational system, also shares
properties with the models of language proposed by structural
linguistics. In fact, when outlining the main procedural rules for
structural analysis, he drew extensively from analogies with music
(Lévi-Strauss, 1955). Thus, for Lévi-Strauss music shares with
language deep and revealing affinities, predicated - as we have
already anticipated - on their both expressing the structure of the
human mind.

Our bottom-up approach could be in a sense considered an
inversion of the structuralist agenda: instead of translating music
scores to linguistic-inspired formal models as part of a progressive
approach to the structure of the mind, we built a symbolic logic
to translate neuronal signals into music scores in order to be able
to analyze their structure in search of potential homologies. Thus,
our experiment in creating a music score from neuronal signals
was intended to enable the comparison between music and raw
neuronal activity, in similar terms to those outlined by structuralist

analysis. Our results point to the same conclusion, showing the
structures of music and neuronal activity to be homologous.
Furthermore, the scores obtained were not only spontaneously
tonal, but they also exhibited structure and features normally
present in human-made musical creations. The original hypothesis
of a parallelism between the neuronal code and the code of music
holds, suggesting that some of the insights introduced by linguistic
and semiotic theory might be a useful methodological resource to
go beyond the limits set by metaphoric notions of “code.”
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