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ABSTRACT: Machine learning (ML) models to predict the
toxicity of small molecules have garnered great attention and have
become widely used in recent years. Computational toxicity
prediction is particularly advantageous in the early stages of drug
discovery in order to filter out molecules with high probability of
failing in clinical trials. This has been helped by the increase in the
number of large toxicology databases available. However, being an
area of recent application, a greater understanding of the scope and
applicability of ML methods is still necessary. There are various
kinds of toxic end points that have been predicted in silico. Acute oral toxicity, hepatotoxicity, cardiotoxicity, mutagenicity, and the
12 Tox21 data end points are among the most commonly investigated. Machine learning methods exhibit different performances on
different data sets due to dissimilar complexity, class distributions, or chemical space covered, which makes it hard to compare the
performance of algorithms over different toxic end points. The general pipeline to predict toxicity using ML has already been
analyzed in various reviews. In this contribution, we focus on the recent progress in the area and the outstanding challenges, making
a detailed description of the state-of-the-art models implemented for each toxic end point. The type of molecular representation, the
algorithm, and the evaluation metric used in each research work are explained and analyzed. A detailed description of end points that
are usually predicted, their clinical relevance, the available databases, and the challenges they bring to the field are also highlighted.

■ INTRODUCTION
Toxicity determination is a challenging process especially due
to the complexity of in vivo systems. This makes drug safety
one of the leading causes of drug withdrawals at the preclinical
or clinical phase.1,2 In recent decades, protection agencies have
been experiencing a growing frustration due to the large
number of toxicity test failures. It has been noticed that 90% of
drug candidates that have entered clinical studies would fail
during phases I, II, or III of clinical trials, or drug approval.3−5

In the 2010−2017 period, analyses of clinical trials have shown
that unmanageable toxicity is responsible for 30% of failures in
drug development. Even after being approved, many drugs are
withdrawn from the market for showing health risks. This
causes a loss of confidence in the industry for patients,
healthcare professionals, investors, and regulators.6 In this
scenario, computational toxicity prediction is particularly
advantageous in the early stages of drug discovery in order
to exclude molecules with a high probability of failing in
clinical trials.

Traditionally, quantitative structure−activity relationship
(QSAR) models were used to computationally predict drug
promiscuity and toxicity. These models correlate biological
properties with specific functional groups present in each
compound. Although they allow a good mechanistic
interpretation of the predictions, models are hard to generate
from random and diverse databases.7 In this context, an

increased availability of toxicity databases has promoted the
use of machine learning (ML) models to predict toxicity of
small molecules, which have become widely used in recent
years.8−15 These methods use a statistical technique to make
predictions based on a model. In 2014, the National Center for
Advanced Translational Sciences (NCATS) of the National
Institutes of Health (NIH) launched the Tox21 Data
Challenge competition. It was intended to analyze ML
model performance to identify molecular patterns and predict
biological properties using only chemical structural data.16

Promising results were obtained, which generated confidence
to apply them in the identification of chemicals with the
greatest potential for toxicity. The winning team presented a
neural network based model called DeepTox,8 thus gaining a
notorious relevance in the field.

One of the main advantages of ML is that it allows for the
modeling and prediction of complex problems, although it
generally requires computational power and large amounts of
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data to learn from. Within ML, two large groups can be
distinguished: supervised learning methods and unsupervised
learning methods. The former automatically map a set of
inputs to a set of outputs from annotated data, and the latter
allow learning of underlying relationships directly from a given
data set. In the context of drug safety evaluation, supervised
learning is commonly used as it can analyze input features
associated with compounds to specific outputs such as
biological activities or toxic end points. The models that
have been mostly used for toxicity evaluation are k-nearest
neighbors (kNN), support vector machine (SVM), random
forest (RF) and algorithms based on artificial neural networks
(NN, neural networks), or deep learning methods (DL, deep
learning). DL-based models constitute one of the most
common ML methods which are based on multiple layers of
neural networks. The number of different architectures and
algorithms used in DL is vast and varied. The most common
include multilayer perceptron (MLP) networks, recurrent
neural networks (RNN, recurrent neural networks) and
convolutional networks (CNN, convolutional neural net-
works). When to use one or the other is problem-dependent
and also affected by the chosen molecular representation.
Model construction generally involves: data collection and
preparation, determination of the molecular representation,
building a model by training and validation using a part of the
data set, and performing testing on data not previously seen by
the model (test set). Figure 1 shows the general pipeline to

predict toxicity using ML. Many details can be found in the
literature about the construction of ML models and their
characteristics,7,17−21 and thus this is not the focus of this
work.

One of the most important steps in computational toxicity
prediction is the selection of the type of molecular
representation, which has been shown to be highly problem-
specific.22 A molecular structure can be represented in terms of
a labeled graph with nodes corresponding to atoms and edges
corresponding to bonds between these atoms (MGE,
molecular graph encoding), by numerical characteristics or
molecular descriptors which are calculated from physicochem-
ical properties, by short ASCII strings known as SMILES
strings, or by molecular fingerprints which consist on bits
representing the presence or absence of particular substruc-

tures in a molecule. Molecular Access System keys (MACCS
Keys),23 PubChem substructures Fingerprints (PCFP),
Klekotha-Roth,24 and Extended Connectivity Fingerprints
(ECFP)25 are the most seen in toxicity prediction. Different
types of molecular representation and ML algorithms for
toxicity prediction can be found nowadays in the literature, and
the best performing ones will be described below.

There are various kinds of toxic end points that have been
predicted in silico. Acute oral toxicity, hepatotoxicity,
cardiotoxicity, endocrine disruption, and the 12 Tox21 Data
Challenge end points are among the most common
investigated. Obviously, depending on the end point data,
one uses a classification model when the toxicity is considered
as an active/inactive question, as the case of Tox21 end points,
or a regression model when looking for a quantitative
prediction, for example, LD50 prediction. Table 1 shows the
different sources of data that appear in recent works for ML
construction on each toxicity end point. The ML methods
show different performances on different data sets due to
dissimilar complexity, class distributions or chemical space
covered, which makes it hard to compare the performance of
algorithms over different toxic end points. The comparison is
also made difficult by the different evaluation metrics, whose
determination depends mainly on the ML method and the
database used. The choice of the evaluation metric is also a
crucial step in ML model construction which has been
extensively studied.26,27

Moreover, one of the main challenges that computational
toxicology faces today is the ability to obtain a mechanistic
explanation or understanding of the identified toxic responses.
The ML methods, especially DL models, are generally treated
as black boxes which can efficiently manage complex problems
but often lack an explanation of the prediction. Recent models
seek to apply different tools to improve interpretability. Mayr
et al., for example, showed that neural networks could learn
representations which are comparable to known toxicophores.8

Wenzel et al. introduced response maps that allow researchers
to gain an understanding about which are the features most
related to toxicity.13 A variety of methods are emerging which
could be beneficial for in silico toxicology.56

A list of all the available ML methods developed in the area
can be already found in the literature.7,18,20,21 In this
contribution, we present a detailed description of the most
recent progress in the area and the persistent challenges that
need to be addressed in future studies. The state-of-the-art and
most representative ML models developed will be analyzed
separately for each toxic end point to provide a better
understanding and comparison of its performances. The type
of molecular representation, the ML algorithms, and the
evaluation metrics used in each research work are explained
and analyzed. A description of the end points that are usually

Figure 1. Machine Learning construction outline.

Table 1. Public Toxicology Databases Available and the Best Performing Ml Models References by Toxicity End Point

Toxicity end point Database Name
ML models
references

Cardiotoxicity (hERG binding) PubChem bioassay28 and CHEMBL bioactivity29 30−34
Acute oral toxicity (LD50) Li et al. set:35−37 admetSAR, MDL Toxicity, EPA Toxicity Estimation Software Tool. SuperToxic39 12, 38
Hepatotoxicity (DILI) Liver Toxicity Knowledge Base (LTKB)40 LiverTox42 Hepatox43 14, 41
Nuclear Receptor and Stress Response panels Tox2144 8, 10, 45, 46
Mutagenicity Ames data collection47 47−49
Carcinogenicity Carcinogenic Potency Database (CPDB)50 51
General Toxicity TOXNET52 Toxin and Toxin Target Database (T3DB)55 SIDER 12, 53, 54
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predicted, their clinical relevance, the available databases, and
the challenges they bring are also presented. In addition, we
survey the tools used to increase the interpretability of ML
models to provide insight for future developments.

■ CARDIOTOXICITY: hERG BINDING PREDICTION
The hERG potassium channel plays an extremely important
role in heart function through conducting the electrical activity
of the heart. Blockade of the channel by small molecules
induces the prolongation of the QT interval, which can lead to
fatal cardiotoxicity. Many drugs, including cisapride, astemi-
zole, sertindole and terfenadine, have been withdrawn or
restricted from the market due to drug-induced arrhythmias
and other cardiac side effects.30,57 Therefore, hERG inhibition
by drug candidates has become an important concern, and its
early evaluation is a desirable step in drug discovery.58

Various ML methods have been proposed in recent years to
predict hERG binding compounds.30−34 Most of them are
classifier models, and only a few of them are regression models.
In 2016, Wang et al. combined pharmacophore modeling with
ML to construct classification models for prediction of hERG
active compounds.32 They used Naiv̈e Bayes (NB) and SVM
algorithms and integrated multiple representative pharmaco-
phore hypotheses identified by a recursive partitioning (RP)
approach. RP allows for the identification of the most
important pharmacophores creating a decision tree that splits
molecules into subsets based on independent properties.59 For
model construction and validation, they used a small data set
that contained 587 molecules, 527 of which had experimental
hERG blocking bioactivities (IC50) and 60 where hERG
nonblockers added based on a previous study.60 A threshold of
40 μM was used to define hERG blockers and nonblockers.
The data set was divided in training, validation, and testing
sets, thus guaranteeing that the selected molecules in the
training set have the largest diversity evaluated by the
Tanimoto coefficients based on the molecular fingerprints
and logP. The best SVM model achieved prediction accuracies
of 84.7% for the training set and 82.1% for the test set. One of
the big challenges in the development of successful
cardiotoxicity models that needs to be addressed is the use
of a robust database of compounds with hERG binding
affinities measured using uniform experimental conditions.
Models are usually developed based on relatively small data
sets, and thus their chemical coverage and applicability
domains are still limited.

In 2019, Cheng et al. developed a DL based approach called
deephERG.33 They used 7,889 compounds with diverse
chemical structures and defined hERG inhibition based on
experimental data. The database was constructed based on
compounds from PubChem and CHEMBL bioactivity data-
bases, and also based on literature information. Compounds
without well-defined experimental hERG blocking bioactivities
were eliminated, and IC50 values ≤10 μM were considered as
hERG blockers. No consensus has yet been reached on how to
define a compound as a hERG nonblocker, and different
thresholds had been used to distinguish blockers from
decoys.32,61 In this work, data were split according to different
decoy threshold values (10 μM, 20 μM, 40 μM, 60 μM, 80
μM, and 100 μM) for building multitask models. For each task,
data were separated in training, validation, and final evaluation
sets. Chemical data were represented by molecular descriptors
of the MOE Descriptors tool62 and by vector representation of
their chemical structures calculated using the Mol2vec

approach.63 As analog to the Word2vec models, where vectors
of closely related words are in close proximity in the vector
space, Mol2vec learns vector representations of molecular
substructures that point in similar directions for chemically
related substructures. After systematic comparison, the MT-
DNN models outperform other models such as single-task
DNN, NB, SVM, RF, and the graph convolutional neural
network (GCNN). The AUC-ROC was used as an evaluation
metric, reaching a value of 0.967 on the validation set.

In the present years, the availability of the cryo-EM structure
of the hERG channel from MacKinnon and co-workers64

encouraged the use of structure-based drug design (SBDD)
approaches such as molecular docking, molecular dynamics
simulations, or free energy calculations for hERG screening of
drug candidates. Mangiatordi et al. presented a hERG binding
structure-based classifier which combines docking scores,
molecular fingerprints and ML models.34 The data set was
constructed from CHEMBL bioactivity database and contains
8,337 entries with high structural diversity measured by the
Tanimoto coefficient. Different IC50 inactivity thresholds from
1 μM to 80 μM were used; therefore, positive molecules show
IC50 ≤ 1 μM, and negative molecules are those with IC50
values greater than the different inactivity thresholds.
Molecular docking simulations were performed using two
docking programs on the available cryo-EM structures and two
homology models for comparison. A LASSO-regularized SVM
model was applied to integrate docking scores and protein−
ligand interaction fingerprints as inputs. The best classifiers
showed performances comparable to state-of-the-art ligand-
based models in terms of AUC-ROC (0.86 ± 0.01) and
negative predictive values (0.81 ± 0.01), offering a more
interpretable approach. A combination of structure-based
strategies with ML models might provide optimal efficacy
and interpretability, enhancing its performance as lower
resolution structures become available.

■ ACUTE ORAL TOXICITY
Median lethal death, LD50, is a general indicator of chemicals’
acute oral toxicity (AOT). It represents the dose of a chemical
that causes a 50% death rate in test animals after
administration. Showing AOT information is a standard
requirement in several regulatory frameworks, and chemicals
are generally classified in toxicity categories based on their
LD50 values. Testing on animals, especially when relying on
mortality as an end point, is highly controversial. Therefore,
alternative in silico methods that provide reliable information
about this end point are highly needed and encouraged.65

Many ML models have been proposed to predict AOT in
recent years, including regression and classification methods.

Lai et al. presented the deepAOT model which is based on a
molecular graph encoding convolutional neural network
(MGE-CNN) architecture.38 In MGE-based DL models, the
basic chemical information of molecular graphs is used as
input, and the DL algorithm automatically learns specific
representations using graph convolutions, without the need to
manually calculate numerical descriptors or fingerprints.66

They used the AOT database provided by Li et al. in a
previous work,67 which consists of the largest data set
constructed at the moment for oral LD50 in the rat. It contains
a total of ∼12,200 compounds divided in training and
validation sets. Data were collected from experimental values
from the admetSAR database36 the MDL Toxicity Database
(version 2004.1),35 and the Toxicity Estimation Software Tool
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(TEST version 4.1)37 program from the U.S. EPA. Two
external test data sets were used to estimate the predictive
power of the models.

The MGE-CNN architecture of deepAOT is shown in
Figure 2. The canonical SMILES string of a small molecule is

used as an input, and a score capable of describing the LD50
end point is produced. Both regression and multiclassification
models were developed. The regression models allow
quantitative prediction of the LD50 values for compounds
reflecting their toxicity: the smaller the value, the more toxic
the compound. For the multiclassification models, data were
divided into balanced classes based on the US Environmental
Protection Agency (EPA) AOT categories.68 Beginning with
the SMILES string, a molecular structural graph is converted,
and then the subgraphs from each iteration are encoded into
fixed-sized vectors which are then summed to a unique
fingerprint representing the molecule. The fingerprint is finally
used as the input of a subsequent NN in the output layer.

For the regression MGE-CNN models, the root-mean-
square error (RMSE), mean absolute error (MAE), and square
of Pearson correlation coefficient (PCC2) were used as
evaluation metrics. The multiclassification MGE-CNN models
were assessed by a confusion matrix, and also the sensitivity,
positive predictive value (PPV), and accuracy were reported.
The regression model had the best performance, showing
higher PCC2 (0.864), lower RMSE (0.268), and lower MAE
(0.195) than state-of-art models.69 The deepAOT classifier
also demonstrated a good performance with accuracy values of
96%, which are also higher than the best reported results (80%
accuracy) from Li et al. AOT classification methods.67 One of
the main strengths of the MGE-CNN model is that it uses
automatic molecular representations; thus, the AOT prediction
can be performed without manual selection of complicated
features. The MGE has been shown to be an effective
representation of chemical structures without information loss.
Moreover, a balanced data set was constructed which facilitates
the development of robust predictive ML models. Focus was
made in the interpretation and explanation of the predictions
made by the model using both a forward exploration and a
backward exploration approach. The strategies implemented to
enhance interpretability are further analyzed in a later section.

In 2018, Wei et al. introduced topology based descriptors
used with multitask deep neural networks (MT-DNN) to
predict LC50 and LD50.70 It uses element specific persistent
homology (ESPH) as a new molecular representation method
for toxicity prediction, which is an algebraic topology approach
that retains crucial chemical information during the topological
abstraction of geometric complexity. Four benchmark toxicity
data sets that involve quantitative measurements are used to
validate the proposed approaches (oral rat LD50, 40 h
Tetrahymena pyriformis IGC50, 96 h fathead minnow LC50,
and 48 h Daphnia magna LC50). The data were downloaded
and then curated from the ECOTOX aquatic toxicity
database71 and from the ChemIDplus databse.72 The Toxicity
Estimation Software Tool (TEST) database37 was used as a
final test set to compare results to previous works. Aided with
physicochemical descriptors and MT-DNN architecture,
ESTDs showed results similar to the state-of-the-art
predictions for quantitative toxicity data sets with an R2

value of 0.788. New molecular representation methods such
as ESTDs are worth studying to improve the performance of
ML in toxicity prediction.

In 2019, Bylinski et al. presented the etoxPred model.12 It
employs Extremely Randomized Trees or Extra Trees (ET)
algorithm to predict toxicity of small organic compounds. AOT
was evaluated using data provided by the SuperToxic
database.39 The data set consisted on 12,612 molecules of
which 7,392 compounds were labeled as toxic with LD50 values
less than 500 mg/kg. The model obtained an AUC value of
0.80 and an accuracy value of 0.854, which are similar results to
those obtained by some of the deepAOT multiclassification
models.

■ HEPATOTOXICITY: PREDICTION OF
DRUG-INDUCED LIVER INJURY

Drug-induced liver injury (DILI) is one toxicological end point
of high concern since it has been a leading cause of clinical
trials failure and drug withdrawal from the market.40 More
than 700 drugs have been reported to be associated with
hepatotoxicity in the past years.42 Therefore, in silico DILI
prediction models are also encouraged to early estimate DILI
potential of drug candidates. There is a particular need to
develop models that represent DILI potential in humans, since
many drugs that do not show clear hepatotoxicity in animals
end up causing severe DILI in humans.73 There are some
hepatotoxicity databases that have become available in recent
years, for example, the Liver Toxicity Knowledge Base
(LTKB),40 the liver toxicological map (LTMap),74 LiverTox,42

or Hepatox,43 as shown in Table 1.
In 2015, Lai et al. presented a DL-based model to predict

DILI using data from different sources according to previous
works.14 They developed a graph recurrent neural network
architecture motivated by previous results on a work by Lusci
et al. Molecules were represented by small undirected graphs
and then encoded to acyclic graphs for use in RNNs. The best
model was trained on 475 compounds and evaluated on an
external set of 198 drug-like compounds where it obtained the
best performance in terms of sensitivity and specificity until
that moment.

In 2018, Li et al. developed binary classification models
using five different ML methods using data from 2,144
chemicals collected from FDA approved drugs with known
hepatic effects and from human DILI data in the LTKB
database.41 They divided the compounds randomly with a ratio

Figure 2. DeepAOT architecture for LD50 prediction (Reprinted with
permission from ref 38. Copyright 2017. American Chemical Society).
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of 4:1 into training and validation sets. To further evaluate the
ability of the models, they used an external test set of 151
compounds from a study reported by Ivanov et al. in 2017.75

For model building, they calculated 12 types of molecular
descriptors based on known physicochemical properties and
seven types of commonly used fingerprints including MACCS
keys and Klekota-Roth fingerprints. They evaluated the
diversity of chemical structures present in the database using
the radar chart of five physicochemical descriptors and
calculating the Tanimoto similarity index based on the
ECFP4 fingerprint. They found that the SVM algorithm
combined with MACCS keys obtained the state-of-art results
with an accuracy of 80.4%, sensitivity of 88.2%, and specificity
of 65.7%, showing similar results in validation and external test
sets. It is seen that SVM algorithms usually appear as a suitable
approach where only few nonlinear and high dimensional
pattern data are available.

There has not been great progress in the development of
robust ML models for DILI prediction in recent years,
especially since there is still little data available. The available
databases contain data on both animal and human DILI class
labels for chemical compounds. However, much of the current
work looks forward to focus solely on the prediction of human
hepatotoxicity. Efforts need to be focused on obtaining more
experimental data for this common toxic end point.

■ VARIOUS TOXICITIES PREDICTIONS
Moreover, multiple works are available in the literature that
develop models to estimate various toxicities. One of the most
well-known and used databases for the prediction of various
toxicities is the Tox21 database.44 As from the promising
results of the Tox21 competition, diverse ML protocols that
use this database have been presented. It contains data on
more than 10,000 molecules and their activities against 12
targets associated with different AOPs. These toxic events
include nuclear receptor effects (NR) and stress response
effects (SR), which are relevant toxic responses in health since
the former can affect the endocrine system, and the latter can
cause damage to the liver or cancer. Tox21 database is
characterized by having class imbalance, where only 5% of
annotated data correspond to the toxic class, with some end
points having as low as 1% of toxic data. Handling unbalanced
data sets is common in ML and entails one of the problems
that should be addressed in model construction.

Mayr et al. were the winners of the Tox21 competition
implementing a model based on DL which they called
DeepTox.8 Based on the assumption that the use of many
correlated features is favorable to achieve high performance in
DL, Mayr et al. used several thousands of physicochemical
descriptors and molecular fingerprints to represent data.
Among them, they used the well-known PCFP, ECFPs and
MACCS keys. To these they added about 2,500 in-house
toxicophore features which represent substructures previously
reported as toxicophores. Besides, they included similarity
features by using the natural ligands of the receptors (e.g.,
testosterone and estradiol). A similarity value was calculated
using path-kernel-based paths between these ligands and the
Tox21 compounds. Approximately 40 similarity features per
molecule were included. In order to correct data imbalance,
positive samples were enriched from PubChem28 and
ChEMBL29 databases. They searched for compounds (struc-
tural analogs) and assays in the public data that were similar to
compounds and assays of the project data, respectively.

Moreover, the Tox21 database allows for a Multi Task
Learning (MTL) approach. In this case, a single molecule has
labels for various target activities that can be trained
simultaneously by the ML model. Different studies have
shown that MT-DNN algorithms can improve the predictive
performance.76 In DeepTox, for 10 out of 12 assays MT-DNN
models outperformed single-task networks. An average AUC-
ROC of 0.858 and 0.826 was obtained in the NR and SR test
sets respectively. It should be noted, anyway, that some
compounds have not been tested across the entire target set,
leading to sparse arrays. To overcome this problem, these
compounds were assumed as inactive when the activity value
was missing, which can lead to false negatives. The problem of
missing data in multitarget matrices is an area of active study
within ML.77

In 2020, Peng et al. presented another DL-based ML model
called TOP that was trained and evaluated on the Tox21
database.46 The model integrates a RNN based on bidirec-
tional gated recurrent unit (BiGRU) and fully connected
neural networks for end-to-end molecular representation
learning and chemical toxicity prediction. It uses a mixed
molecular representation method combining SMILES strings
with few carefully chosen physicochemical descriptors. They
obtained better AUC-ROC results than DeepTox model in 11
out of 12 tasks, with an average value of 0.95 (vs 0.85 in
DeepTox).

Karim et al. presented another method to predict Tox21
targets which they argue to be simpler, more efficient in
computing resource usage, and more powerful to achieve high
accuracy levels.45 The approach consisted of a Decision Tree
(DT) algorithm that obtains the optimum number of features
related to NR and SR toxicities and a shallow NN with one
hidden layer to make the final predictions. They calculated
1422 molecular descriptors based on 2D chemical compound
structures using the PaDEL tool78 which where then reduced
by the feature selection module. This hybrid model was
compared with the DeepTox model, achieving similar AUC-
ROC values (0.862 vs 0.858 in DeepTox NR panel, and 0.836
vs 0.826 in SR) with less calculated features, thus allowing for
better interpretability and lower computational costs.

Recently, Jiang et al. proposed a different approach which
they called the geometric graph learning toxicity (GGL-Tox)
model.10 It consists of the use of multiscale weighted colored
graphs (MWCG) as features and a gradient boosting decision
tree (GBDT) algorithm. MWCG has been implemented
successfully for protein flexibility analysis and protein−ligand
binding prediction.79 The molecular modeling of MWCGs
requires only atomic names and coordinates and is
characterized by its low-dimensionality, simplicity, and robust-
ness.80 Other ML algorithms were also tested, including RF
and SVM, but GBDT performed best in 11 out of the 12 tasks.
RF was the second-best, and SVM had the lowest performance.
The GGL-Tox model constructed from MWCG features and
the GBDT algorithm obtained the best average AUC on both
NR and SR data sets (0.875 for NR and 0.871 for SR) until
2021, showing consistently better performance than classic 2D
features.

It is essential to consider class imbalance when selecting an
evaluation metric that is representative of the model
performance. Within the Tox21 competition, the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC) was
used. It is a widely used metric, and although it might be useful
to compare performance between models, it is not the most
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suitable for unbalanced data and, in particular, for toxicity data.
This is due to two main reasons: (1) it is necessary to
distinguish between the correct classification of the toxic and
nontoxic classes, since it is a more serious problem to classify a
toxic compound as if it were not than the opposite case; (2) it
does not consider the imbalance problem since the false
positive rate (FPR) is reduced due to a large number of true
negatives predicted, leading to a high AUC-ROC value and less
margin to discriminate between models with different
hyperparameters.

Antelo-Collado et al. developed a feature selection method
focused on solving the Tox21 data class imbalance problem.
The method is based on the use of boosting feature selection
ensembles. These ensembles were constructed using two well-
known feature selection methods: fast clustering-based feature
selection (FAST) and fast correlation-based filter (FCBF).81

They tested the classification performance of two ensemble
methods and three ML algorithms (DT, SVM, and RF) using
G-mean and MCC as evaluation metrics. These metrics take
into account the uneven distribution of class samples. The
proposed ensembles of feature selectors achieved better
classification performance compared to the use of simple
feature selection methods.

Zhang et al. presented a very interesting DNN-based model
to predict Tox21 end points in a conformal prediction
setting.82 Conformal prediction can be used with any ML
model by calibrating the outputs from the predictor using a
calibration set and thus have associated quantitative
uncertainty measures. Conformal predictors are a convenient
way to achieve confident toxicity predictions and especially
better predictions of the minority class compared to underlying
models. In a binary prediction problem, the output can be
either of the two labels, both labels, or no label. They achieved
an efficiency greater than 80% for the toxic class at the 90%
confidence level using a graph CNN as the underlying model.
The efficiency is defined as the fraction of predictions with a
single label; a model with a higher fraction of single-label
predictions is more efficient. The performance of the models
was evaluated using various metrics: balanced accuracy (BA),
sensitivity, specificity, AUC-ROC, F1 score, Kappa, precision,
and MCC. Even though the obtained AUC-ROC on the
Tox21 test set (0.734) is not as high as the obtained in other
works, conformal prediction adds both a controllable error rate
and better recall of the toxic compounds, compared to the
underlying models. In this way, more examples of the minority
class are retrieved by the model at the expense of a slightly
higher false-positive rate. This is a favorable balance in toxicity
prediction as it takes into account the higher importance of the
prediction of the toxic class, reducing the number of potentially
toxic instances missed by the model. This work shows that if
better performing ML models are made into conformal
predictors, very robust toxicity prediction models can be
achieved.

As seen from these works, ML-based Tox21 toxicity
prediction is increasing performance, especially by using
novel types of molecular representation and feature selection
techniques. Besides, MTL approaches seem to achieve better
results than single task models, especially when DNN-based
models are used. However, to continue developing effective
Tox21 ML models, it is necessary to use appropriate evaluation
metrics. Most works still rely on AUC-ROC, probably to be
able to compare their results, but due to the great imbalance of
classes and the highest importance of the minority (toxic) class

it is not an appropriate metric for this data. Metrics such as BA
and MCC, which were used in various works, are appropriate
for class-imbalance data sets but also do not consider the
higher importance of the classification of the toxic class. The Fβ
score or the area under the precision recall curve (AUC-PR) is
a more consistent metric to address this problem, as well as the
use of conformal predictors as shown by Zhang et al.82

Furthermore, the ProTox53 and ProTox-II54 are publicly
available web servers that were constructed on a total base of
33 ML models, trained on data sets of various toxicity end
points and allow for different toxicity estimates at the same
time. The new version, ProTox-II, was an improvement over
previous web tools, which incorporates molecular similarity,
pharmacophore based, fragment propensities, and most
common features information. There are other available ML-
based web servers to predict toxicity,36,37 but their perform-
ances and applicability domains are still very limited.

■ GENERAL TOXICITY PREDICTION
Some works seek to predict toxic liabilities in a more general
manner. In the eToxPred algorithm, for example, ML models
were trained and cross-validated against a number of data sets
comprising known drugs, potentially hazardous chemicals,
natural products, and synthetic bioactive compounds.12

Models were trained and tested on a general toxicity data set
constructed using FDA-approved drugs and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) Drug as nontoxic data
and TOXNET52 and the Toxin and Toxin Target Database
(T3DB)55 as toxic data comprising a total of ∼10,000
compounds. The ET classifier obtained the best results
which show an acceptable accuracy (0.72) and sensitivity
(0.63) but a low precision (0.25). Specific toxicities were also
addressed with the model.

Another interesting work was presented by Di Filippo et al.
in 2021 where a low-dimensional ML model was developed for
classifying compounds according to whether they can cross or
not the placental barrier, helping to develop safe therapeutic
options for pregnancy.83 A data set of 248 molecules was
constructed, and a genetic algorithm was used to perform
feature selection from an initial group of 5,400 descriptors. A
linear discriminant analysis (LDA) model trained with only
four features achieved the best results, having only one false
positive case across all testing folds.

■ OTHER TOXICITY END POINTS
The mutagenicity of a compound is another important studied
property that can be responsible for drug candidates failure in
drug discovery. Mutagenicity or genetic toxicology is the study
of substances that induce DNA damage. Only an isolated
positive in vitro genetic toxicology finding can result in the
failure of a drug candidate. Damage on the DNA, quantified as
the frequency of DNA adducts, strand breaks, mutations, or
chromosome aberrations is highly related to carcinogenicity.84

The most known and used assay for testing the mutagenicity of
a compound is the Ames test.85 The Ames test consists of a
bacterial gene mutation assay with a simulation of mammalian
metabolism and is highly sensitive to identify chemicals that
can induce genetic damage. However, as in other toxicity end
points, experimental mutagenicity identification is inefficient as
it requires a lot of chemical resources, too much time to
conduct in order to achieve meaningful results, and does not
have a 100% rate reproducibility.86 For this reason,
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mutagenicity computational prediction has attracted attention
from several research groups.47−49

In 2021, Berry et al. developed eight classification
algorithms, including SVM, RF, and extreme gradient boosting
(XGB), which achieved comparable sensitivity and specificity
results to the best previous methods.49 They used the Ames
data collection from a Xu et al. study47 which consisted of a
training set of 7,617 molecules, a validation set of 731
molecules, and a balanced external set of 234 molecules, which
they curated to eliminate duplicates. A large number of
molecular descriptors and fingerprints was calculated, and it
was found that the RF model had the best performance during
the 10-fold cross validation training set (AUC-ROC > 0.90)
and on the external test set (AUC-ROC > 0.75). On a feature
importance analysis, it was seen that physicochemical
descriptors including logD, molecular solubility, molecular
surface area, number of aromatic rings, number of rings, and
number of rotatable bonds presented the highest importance in
model training when used in combination with molecular
fingerprints.

In 2017, Zhang et al. presented the CarcinoPred-EL tool
which consists of three novel ensemble classification models to
predict carcinogenicity of chemicals using seven types of
molecular fingerprints and three ML methods (SVM, RF, and
XGB).51 They used a balanced data set containing 1,003
diverse compounds with rat carcinogenicity data from the
Carcinogenic Potency Database (CPDB), which provides
information on the measures of carcinogenic potency of
compounds on different tissue tumors reported.50 Besides, an
external validation data set of 40 compounds from the ISSCAN
database87 was used to evaluate the performance of the
ensemble models built using the top-seven fingerprint sets. The
ensemble models can be formed by combining simple
independent classifiers via voting or averaging to produce a
more accurate and robust model than any of its constituents. In
this work, the three ensemble models achieved higher accuracy
and AUC than any basic classifier. Ensemble XGB obtained the
best results, with an AUC value of 76.5%, which they indicated
were among the best results at the time.

Recently, Mathea et al. proposed an approach to enhance
the performance prediction of three in vivo end points
(genotoxicity, DILI, and cardiological issues) by using
conformal prediction ML models with molecular descriptors
(molecular fingerprints and physicochemical properties) and
ML-predicted bioactivity assay outcomes as molecular
representation. They developed a workflow which they called
ChemBioSim based on a conformal prediction framework built
on RF models. The bioactivity descriptors for each in vivo end
point were preselected with lasso models. The incorporation of
bioactivity descriptors increased the mean F1 scores of the
genotoxicity model from 0.61 to 0.70 and for the cardiotoxicity
model from 0.72 to 0.82, while the mean efficiencies increased
by 0.09 and 0.12, respectively, for both end points. For the
DILI end point, no significant improvement in model
performance was observed. This is a very challenging toxic
end point, mainly due to less available data, which combines
substances that produce both major and less severe effects as
toxic data. This approach shows how the prediction of in vivo
end points, which is a highly complex problem due to all the
interactions taking place in biological systems, can be improved
by the incorporation of bioactivity fingerprints as molecular
representation. Besides, the conformal prediction framework
increases confidence in model predictions and ensures a

defined error rate. As more data becomes available, this
approach can be better evaluated, also for other toxicity end
points and using other ML models with a higher baseline
performance.

■ ADDRESSING THE PROBLEM OF ML
INTERPRETABILITY IN COMPUTATIONAL
TOXICOLOGY

One of the most widely debated issues in ML is the lack of
ability of these models to provide user-interpretable results,
especially when using more complex algorithms such as DNNs.
Usually, these models are considered black boxes, and although
complex algorithms generally perform well in big data sets, the
user cannot infer what is actually internally happening. The
interpretability of ML models is today an active area of
research.88,89

In recent years, the focus of in silico toxicology has shifted
from just a mere model building to the use of strategies that
help to understand ML model results. Researchers have started
to analyze neural unit representations in order to disentangle
the neural networks learning process.90 Besides, many works
use different techniques to provide information on the data
features that the models prioritize the most to estimate toxicity
end points.

Mayr et al., for example, trained their DeepTox model and
looked for possible associations between neuron activation and
known toxicophores.8 To this aim they used a U-test where a
neuron was characterized by its activation over the compounds
of the training set, and a toxicophore was characterized by its
presence or absence in the same compounds. The alternative
hypothesis for the test was that compounds containing the
toxicophore substructure have different activations than
compounds that do not contain the toxicophore substructure.
They found that features in higher layers match toxicophores
more precisely and that lower layers tend to learn smaller
features. This analysis can also be used to identify new
substructures related to some type of toxicity (structural alerts
identification). In a work by Wenzel et al.13 response maps
were introduced. They were intended to evaluate the
sensitivity of ML models to a particular substitution in
chemical structures and to identify favorable substitutions on
the scaffold. They tried different substituents and fragmenting
parts of the molecules and checked the predicted property
response from a pretrained model. These approaches help to
provide more interpretable statistical analyses and useful
information to compounds optimization.

In the deepAOT model, Lai et al. used a forward exploration
approach to evaluate the extent by which the fingerprints
obtained in the deep layer of the MGE-CNN models favored
shallow ML models, such as multiple linear regression (MLR)
and SVM.38 They also used a backward exploration approach
to provide understanding of fingerprint activation by mapping
the most relevant features into different substructures and
found that most of the highlighted fragments could correspond
to reported toxic alerts. The forward exploration was
implemented by extracting the values of the Fingerprint layer
and constructing MLR and SVM models trained with them.
The performance of these models was then compared with
previous reported models using application-specific finger-
prints or descriptors.

Other works also included backward exploration methods
such as Abdul Karim et al. where the 1,422 molecular
descriptors used as input were ranked based on their Gini
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index in the DT classifier. The “path count descriptor” class
was the most abundant class in the top features list. The
molecular path counts represent the number of unique paths of
length k present in the molecular structure. They could see that
toxic compunds in the database clustered in a certain range of
pipC10 value, leaving a large area as safe zone. A similar
approach was carried out by Jiang et al. for the GGL-Tox
model. They ranked MWCG and classic 2D features by their
Gini index in their GBDT algorithm and then selected subsets
of top features to retrain the model and compare results. They
found that choosing at least 0.6% or at most 27.8% of the most
important features from a total of 1,794 input features
optimizes the prediction performance.

Although progress is being made, there is still a lot of space
for improvement in the interpretation of these models. Even
more, elucidation of mechanistic information which involves
the targets and pathways that lead to the different toxicity end
points is generally not addressed for pharmaceutical
candidates. It has been shown that small molecule drugs
bind on average to at least 7−12 distinct targets, with varying
affinities.91 These off-target interactions are often unknown
and may be linked to a toxicity end point via an adverse
outcome pathway (AOP). The availability of more data on
AOPs will be crucial to be able to generate robust predictive
models. Other approaches such as systems pharmacology
could also take advantage of AOP data. System pharmacology
considers protein targets in the context of biological networks,
which is a more realistic approach as proteins perform their
functions within a complicated and integrated system
composed of various scales of biological organization. Many
reviews and works on this area can be found in the
literature.92−95 In 2017, Chua et al. developed MASCOT
(ML-based Prediction of Synergistic Combinations of
Targets),96 which efficiently predicts synergistic target
combinations with desired therapeutic effects and minimum
off-target effects in a disease-related signaling network. Zeng et
al. presented a network-based model that combines neural
networks with heterogeneous networks in which drugs and
targets are represented as nodes, and their interactions are
represented as edges to predict drug-target interactions.97

Although system pharmacology is beyond the scope of this
review and will not be further analyzed, it is interesting to note
that the combination of ML methods with biological networks
may be an efficient strategy to develop more accurate and
understandable predictive models, as more data on AOPs
become available.

■ CONCLUSIONS AND FUTURE PERSPECTIVES
Toxicity estimation of drug candidates is an important issue in
drug discovery, being essential to increased costs, failures in
late stages, and marked withdrawals. The available evidence
shows that ML models, despite its persistent limitations which
were addressed in this review, may be a promising approach to
function as early filters of toxic compounds within the drug
discovery process. This potential ability to be integrated into
the natural drug discovery pipeline can be improved as more
high-quality data become available and the applicability
domain of the methods is expanded. Although the availability
of public data has increased in recent years, the collaboration
of pharmaceutical companies will be more and more necessary
to obtain the amount and quality of data that ML needs to
develop reliable predictive toxicology models. This review
provides detailed information and analysis on the state-of-art

ML methods that have been developed for each toxicity end
point, providing insight for future developments.

The main types of toxicity that are in silico predicted are
cardiotoxicity, AOT, hepatotoxicity, mutagenicity or genotox-
icity, and the nuclear receptor and stress response panels of the
Tox21 data, which have been set forth in this review. The
various tasks and different databases make it difficult to
compare the performance of ML models. In general, it is seen
that there is no model that works best for most of the cases. It
can be said that complex problems with big data sets can be
generally handled correctly using DL-based algorithms such as
DNNs or CNNs, while GBDT or SVM algorithms exhibit
better results for smaller nonlinear data. It should be noticed
that ML models performances are problem-dependent and
must therefore be compared only when they have been
developed for the same toxicity end point and using similar
data for evaluation. The most suitable metric to use in each
case is still up to debate, but much care should be taken to
have representative results depending mostly on the data set
size and class distributions. Conformal prediction frameworks
are being used in some recent works, which ensure more
confident models with well-defined uncertainties and also as a
strategy to handle unbalanced data.

Moreover, the interpretability of ML models for toxicity
prediction is an especially desirable aspect to consider in model
construction. Most of the work presented in recent years uses
techniques to increase the comprehension of model learning,
including the understanding of neural units activation and
most important features. However, there is much to improve in
this area that will be a focal point in future developments. The
collection of more data on AOPs will also be essential to allow
a mechanistic understanding of drug action by considering
targets in the context of biological networks. The synergy
between network pharmacology approaches and ML methods
could be a potential way of addressing this problem.
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