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Abstract

The 0rst part of this paper studies the behavior of contact force distributions and displace-
ment distributions in isostatic 2-D arrays of polydispersed grains as a function of force strength
and displacement strength, respectively. The array is built by pouring disks, one by one, into
a rectangular die. After the array is ready, force and displacement measurements are performed
on it. We also introduce a relaxation procedure (rearrangements of disks) in order to study the
behavior of the corresponding distributions as a function of the number of relaxations performed
on the system.

In the second part, we characterize the percolation of small particles through this 2-D packings
as a function of the polydispersivity of the disks. We analyze both trapping and non-trapping
regimes. Characteristic features of these packings are discussed.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Characterizing solid particles packings has attracted the attention of much scienti0c
research in the last decade [1]. Its importance is due to the wide number of techno-
logical problems related to many industrial 0elds, from pharmacy to civil engineering
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and all the range you may imagine in between. For instance, the 0nal density obtained
upon a sintering process in ceramics depends critically on the initial packing fraction of
the grain ensemble [2–5]; the success in mixing grains of very diBerent sizes depends
on how the small particles percolate through the big ones [6–11]. In the last years,
computer simulations of packings of disks and spheres in two and three dimensions,
respectively, have helped to reveal some of the important aspects of granular systems,
as cited below.
In this work, we perform simulations of granular packings in 2-D by throwing disks

into a die to represent the actual experiment of poured grains into a rectangular con-
tainer until it is completely full. This simulated experiment will allow to measure
some basic quantities that characterize this kind of assemblies: distributions of con-
tact force between grains, distribution of displacements when you slightly perturb the
system and percolation properties related to the passage of small grains compared to
the ones conforming the pack. There have been previous works where this kind of
packings have been generated [12–14]. Typically, the calculated geometrical properties
were density, average number of contacts, radial distributions and size distribution of
interstices. There has been a number of works trying to elucidate the behavior of the
force distribution above and below the mean force value [2,12–25]. Most of them deal
with monosized or uniform radii distributions and a complete justi0cation of the be-
havior found is still diEcult to provide. Other kinds of radii distributions and uniform
distributions with varying parameters have not yet been employed to our knowledge.
Iter-particle percolation is de0ned as the drainage of small particles through the

interstices between large ones. This phenomenon takes place in failure zones of higher
porosity than the bulk. It can be induced by shear [7,8] or occur spontaneously under
gravity [9,10], if the diameter of the percolating particles is suEciently small compared
to that of the packing particles.
In previous works, Bridgwater et al. [6–10] and Ippolito et al. [11] have studied

spontaneous percolation inside beds of glass beads. The 0rst authors studied essentially
the variations of the diBusive properties of the motion as a function of the restitution
coeEcient and the second ones analyze the dispersion coeEcients parallel and trans-
verse to the mean velocity by studying the bead distribution at the exit (XY plane) and
the transit time distribution as the height of the packing is changed. DiBusion in both
directions was found to depend essentially on the diameter of packed spheres and not
by the size of the small percolating beads.
In what follows, we will present our results on 2-D grain packings. Firstly, we

will refer to numerical results concerning the behavior of contact forces network and
displacements for packings with uniform radii distributions. Forces and displacements
distributions are measured using the fact that our systems present isostatic properties.
We will prove that the behavior found for contact force distributions is in agreement
with previous evidence related to packings where no restriction on the sign of the
forces is imposed [25].
Secondly, we will present numerical results characterizing the percolative–non-

percolative regimes and the transition in between, for the diBusion of small particles
through the packings. We will draw interesting results mainly related to the entrapment
regime that, other wise, cannot yet be obtained experimentally.
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2. Numerical generation of the grain packing

The computer algorithm used in the present simulations has been programmed in a
way that allows to generate packings of disks sampled from any desired size distribu-
tion. The time needed to set a packing of 10,000 disks and to obtain all the quantities
of interest is just a few seconds on a Pentium III PC.
First, a radii distribution for the disks is selected and 10,000 disks are randomly

sampled from it. Then, the bottom of the packing is built by 0rst putting N = 30
disks of randomly selected radii, side by side and 0xing the walls until touching the
two extremes. This value ensures a convenient ratio height over width to measure the
desired distributions. In this way we 0x the width of the die. After that, the remaining
disks are pouring one at a time from the top of the die, selecting at random their
horizontal position and keeping them from overlapping the walls of the container.
Each grain falls down following a steepest descent algorithm. Once it touches already
deposited disks, it rolls over them until a stable position is found. By stable position
we mean the 0rst time the center of the falling particle is in between the center of
the two 0rst particles it touches. In the case a stable position is attained where one
of the contacting disks has a vertical coordinate for its center that is greater than the
corresponding one for the new disk, a bridge position is de0ned and counted. Side
walls are consider without friction.
Once all the particles are deposited in the die, a relaxation process is carried out

by using an algorithm to mimic the eBect of a large-amplitude, low-frequency vertical
shaking [23]. This process is executed in order to attain static equilibrium throughout
the system and to study its inHuence on the force–displacement distributions and one
of the main consequences of it, as discussed below, is to reduce the number of bridges
between grains [26]. This “shaking” algorithm is de0ned as follows. Particles are al-
lowed to fall down again into the die, one at a time (the bottom is conserved). The
0rst to fall is the one whose center has the lowest vertical position in the previous
packing con0guration, then, the next whose vertical position is the lowest, and so on.
Rules to attain equilibrium are the same as before. After an order of 10 relaxations, we
observed that the con0guration of contacts and the strength of forces or displacements
did not change any more. In the next section, we will analyze the eBect of bridges in
force and displacement distributions.
The disks assemblies used to study percolation properties were built in the same

way as above, but no further compaction (relaxations) were done in this case after the
array was completed. Then, the position of the center of the disks is kept 0xed for
the rest of the percolation process. For these packings N was chosen equal to 100 to
ensure that the percolating particles do not collide with the die walls (see below).

3. Contact force and displacement distributions

3.1. Contact Forces

To measure force and displacement distributions we employed uniform radii size
distributions centered at 1 a:u: (arbitrary units) with a 0xed dispersion of 10%,
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assuming the same weight for all the grains, no matter its size. As discussed above,
because of the deposition rules used, each new particle added to the packing will create
two new contacts to achieve its static equilibrium. Thus, the system will be isostatic. It
has been shown [21,22] that disordered packings of frictionless, cohesionless granular
materials, idealized as spheres, have, in any dimension d, an isostatic contact network
for small or null external pressure compared to the stiBness of the grains. Our results
show that our packings are isostatic with a mean coordination number of four contacts
[26]. Isostaticity is an important property to take into account when contact forces and
displacements have to be calculated. An isostatic ensemble of grains makes it possi-
ble to state Newton’s equations for force balance straightforwardly because forces are
determined by local conditions [21,22]. One can solve the system starting from the last
deposited grain and going on through the next grains following their time sequence
deposition. Thus, when the grains at the bottom of the die are reached, all forces are
already known. This means that only the equilibrium equation is enough to solve all
the equation system by propagation.
All forces are considered central and no rotations are allowed. It is expected that,

no matter the weight assumption, negative forces will appear when the force equations
are solved [25]. The deposition procedure produces isostatic lattices, but has no built-in
sign constraint for stresses, therefore, tensile stresses may appear.
We also measured the displacements Dib induced in site i when bond b is stretched.

It has been shown in Ref. [25] that these displacements correspond to the force–
force Green functions of the system. After the packing has been built and its con-
tact forces calculated, a randomly chosen particle in the bottom layer is shifted
vertically. The size of the displacement is not relevant since our system is linear
in the limit of large stiBness. The new equilibrium positions are calculated easily
by upwards propagation, given the system is isostatic. A deformation of the type
described here does not modify the repose length or stress of any of the bonds in
the system, thus, the sole condition that bond lengths be constant is enough to 0nd
how much the upper particles are displaced, knowing how much the lower particle is
displaced.
In Fig. 1(a) we show the results for force distributions P(f) averaged over 105 equiv-

alent packings. These distributions were calculated for the 0rst arrangement
obtained after the last particle was poured into the die, i.e., no further relaxation (shak-
ing) was done on the system. Data are plotted in six sets according to the depth of
the particles exerting them, i.e., we divided the total height of the system in six bands
at diBerent heights and made statistics in each one. Forces of both signs appear but
in this 0gure we only plot the positive ones. The distributions P(f) are approximately
symmetric around zero. They show a power law behavior for large strengths. This is
not in contradiction with previous results regarding the existence of an exponential
decay of P(f) for large forces [25]. This last behavior is expected when restrictions
are imposed over the sign of the forces, avoiding the presence of negative ones (tensile
stresses). This has been investigated in diBerent ways by several authors [25,27,28].
But here, both types of forces are allowed, tensile and compressive ones. Unlike for
the case of just compressive forces, here the cutoB in P(f) grows exponentially with
depth as seen in the same 0gure.
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Fig. 1. Normalized contact forces after diBerent number of shakings; (a) before any relaxation; (b) after 0ve
relaxations; (c) after 10 relaxations. Note the change in scale as relaxations go further.
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In Fig. 1(b) and (c) we plot the behavior of the normalized contact forces as we
relax the system a certain number of shakings. Part (b) shows distributions after 0ve
relaxations and (c) after 10. This relaxing is the one depicted above. As can be seen,
this process clearly aBects the quantitative behavior of the distributions, but they still
remain qualitatively the same. For all depths, the strength of large forces decreases
considerably after the 0rst 0ve shakings, while for small forces, the probability of
occurrence tends to equal each other, as seen in Fig. 1(b).
The behavior for even more relaxations (Fig. 1(c)) is practically the same and, as

said above, a stationary state is attained after this number of rearrangements. It seems
that low-frequency, high-amplitude shakings help the grains to order in such a way that
their contacts support smaller stresses. We presume that one reason for this curious
behavior is the decrease of the number of bridges, enhancing the stability of the packing
and lowering the presence of contacts altering the propagation of stresses downwards.
In fact, when a new particle is added to the die, it may happen that one of its two
contacts in its stable position forms what we de0ne as a bridge. We will say that a
bridge is present when one of the contacts supporting the particle forms any angle
above the horizontal. This local con0guration will not propagate stresses in the same
way like the standard one where the two contacts are below the horizontal. We may
say that the presence of a bridge alters the propagation of stresses downwards, given
the fact that one of the supporting contacts is really lacking.

3.2. Displacement distributions

Concerning displacements, the corresponding normalized distributions P(D) are
shown in Fig. 2 for diBerent relaxation stages that correspond with those in Fig. 1.
They are classi0ed in nine sets according to the depth of the particles suBering a
displacement D. Our numerical results show that P(D) has a broad distribution with
power law behavior for D smaller than a cutoB value and this cutoB grows exponen-
tially with the distance to the bottom (remember the picture here is opposite to the
case of forces). As argued in Ref. [25], on general isostatic networks, this power law
behavior for displacements is expected no matter whether sign restrictions are present
for stresses. As for P(f), relaxations produce a decrease in the magnitude of displace-
ments whatever the depth is. Comparison of Figs. 2(a) and (c) shows a decrease of
8 orders of magnitude after 10 shakings. Nevertheless, the qualitative behavior of the
distributions is not aBected.
We also investigated whether P(f) and P(D) would behave in the same way as

reported in Ref. [25] for a packing of monosized disks generated in the way explained
above. In Figs. 3 and 4, we plot the corresponding distributions and also show how
shakings aBect them. The radii distribution of the disks in these packings has a delta
shape with its peak at 1 a:u: and a narrow dispersion of 1%. The same die and num-
ber of particles were used here than above. As seen in part (a) of the two 0gures,
we recover the same behavior from as in Ref. [25]. Moreover, and according to our
expectations, the relaxation process eBect is lesser in both distributions, given the fact
that disks form a practically ordered array without too much opportunities for bridges
to develop (see parts (b) and (c) of Figs. 3 and 4). It is worthy to mention that, here,
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Fig. 2. (a–c) Normalized displacement distributions P(D) for three diBerent relaxation stages that correspond
to the same ones of Fig. 1. They are classi0ed in nine sets according to the depth of the particles suBering
a displacement D. Here depth is also measured in arbitrary units as indicated.

the larger forces are about 5 orders of magnitude smaller than their counterparts for
disordered packings. This shows the eBect of disorder in stress propagation and also
reinforce our argument on the importance, in this sense, of the presence of bridges.
The same observation can be done for P(D) concerning the strength of displacements.
Finally, Fig. 5 shows the second moment of P(f). In part (a), we plot it for uni-

form distributions and in part (b) for monosized ones. For both distributions, this
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Fig. 3. Normalized contact forces distributions P(f) for a packing of monosized disks. (a) before any
relaxation; (b) after 0ve relaxations; (c) after 10 relaxations. Compare the eBects of shakings with Fig. 1.
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Fig. 4. (a–c) Normalized displacement distributions P(D) for a packing of monosized disks. The classi0ca-
tion and relaxation stages are the same as in Fig. 2.
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Fig. 5. Second moment in P(f) (a) uniform distribution; (b) monosized distribution.

moment grows exponentially with depth and, again, the relaxation process produces
an interesting eBect. The slopes of the lines (representing a least-squares 0tting of the
simulation data) decrease as the number of shakings increases. The second moment in
P(D) presents the same behavior depicted for P(f).

4. Percolation study

We want to simulate the percolation of a small particle through our 2D packings
of grains. We generate the packings as depicted in Section 2. Suppose the die be-
longs to the XY plane. The radii of the disks are randomly sampled from a Gaussian
density distribution. Remember that no further relaxation is done in this case and
the position of the center of the disks is kept 0xed for the rest of the percolation
process.



A.M. Vidales et al. / Physica A 325 (2003) 297–318 307

Once the packing is ready and in order to create empty space for allowing the small
particle to move into it, a shrinking process on the radii is started, i.e., each disk radius,
Ri, is replaced by bRi, where b∈ (0; 1) and is the same for all Ri, i.e., the shape of
the radii distribution is unchanged.
After the shrinking process is performed, the small particle is launched from above.

Its initial X position can conveniently be randomly chosen or it can be 0xed at any
place. During the falling down, their successive positions are recorded each time a
collision with a disk occurs. Its 0nal XY position is also registered, either for the
case of percolation or trapping. Statistic over a great number of equivalent samples is
performed.
First, we will present general results concerning the non-capture/capture regime and

main features of the little particle moving process. We will analyze the percolative–
non-percolative transition through a detailed study of the mean square deviations of
the exit and trapping spatial distribution histograms.
Second, we will concentrate ourselves in describing the trapped region process, given

the fact that this region cannot be yet studied using experiments. Thus, these are the
cases where simulations can bring light to better understand the percolating process.

4.1. General features of the percolative process

Suppose we have a packing of disks whose radii are randomly sampled from a
Gaussian distribution of mean Rm and dispersion �, truncating its width to 4�, i.e., the
extreme possible values for the radii of the disks are Rmax=Rm+2� and Rmin=Rm−2�.
The small percolating particle has a radius Rp.
To study the behavior of the diBusing process through the packing, we 0rst have

to determine bc, which is the critical value for b in the shrinking process explained
above. This means that, when all the radii of the disks are multiplied (reduced) by this
b value, enough empty space is generated for the small particle to percolate though
the interstices.
This critical value will depend on the radii distribution parameters and on Rp. Thus,

we 0xed the mean of the gaussians to Rm = 2 arbitrary units (a.u.) and the radius
Rp = 0:2 a:u: and keep this values 0xed for the rest of our study. Then, we determine
the percolation threshold bc for diBerent values of �. To this end, a standard percolation
threshold searching procedure was used. Statistics over 103 equivalent samples with
the same parameters were done, launching the small particle from randomly initial X
positions. The results for bc versus � are shown in Fig. 6. As expected, the limiting
value for a monosized distribution (�=0) is bc= b0 = 1−f, where f=Rp=Rm. Here,
we have f = 0:1, thus, b0 = 0:9.
As the dispersion increases, percolation is hampered and bc has to decrease in or-

der to generate more empty space. This means that a wide radii distribution needs to
oBer a less dense con0guration for the small particle to percolate. This can be easily
explained as follows. When a distribution has a small dispersion, disks build arrays
that have a higher degree of order than those for wider ones. Consequently, spaces
between particles have a typical size and the shrinking process creates voids homo-
geneously. When the dispersion increases, the probability that small disks occupy the
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Fig. 6. Percolation thresholds, bc, as a function of the dispersion of packed grains.

spaces between big ones increases. Then, the sizes of the paths for the percolating
particle are smaller and this fact controls the shrinking process, giving smaller values
for bc.
Data on this 0gure can be 0tted best with a power law function given by

bc = 0:9− 0:1432�1:4 : (1)

This equation can be rearranged in this way:
b0 − bc
b0 − bl = �

1:4 ; (2)

where bl is the limiting value for bc when � → 1. Thus, the ratio of the departure of
bc from its limiting values follows a simple power law of the mean deviation.
To our knowledge, this is the 0rst time that the dependence of a granular percolation

parameter (bc) is found as a function of a packing distribution parameter (�) and the
power law dependence is not surprising given the critical transition studied here.

4.2. Trapping transition

Once the thresholds were determined, we took, as a 0rst insight, the particular case
� = 0:5 to study the behavior of the percolating particle below, around and above the
percolation threshold. For this case, bc = 0:8455.
Fig. 7 presents the results for the exit distribution frequency as a function of 0nal

Xp (transversal coordinate of the particle). It is worthy to say that, in this set of data,
the launching point of the small particle is 0xed at the middle top of the die. If the
particles are in the percolation regime, Xp is their 0nal x-position at the exit. If the
particles are in the entrapment regime, Xp represents its 0nal x-position, no matter their
0nal y-position. In (a), the b values selected are above the threshold bc, corresponding
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(a) Selected b values are above the threshold bc (non percolative regime); (b) and (c) correspond to
the distributions for b close to bc and for b far below bc, respectively.
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to the non percolative regime. Thus, the results are the 0nal Xp coordinates of the
entrapped particles.
Parts (b) and (c) correspond to the distributions for b close to bc and b far below

bc, respectively. As observed, the shape of the distributions are Gaussian-like. The
dispersion in Xp is wider when b is closer to bc. As b decreases, the increment of the
void space between particles makes the diBusive process less disperse. This behavior
resembles the one found in Galton boards [29]. All results are averaged over 103

equivalent samples.
From this 0rst results, we conclude that a detailed study of this transition from

one regime to the other is quite relevant. The key questions to answer are whether the
Gaussian behavior for the exit distributions is maintained for diBerent radii distributions
of the packed particles and what is the behavior of the exit dispersion around bc.

To this end, we performed two sets of simulations for extreme values of the packed
particles dispersion �. They were � = 0:01 (almost monosized grains) and � = 0:09
(highly polydispersivity).
For each � value we record the exit distributions for the 0nal Xp, like above, for

several values of b close to bc. Each distribution was then 0tted with the theoretical
function that resulted the best one for this purpose. The dispersion, w, corresponding
to each 0tting function was then plotted against b. It is important to point out here that
no misunderstanding should be done among the dispersion � of the packing particles
and the dispersion w of the exit distributions. We found a clear transition in w as b
goes through bc for both cases (0.01 and 0.9) as is depicted below.
In Fig. 8, we present the results for the exit distributions obtained from 5 × 103

equivalent samples. They are all normalized in order to be compared.
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Fig. 8. Normalized exit distributions for 0nal Xp of the percolating particle through assemblies with �=0:01
and for several values of b, close to bc. Dot line serves as a guide to distinguish the percolating regime
from the non percolating one.



A.M. Vidales et al. / Physica A 325 (2003) 297–318 311

140 160 180 200 220 240 260

80 100 120 140 160 180 200 220 240 260 280
0.00

0.04

0.08

0.12

0.16

0.20

0.24
 b=0.8828
 b=0.8619 
 b=0.8410
 b=0.8201
 b=0.7992
 b=0.7783 (b+

c
)

           -----------------
 b=0.7783 (b-

c
)

 b=0.7574
 b=0.7365
 b=0.7156
 b=0.6947
 b=0.6738

N
or

m
al

iz
ed

 E
xi

t D
is

tr
ib

ut
io

ns

Transversal coordinate, X
p

Fig. 9. Normalized exit distributions for 0nal Xp of the percolating particle through assemblies with �=0:9
and for several values of b, close to bc. Dot line serves as a guide to distinguish the percolating regime
from the non percolating one.

The corresponding b values for each histogram are indicated and the dot line serves
as a guide to distinguish the percolating regime from the non-percolating one. The
minus and plus symbols over bc indicate that the distribution corresponds to 0nal
Xp of trapped particles (b+c ) and 0nal exit Xp of percolating particles (b−c ). This
distinction is crucial because, just on bc, the regime transition is such that not all
the particles percolate, nor are completely entrapped. The inset of this 0gure shows
the corresponding 0tting functions for each case. They are all Gaussians through the
percolating regime and on bc, but a curious change occurs for b above bc: the best 0t is
obtained with a Lorenzian function. This feature is explained if one takes into account
the fact that the packing particles are quite monodispersed (remember � = 0:01). As
we will see in the next section, for small dispersion, the transition is abrupt and the
particles soon get trapped, with almost no penetration at all. This changes appreciably
the dynamics of the diBusing process that no longer belongs to a standard one. It is
worthy to say that the correlation parameter obtained from all the 0tting processes
performed was equal to 0.99.
We show the results for exit and trapping distributions for � = 0:9 in Fig. 9. As

before, the diBerent b values are indicated through diBerent symbols and the dot line
again separates the percolation regime from the non-percolation one. As clearly seen,
all the histograms belonging to both regimes present Gaussian-like shapes. Here the
inset shows the Gaussian 0tting functions. In all cases, the correlation parameter R
obtained from the 0tting process was 0.99. The change in shape of the distributions
is quite less pronounced than the corresponding to �= 0:01. We can better appreciate
this looking at Figs. 10 and 11. Comparing these two 0gures, we can observe that the
values for dispersion below bc are greater that their counterparts for small �, and that
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Fig. 11. Transition behavior for dispersion around bc for � = 0:9. Compare with Fig. 10.

the transition occurs in a wider range of b values. Another feature to point out is that,
as b decreases far below bc, dispersion also decreases. This behavior is stronger for
�= 0:9. The explanation for this diBerent behavior is straightforward keeping in mind
the order/disorder picture of the packed grains. For small �, the grains are close to an
ordered crystalline structure and the possible paths for the percolating particle are quite
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Fig. 12. Successive Yp positions of the falling particle against cumulative number of collisions. Symbols
correspond to trapping regime and all lines correspond to non-trapping behavior.

regular and similar in size. The shrinking process creates empty space in an “ordered”
way. That is the reason why the transition is abrupt.
When a great polydispersion is present (�=0:9, for example) disorder plays a main

role in smoothing the transition.
Concerning the successive Yp positions of the falling particle, we plot the results

for diBerent b values against cumulative number of collisions in Figs. 12 and 13, for
� = 0:01 and � = 0:9, respectively. We always found a linear behavior as can be
observed. The Yp coordinate of the particle is taken from the bottom of the die to the
top of it (Yp = 0 at the bottom). This linearity means that the free path traveled by
the particle in the Y direction between successive collisions is the same at a given b
value. We also observe that steady state regime is quickly reached after a few impacts,
resembling experimental observations [11].
Concerning the slopes of the lines, we observe that for � = 0:01, all plots for b

below bc collapse onto the same line, meaning that, once the transition occurs, the
particle collision dynamics is the same. For b= bc, the slopes of the lines correspond-
ing to particles that get trapped and those which succeed to percolate are the same
(see line and symbols indicated in Fig. 12). So, the transition is continuous in this
sense. Above bc, data available is diEcult to analyze, given the fact that only few col-
lisions occur before entrapment. Just two points are plotted in the 0gure (triangles) for
b=0:8997, showing an increase in slope. For �=0:9, we show in Fig. 13 that all lines
corresponding to the non-percolating phase clearly increases their slopes as b increases,
as pointed out above for �=0:01. This behavior can be explained taking into account
the shrinking process. When b is far bc, the only paths for the percolating particle are
those created between the biggest grain (remember that empty space is proportional
to R(1 − b)), so the tortuosity of the particle path through the packing is low and,
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Fig. 13. Successive Yp positions of the percolating particle vs. cumulative number of collisions. The inset
just shows the penetration depth as a function of collision steps for b values above bc (trapping regime).
They follow an exponential decay as indicated by the 0tting line. The thick line indicates positions for bc.

if empty space exists, the falling is straightforward, but short. When b gets closer to
bc, more paths are created and tortuosity increases, hampering the Y displacement, but
getting a deeper penetration (see the inset in Fig. 13).
For b = bc, the two plots coincides like in � = 0:01 case. They are indicated by

arrows. Symbols are related to trapped particles and the thicker line correspond to
percolating particles. As b goes below bc, we observed no change in slope for b close
to bc down to b = 0:6738. For this last value of b, we begin to observe a change in
slope. This change is due to a lower density of grains that makes the topography of
the packing easier to get through it. In terms of the tortuosity view, this means that no
more new paths are created and the eBect of decreasing b is just to loose the packing
even more.
It is worthy to point out that all the results depicted above concerning the movement

of the small particle qualitatively agree with experimental observations in which respect
to the percolation phase.
In the next section, we will discuss the results obtained in the trapping region.

4.3. Trapping regime

In this region, we are interested to study the 0nal positions (Xf; Yf) of trapped
particles depending on the characteristics of the disk packing. To this end, we record
Xf and Yf once the particle was trapped and as b is changed from bc to 1, until
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Fig. 14. Relative 0nal vertical position of the trapped particle as a function of adimensional b=bc. Ymax is
the maximum height of the array of disks once the pouring is 0nished.

saturation. We cover the whole range of possible values for �. In Fig. 14, we plot the
relative 0nal vertical position of the trapped particle as a function of adimensional b=bc.
Ymax is the maximum height of the array of disks once the pouring is 0nished. Two
main features can be observed from the 0gure. First, the limiting values of relative
height Yf=Ymax for great values of b (far from percolation) are practically independent
of the dispersion of disks. This means that the penetration percentages of the small
particle in dispersed mixtures of grains is similar to that for monosized ones.
Secondly, the widespread of the 0nal vertical positions is strongly dependent on � as

b departures from bc. For small � we practically found a step-like function. We have
already pointed out this fact when analyzed the X distributions of the trapped particle
in Figs. 8 and 9. For small �, the transition is practically abrupt, given the fact that
allowed paths are proportional to R(1 − b) and the radii distribution is practically a
delta function. For the extreme case �=0, the Y distribution would be a step function.
Let us keep in mind that smaller b values correspond to a looser disk packing. So,

when you want to mix small particles in a matrix of larger ones whose radii distribution
has a dispersion �, a procedure to loosen the packing will produce a better vertical
distribution of the percolating grains for the case of great dispersion than for the case
of poor dispersed assemblies. In other words, for small �, a short range of b values
can be used in order to generate the mixture.
In Fig. 15, we show typical results for the probability distribution of the 0nal hori-

zontal position (Xf) for the percolating particle for the case of �=0:9. All results are
averaged over 2× 103 equivalent realizations. We observe a uniformly distribution for
the probability, diBerent from the peek behavior in Figs. 7–9. This is due to the fact
that the launching point in these simulations was taken at random over the top of the
array of disks, imaging a “hole” of 1=3 the width of the die, at the middle of it, while
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Fig. 15. (a,b) Typical results for the probability distribution of the 0nal horizontal position (Xf) for the
percolating particle when � = 0:9. (here bc = 0:7783).

in the cases above, it was 0xed at the middle of the die. This diBerence is important
when one wants to select the technique for pouring the small grains, depending on the
desired mixture characteristics. The width of the distributions is practically insensitive
to � and b, presenting a small increase in dispersivity for b close to bc, as can be
appreciated comparing Fig. 15(a) with (b). Remember that bc = 0:7783 for � = 0:9.

5. Conclusions

In this paper, we presented a simulation algorithm to generate 2-D random packings
of disks whose radii size distribution can be, in principle, of any desired shape. Given
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the wide range of applications that this kind of granular media modeling may represent,
we wanted to characterize, in some extent, static and dynamical features of these packed
grains systems. To this end, we measured contact force and displacement distributions
(static aspects) and percolation of small particles (dynamic aspect) on thousands of
similar samples of these packings.
Concerning the 0rst aspect, we found previously, and use here, that our system is

isostatic and this property allows us to easily calculate the desired distributions of
forces and displacements [21,22,25,26].
A low-frequency high-amplitude relaxation process was performed after each packing

was generated. This relaxation process was useful to rearrange the disks in the packing,
lowering considerably the number of bridges. It practically does not aBect the density
of the system and does not cause considerable segregation [26], but its main eBect was
to enhance the stability of the system. This is shown by the lower rate of negative to
positive forces as relaxations go further.
Forces and displacements have broad distributions. They are power law functions of

the strength and have a cutoB value which grows exponentially with depth or height,
respectively. This similar behavior in both kind of distributions supports the original
idea that, if no sign constraints exists for stresses, power law behavior is expected
in isostatic systems. For the case of monosized distributions of radii, we recovered
previously reported results [25].
We may say that relaxations produce a redistribution of stresses and displacements,

lowering their strength. This is not a steric eBect, nor a topologic one, but seems to
be a scaling eBect closely related to ordering the system. We have to investigate these
conjectures deeply with further simulations.
It would be interesting to look for the universal behavior of these structures through

a systematic study of the exponents implied in the power law behavior found. On the
other hand, introduction of friction will increase the number of bridges and will aBect
the stress distributions.
Concerning dynamical features, we may say that this is the 0rst time (to our present

knowledge) that the dependence of a percolation parameter (like bc) is found as a
function of a packing distribution parameter (�) in a granular assembly, and a power
law dependence has been found out.
For small dispersion values, the system presents an abrupt transition from non-

percolative to percolative regimes, i.e., the particles soon get trapped, with almost
no penetration at all. The dynamics of the diBusing process that no longer belongs
to a standard one. For greater values of �, the transition smoothes. This can be ap-
preciated clearly in Figs. 10 and 11. In the non-trapping regime, we always found a
Gaussian-like exit distribution for all values of � studied, resembling experiments [11].
Successive Yp positions of the small falling particle show that, in the non-trapping

regime, it “sees” the same eBective medium as it falls down. This is proved in Figs.
12 and 13. In the trapping regime, as b departures from bc, the slopes are steeper. This
is due to the existence of a few number of possible ways to percolate, thus, the falling
down (if could happen) gets more eBective.
In the trapping regime, the strong dependence of Yf on �, as b departures from bc,

and the sensibility of Xf on the pouring method, allow to conclude that a procedure to
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loosen the packing will produce a better vertical distribution of the percolating grains
for the case of great packed particles dispersion than for the case of poor dispersed
assemblies. In other words, for small �, a short range of b values can be used in order
to generate the mixture.
Conclusions above help to select appropriate experimental techniques, depending on

how are the desired mixture characteristics. They tell us how to pour small grains and
how to shake our packed particles taking into account the 0nal distributions of small
particles and forces among grains we are looking for.
Given the advantages of the present algorithm concerning CPU time and size dis-

tribution possibilities, a wide variety of experimental setups can be simulated in order
to predict interesting properties of packed grains in other systems of technological and
basic interest. Present eBorts are driven in this direction.
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