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Abstract  26 

 27 

The genome resequencing of spontaneous glyphosate-resistant mutants derived from the 28 

soybean inoculant E109 allowed identifying genes most likely associated with the uptake (gltL 29 

and cya) and metabolism (zigA and betA) of glyphosate, as well as with nitrogen fixation (nifH). 30 

Mutations in these genes reduce the lag phase and improve nodulation under glyphosate stress. 31 

In addition to providing glyphosate resistance, the amino acid exchange Ser90Ala in NifH 32 

increased the citrate synthase activity, growth rate and plant growth-promoting efficiency of 33 

E109 in the absence of glyphosate stress, suggesting roles for this site during both the free-34 

living and symbiotic growth stages. 35 

 36 
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Introduction 51 

 52 

Glyphosate (N-phosphonomethyl glycine) is the most used herbicide in the world. Since 53 

the first glyphosate-resistant crop, a transgenic soybean variety, was introduced to the US 54 

market in 1996, the use of this herbicide has increased drastically. During the last decades, the 55 

adoption rates of glyphosate-resistant germplasms, including a vast diversity of major legumes 56 

(e.g. soybean and alfalfa) and non-legume crops (e.g. cotton, maize and rice), have been 57 

extremely high in both developed (e.g. US) and developing (e.g. Argentina) countries. The 58 

cultivation of these transgenic crops in association with glyphosate has provided the most 59 

effective and inexpensive weed management technology in history. However, although 60 

glyphosate is toxicologically safe for humans and animals (both wildlife and domesticated) and 61 

its environmental impact is lower than that of the multiple herbicides and tillage that it replaces, 62 

the extended use of glyphosate generates the occurrence of glyphosate-resistant weeds, alters 63 

the mineral nutrition, affects the animal microbiota, and increases the susceptibility to plant 64 

pathogens [1].  65 

Glyphosate inhibits the enzyme 5-enolpyruvyl-3-shikimate phosphate synthase 66 

(EPSPS) involved in de novo synthesis of aromatic amino acids in plants, bacteria and other 67 

organisms. A key feature of this systemic herbicide that explains its commercial success is the 68 

particular ability to translocate rapidly to metabolic sinks, killing meristematic tissues away 69 

from the application site and controlling a broad-spectrum of weeds, including perennial plants. 70 

Current commercial glyphosate-resistant crops, including transgenic soybean cultivars, express 71 

an insensitive EPSPS gene and not a glyphosate degradation gene, and thus, their natural 72 

endophytes and commercial inoculants are indirectly exposed to glyphosate. A clear example 73 

of the negative impact of glyphosate on plant-growth promoting bacteria is the reduction of 74 

nitrogen fixation and yield in transgenic soybean production via the growth inhibition of 75 
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rhizobia [2]. This long-term situation evidences the need to improve the current inoculants for 76 

the maximization of symbiotic nitrogen fixation in glyphosate-resistant crops. Unfortunately, 77 

the potential benefits of engineered microbes in this agronomic topic is limited by the ecological 78 

and health risks of the massive release of genetically modified microbes in agroecosystems [3]. 79 

Thus, the production of spontaneous glyphosate-resistant mutants could be an attractive 80 

alternative to rapidly improve the inoculants available in the market. 81 

Several glyphosate resistance mechanisms, including target alteration and control of the 82 

uptake, export and degradation of glyphosate, have been reported in different microbes [4]. 83 

However, the emergence of glyphosate resistance in rhizobia has not been studied at the genetic 84 

level. In this context, we here selected and studied spontaneous glyphosate-resistant mutants 85 

derived from the soybean inoculant Bradyrhizobium japonicum E109 [5]. 86 

 87 

Materials and methods  88 

 89 

Spontaneous glyphosate-resistant mutants derived from the wild-type strain E109 were 90 

selected in RMM medium [6] supplemented with 7 mM glyphosate. Resistance to glyphosate 91 

of each independent spontaneous mutant clone was confirmed by plating isolated colonies on 92 

this selective medium (Fig. S1). The mutation sites associated with the stress-resistant 93 

phenotype were identified as previously described [5]. The nucleotide sequences of the mutant 94 

strains and wild type strain E109 were deposited in the EMBL Nucleotide Sequence Database, 95 

accession numbers GR1 (SAMN24505280), GR2 (SAMN24518821), GR3 (SAMN24519010), 96 

GR4 (SAMN24527104), GR5 (SAMN24529885) and E109 (SAMN24528291). For 97 

complementation analysis, strain E109 was transformed with the plasmid pBBR1-MCS3 98 

containing mutant alleles, as previously described [5].  For physiological studies under aerobic 99 

conditions, bacterial cultures were grown in 125 mL Erlenmeyer flasks containing 25 mL of 100 
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RMM medium supplemented with 50 mg/L yeast extract (RMM2 medium), incubated at 28°C 101 

with shaking (250 rpm). Cells from stationary-growth cultures were used to inoculate fresh 102 

RMM2 medium supplemented with 0 or 0.7 mM glyphosate at an initial optical density (OD 103 

580 nm) of 0.05. Growth was monitored by measuring OD, and citrate synthase (CS) activity 104 

and doubling time evaluated in exponentially growing cells as described previously [7].  105 

The symbiotic efficiency was analyzed by growing rhizobia-inoculated soybean plants 106 

in hydroponics and irrigated with the minimal medium INTA13 without nitrogen, as previously 107 

described [5]. To analyze the nodulation abilities of mutants under herbicide stress, young 108 

seedlings of transgenic glyphosate-tolerant soybean were exposed to an application of 90 mg/L 109 

glyphosate at the stage of cotyledons. A week after herbicide treatment, the presence of nodules 110 

was determined by visual evaluation. The plant growth-promoting efficiency of mutants in 111 

wild-type glyphosate-sensitive soybean without glyphosate stress was analyzed two months 112 

after inoculation, as previously described [5]. Total nitrogen content in plant matter was 113 

established by the Kjeldahl method. The glyphosate-sensitive and glyphosate-tolerant soybean 114 

seeds used were the commercial varieties Alim 5.09 and Andrea 63.1, respectively. The effect 115 

of bacterial treatments on N2O soil emissions was analyzed as previously described [8] with 116 

slight modifications. Microcosms were prepared by placing approximately 150 g of agronomic 117 

soil containing 2 µM of nitrate [9] into 500 mL sterilized bottles exposed to 150 µL of bacterial 118 

culture grown for seven days in YEM medium and washed twice in physiological solution. The 119 

microcosms were incubated at 25°C for 24 h, and the N2O fluxes were measured by gas 120 

chromatography [10].  121 

 122 

Results and Discussion 123 

 124 
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Genomic analysis revealed that the spontaneous glyphosate-resistant mutant strains 125 

GR1-GR5 are isogenic to their wild-type parental strain E109, with the exception of single 126 

nucleotide substitutions on the genes gltL (Fig. 1a), cya (Fig. 1b), zigA (Fig. 1c), betA (Fig. 1d), 127 

and nifH (Fig. 1e). These genes code for a glutamate transporter, an adenylate cyclase, a Zn-128 

binding metallochaperone, a choline dehydrogenase and an essential structural subunit of 129 

nitrogenase, respectively (Fig. S2). Of these five well-known proteins, the only protein that has 130 

been found to be directly associated with the emergence of glyphosate-resistant bacteria is the 131 

glutamate transporter [11]. The transformation of strain E109 with the mutant alleles of zigA, 132 

betA and nifH but not of gltL and cya increased its natural tolerance to glyphosate (Fig. S3), 133 

suggesting that these are probably gain and loss-of-function mutations, respectively.  134 

Previous studies have shown the essential roles of the glutamate transporter and the 135 

adenylate cyclase in the uptake of glyphosate in Bacillus subtilis [11] and of other phosphonate 136 

antibiotics (fosfomycin and fosmidomycin) in Escherichia coli [12], respectively. Here, we 137 

showed the emergence of a nonsense mutation within the gltL gene in strain GR1 (Fig. 1a) and 138 

of a consensus sequence binding site for the transcriptional repressor factor HipB [13] within 139 

the promoter of the cya gene in strain GR2 (Fig. 1b). Consequently, these mutant strains are 140 

probably defective in glyphosate uptake.  141 

Recent reports have described the important functions of the Zn-binding 142 

metallochaperone ZigA and the choline dehydrogenase BetA in histidine degradation and 143 

glycine-betaine biosynthesis in Acinetobacter baumannii [14] and alfalfa rhizobia [15], 144 

respectively. In addition, glyphosate exposure induces the depletion of intracellular zinc 145 

bioavailability and the expression of choline dehydrogenase [16, 17]. In this study, we showed 146 

the occurrence of non-synonymous nucleotide substitutions within the zigA gene in strain GR3 147 

(Fig. 1c) and within the betA gene in strain GR4 (Fig. 1d), which improved the ability of E109 148 

to grow under glyphosate stress. Considering the previous works describing the functions of 149 
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ZigA and BetA in amino acid metabolism and our results, we propose that the zigA and betA 150 

mutations probably modified the glyphosate metabolism. 151 

Glyphosate acts as a bacteriostatic antibiotic against both Gram-negative and -positive 152 

bacteria [18, 19]. In accordance with their higher resistance to glyphosate under solid media, 153 

strains GR1-GR5 showed a shorter initial lag (Fig. 1f) and earlier nodulation (Fig. 1g)  than 154 

strain E109 under glyphosate stress, supporting the ability of these mutants to evade the 155 

bacteriostatic effects of glyphosate in pure culture and in planta. These findings provide the 156 

first genetic evidence that the alteration of the soybean-rhizobia symbiosis under glyphosate 157 

stress is directly related to the antibiotic action on soybean rhizobia. In addition, significant 158 

amounts of nifH transcript and NifH protein has been observed in soybean rhizobia under a 159 

wide-range of free-living conditions including aerobic cultures [20-23], suggesting that the role 160 

of NifH may not be restricted to the nitrogen fixation process. To our knowledge, however, this 161 

is the first report describing a phenotype produced by nifH mutation outside of the nitrogen 162 

fixation process.  163 

Recently, phosphoproteome analysis of the bacterium Zymomonas mobilis ZM4 has 164 

shown that the nitrogenase subunit NifH is phosphorylated at serine 90 under nitrogen-fixing 165 

conditions [24]. Currently, there are no reports describing the possible role of this post-166 

translational modification. We have shown that this site is highly conserved in different 167 

nitrogen-fixing strains from diverse phyla, including commercial inoculants E109 and 168 

Azospirillum brasilense Az39 (Fig. 2a). In addition, we showed the emergence of a nucleotide 169 

change within the nifH gene in strain GR5, which changes the serine 90 site to alanine (Fig. 170 

1e).  Based on this result, we propose future studies exploring the probable phosphorylation of 171 

this residue in NifH from E109 and other legume microsymbionts.  172 

Considering that the growth inhibition of microbes by bacteriostatic antibiotics has been 173 

associated with reduced metabolism and suppressed cellular respiration [18, 25, 26], we studied 174 
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the activity of CS, which plays crucial roles in central carbon and energy metabolism [7], and 175 

the bacterial growth rate. In contrast with other glyphosate-resistant mutant strains (GR1-GR4), 176 

strains GR5 showed increased CS activity (Fig. 2b) and lower duplication time (Fig. 2c) than 177 

strain E109 in exponentially growing cells without glyphosate stress. Similar to commercial 178 

alfalfa inoculants [27], several soybean inoculants including strain E109 have conserved nitrate, 179 

nitrite, and nitric oxide reductases related to the production of the greenhouse gas nitrous oxide 180 

(N2O) from nitrate, but lost the N2O reductase associated with the degradation of N2O to gas 181 

nitrogen [28]. Consequently, strain E109 and other important legume inoculants are high N2O-182 

emitting rhizobia [8, 28]. As expected, the complementation of strain E109 with the pYC7 183 

cosmid containing the N2O reductase cluster, suppressed the high N2O-emitting phenotype of 184 

strain E109 (Fig. 2d). In addition, strain GR5 showed significantly decreased N2O emissions 185 

compared to strain E109 in microcosm assays (Fig. 2d). Therefore, our results suggest a 186 

possible link between glyphosate resistance and the metabolic shifts induced by the S90A 187 

mutation.  188 

Interestingly, large differences in plant productivity (Fig. 3a) and nodule biomass (Fig. 189 

3b) were observed between strain E109 and strain GR5 in soybean inoculation assays without 190 

glyphosate stress, suggesting that the putative phosphorylation site of NifH from strain E109 191 

can also play functions in the symbiotic nitrogen-fixing process. Soybean plants inoculated with 192 

GR5 had increases between 21% (data not shown) and 8% (Fig. 3c) in nitrogen content of leaves 193 

with respect to plants inoculated with the parental strain E109 in chamber and field conditions, 194 

respectively. These results are in line with the positive effects of a high CS activity on the 195 

bacterial growth rate of Rhizobium tropici and nodulation of common bean [29].  A possible 196 

mechanism to explain the benefits of S90A mutation and high CS activity on symbiotic nitrogen 197 

fixation could be the respiratory protection of nitrogenase and the increase of the reducing 198 

equivalents as well as of ATP needed for the nitrogen fixation process [30]. In biotechnological 199 
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terms, the non-genetically modified mutant strain GR5 can be applied to increase the 200 

production, environmental safety and nutritional quality of both conventional and glyphosate-201 

tolerant soybean varieties.  202 

 203 

Figure Legends 204 

 205 

Figure 1. Mutations responsible for the glyphosate resistance phenotype in spontaneous 206 

mutant strains derived from the commercial soybean inoculant E109 and the ability of 207 

these mutants to bypass the bacteriostatic effects of glyphosate both in pure culture and 208 

in planta. As compared to the genome of their parental strain E109, the genomes of the 209 

glyphosate-resistant strains (a) GR1, (b) GR2, (c) GR3, (d) GR4 and (e) GR5 display mutations 210 

only within the gltL (yellow), cya (green), zigA (light blue), betA (red) and nifH (orange) genes, 211 

which code for a glutamate transporter, an adenylate cyclase, a Zn-binding metallochaperone, 212 

a choline dehydrogenase and a subunit of nitrogenase, respectively. Mutations are highlighted 213 

in gray and their impact on nucleotide and amino acid sequences are described on the right. (f) 214 

The duration of the lag phase of E109 (a slow-growing bacterium) and its glyphosate-resistant 215 

derived mutants GR1-GR5 was evaluated in RMM2 medium with or without glyphosate stress. 216 

Values represent mean + SD (n=3). (g) The ability of strains E109 and GR1-GR5 to nodulate 217 

glyphosate-tolerant soybean was analyzed in minimal medium INTA13 without nitrogen. 218 

Rhizobia-treated plants were either exposed or not to an application of glyphosate. The 219 

inoculation experiment was performed twice using eight replicates for each treatment, with the 220 

same results. Roots with (+) or without (-) nodules are highlighted. 221 

 222 

Figure 2.  Effects of the S90A mutation on the citrate synthase activity and growth rate of 223 

strain E109. (a)  Alignment of amino acids of partial NifH proteins from strains belonging to 224 
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different phyla showing that the serine 90 phosphorylation site recently identified in 225 

Zymomonas mobilis ZM4 is a conserved site of this nitrogenase subunit. Bradyrhizobium 226 

japonicum E109 (WP_011084578), Zymomonas mobilis ZM4 (WP_011241556), Azospirillum 227 

brasilense Az39 (AIB12323), Clostridium bornimense (WP_044035927), Nostoc sp. PCC 6720 228 

(CAA83510). (b) Citrate synthase activity and (c) duplication time of the wild-type strain E109 229 

and the mutant strains GR1-GR5 were evaluated in exponential growing cells without 230 

glyphosate stress. Strain GR5 contains the S90A mutation. Values represent mean ± SD (n = 231 

4). Significant differences between inoculants were analyzed with ANOVA followed by 232 

Dunnett's multiple comparisons test (n.s.: not significant, ****p < 0.0001, ***p < 0.001). (d) 233 

Average N2O fluxes from the soil microcosm inoculated with soybean rhizobia. Values 234 

represent mean + SEM (n = 20). *p < 0.05; **p < 0.01, t-test. 235 

 236 

Figure 3.  Effects of the S90A mutation on the plant growth-promoting efficiency of the 237 

inoculant. The productivity (a) and nodule biomass (b) of glyphosate-sensitive soybean plants 238 

inoculated with the wild-type strain E109 and the mutant strains GR1-GR5 were analyzed in 239 

the absence of nitrogen in the substrate and without glyphosate stress. Strain GR5 contains the 240 

S90A mutation. All values are means + SEM (n = 24). Significant differences between 241 

inoculants were analyzed with ANOVA followed by Dunnett's multiple comparisons test (n.s.: 242 

not significant, ****p < 0.0001). (c) Leaf nitrogen content in 3-month-old soybean plants 243 

treated with different bacterial inoculants under field conditions. Values represent mean + SEM 244 

(n = 9). *p < 0.05; t-test. 245 
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Figure 1

(a)
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Figure 2
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Figure 3
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