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GO, gene ontology 

miRNA, microRNA 

scRNA-seq, single-cell RNA sequencing   
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ABSTRACT 

Objective: To explore the molecular processes associated with cellular regulatory programs in patients 

with COVID-19, including gene activation or repression mediated by epigenetic mechanisms. We 

hypothesized that a comprehensive gene expression profiling of nasopharyngeal epithelial cells might 

expand our understanding of the pathogenic mechanisms of severe COVID-19.  

Methods: We used single-cell RNA sequencing (scRNAseq) profiling of ciliated cells (n = 12725) from 

healthy controls (SARS-CoV-2 negative n =13) and patients with mild/moderate (n =13) and severe (n 

=14) COVID-19. ScRNAseq data at the patient level were used to perform gene set and pathway 

enrichment analyses. We prioritized candidate miRNA-target interactions and epigenetic mechanisms.  

Results: We found that mild/moderate COVID-19 compared to healthy controls had upregulation of gene 

expression signatures associated with mitochondrial function, misfolded proteins, and membrane 

permeability.  

In addition, we found that compared to mild/moderate disease, severe COVID-19 had downregulation of 

epigenetic mechanisms, including DNA and histone H3K4 methylation and chromatin remodelling 

regulation. Furthermore, we found 11-ranked miRNAs that may explain miRNA-dependent regulation of 

histone methylation, some of which share seed sequences with SARS-CoV-2 miRNAs. 

Conclusion: Our results may provide novel insights into the epigenetic mechanisms mediating the clinical 

course of SARS-CoV-2 infection. 

Word count: 195 

Keywords: single-cell transcriptomics; COVID-19; histones; methylation; SARS-CoV-2; mitochondria 
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Key messages 

⚫ Severe COVID-19 was associated with altered gene expression pathways involved in 

mitochondrial function, membrane permeability, and ciliogenesis, and downregulation of 

epigenetic mechanisms. 

⚫ Gene expression signatures mediated by miRNAs (either from the host, including miRNA-548 or 

the SARS-CoV2) may explain different clinical outcomes. 

⚫ Gene-drug interaction analysis showed diethylstilbestrol, trichostatin A, hydralazine 

hydrochloride, and chlorambucil as significantly predicted drugs associated with severe COVID-

19. 
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INTRODUCTION 

Cumulative and consistent evidence based on the records of patients with COVID-19 demonstrated that the 

disease course is characterized by a complex clinical spectrum, including asymptomatic infection-which is 

often not fully captured by cross-sectional epidemiological surveys-, mild symptoms, critical illness, and 

even the so-called long-COVID-19[1-4].  

While progress has been made to understand the mechanism/s behind the evolution from mild to severe 

clinical outcomes, the molecular processes associated with the worst COVID-19 phenotypes, including 

severe pneumonia, acute respiratory distress syndrome, and even systemic organ failure, are not entirely 

understood.  

SARS-CoV-2 disseminates by exposure to infectious respiratory fluids, and before symptoms onset, the 

viral load in cells of nasopharyngeal epithelium is usually high [5]. Therefore, the functional role of the 

nasal epithelial cells not only as the first physical barrier against viral entry but also in controlling the local 

immune response is of utmost importance in determining the disease course.  

Single-cell RNA sequencing (scRNA-seq) profiling has allowed the identification of genes and molecular 

pathways associated with diverse human conditions, including pathways that define how a given cell can 

modify its phenotype after specific stimuli like a viral infection. Thus, scRNA-seq is a state-of-the-art 

approach for exploring changes in cellular regulatory programs, including activation or repression of genes 

that may explain the pathophysiology of human disease traits. For example, Ahn and co-workers recently 

demonstrated that SARS-CoV-2 is massively replicated in a distinct subset of human nasal epithelial 

cells[6]. Furthermore, by scRNA-seq and in situ mappings of SARS-CoV-2 entry–related host molecules, 

the investigators showed multiciliate cells but not secretory or basal cells of human nasal respiratory 

epithelium are the primary target for SARS-CoV-2 replication [6].  Ziegler et al., by performing elegant 

scRNA-seq profiling on nasopharyngeal cells from healthy and COVID-19 participants, revealed vital 

mechanisms that may define protective or detrimental responses to SARS-CoV-2 [7]. Specifically, the 

authors demonstrated impaired immune response and anti-viral immunity in cells of the nasal epithelium 

along 18 different clusters -from inflammatory macrophages to epithelial cell identities that underline 

severe COVID-19 [7]. Likewise, Ziegler and co-workers mapped the developmental transitions among 

nasal epithelial cells from healthy epithelium to the epithelium of patients with severe disease [7]. The 
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authors also provided compelling evidence on the mechanisms of host-SARS-CoV-2 interaction in terms of 

phenotypic differences among cell subtypes and the anti-viral and interferon-mediated response curbing the 

intracellular levels of viral replication [7]. However, the molecular processes of gene transcriptional 

regulation in severe COVID-19, particularly those under the influence of miRNAs, have not been fully 

elucidated. Here, we leveraged scRNA-seq open data to expand the analysis of biological processes and 

gene regulation programs associated with severe COVID-19.  

METHODS 

Biological samples  

Our study comprises data from samples of the nasopharyngeal epithelium of 50 individuals from the 

University of Mississippi Medical Centre recruited between April and September 2020 [7]. The sample 

included 15 healthy subjects with negative SARS-CoV-2 PCR tests, denoted by healthy control (HC), and 

35 individuals diagnosed with COVID-19, and nasopharyngeal swabs were collected within the first three 

days following admission to the hospital. Based on the World Health Organization (WHO) guidelines for 

COVID-19 severity stratification, these 35 patients with positive SARS-CoV-2 PCR tests were divided into 

two subgroups: 14 individuals with mild/moderate COVID-19 (WHO scores equal to 1-5, COVID-19 M), 

and 21 individuals with severe COVID-19 (WHO scores equal to 6-8, COVID-19 S). We have taken 

scRNAseq data from Single Cell Portal: https://singlecell.broadinstitute.org/. 

Single-cell RNA-seq data analysis 

We used the single-cell RNA-seq data from nasopharyngeal swabs publicly available for download and 

visualization via the Single Cell Portal: https://singlecell.broadinstitute.org/, under the identification 

SCP1289. Specifically, we focused our analyses on cells of the respiratory epithelium located in the nasal 

mucosa; the transcriptomic profile of 32871 genes in 32588 cells was obtained. Owing to the typical 

dropout of single cells, many of these genes have zero counts in many cells. The analysis of these data is a 

real challenge because the number of ciliated cells varies from patient to patient, and some cell types are 

rarely found in some individuals. Thus, we selected those patients with a representative number of ciliated 

cells. In this sense, only those patients with more than 45 ciliated cells were considered for the analysis. 

In addition, our study considered only those genes with a non-null record in at least 650 cells (2 % of all 

cells). Thus, with this restriction, the present study included 11,870 filtered genes. The original research by 
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Ziegler et al. [7] classified cells into 18 cell types (basal cells, B cells, ciliated cells, dendritic cells, 

deuterosomal cells, developing ciliated cells, developing secretory and goblet cells, enteroendocrine cells, 

erythroblasts, goblet cells, ionocytes, macrophages, mast cells, mitotic basal cells, plasmacytoid DCs, 

secretory cells, squamous cells, T cells). In the present study, we only considered the groups of ciliated 

cells, which include “ciliated cells,” “deuterosomal cells,” and “developing ciliated cells,” representing a 

set of 12725 cells. Unlike previous studies where gene expressed genes are determined considering “each 

cell” as an independent sample or replicate, we thought “each individual or patient” as an independent 

replicate. Thus, we used the arithmetic mean of normalized gene expression data of  ciliated cell for each 

patient. Specifically, we calculated the mean expression level of each gene in each individual by averaging 

the normalized counts of all cells of the specific ciliated cell type belonging to that individual. In this 

manner, we avoided inflating statistical differences as the whole single-cell data taking individual cells as 

biological replicates might result in an overestimation of significant gene expression changes. The number 

of cells of a given type varies from patient to patient; some are rare in some individuals. Only those patients 

with more than 45 ciliary cells were considered in this study.  

Pathway enrichment analysis and data visualization 

The scRNA-seq data derived from the different groups of patients were contrasted in three different ways: 

1) functional analysis of biological processes (BPs) comparing HC vs. COVID-19 M, and COVID-19 S vs. 

COVID-19 M using GSEA, as described below; 2) analysis of regulatory target gene sets associated with 

miRNAs contrasting COVID-19 S vs. COVID-19 M  using SEA; and 3) gene-set enrichment tools by the 

ToppGene Suite available https://toppgene.cchmc.org/.   

First, we analysed the GO (gene ontology) terms for BPs associated with gene expression changes using 

GSEA (Gene Set Enrichment Analysis software,  https://www.gsea-msigdb.org) [8]). GSEA is a 

computational method that determines whether a ranked gene list shows statistically significant, concordant 

differences between two phenotypes. Here, the rank of genes was established by the Signal2Noise metric, 

which is defined as the difference between the means expression in each phenotypic class divided by the 

sum of the deviations as implemented in the GSEA platform for dichotomic phenotypes.  

More specifically, we started with the normalized counts as a measure of the expression level of genes for 

all cells. First, we selected the ciliated cells of each individual. We considered individuals whose number of 
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ciliated cells was greater than 45 cells. We calculated the mean expression level of gene i in this individual, 

Ei
j, by averaging the expression level of all its ciliated cells, that is: 

𝐸𝑖
𝑗
= 𝑁𝑗

−1∑ 𝑒𝑖𝑘
𝑗𝑁𝑗

𝑘 , 

where ej
ik is the normalized counts of gene i in the cells k belonging to individual j and Nj is the number of 

ciliated cells for individual j. This define an average expression profile of ciliated cells for each patient, that 

will be used for dichotomic comparisons in further steps by means of GSEA. 

The matrix E (genes x patients) feeds the GSEA software to perform the pathway enrichment analysis. The 

rank of genes is established by GSEA for each dichotomic phenotype by using the Signal2Noise metric 

(other metrics are also available in GSEA), which is defined as: 

Signal2Noise =
𝜇𝐴−𝜇𝐵

𝜎𝐴+𝜎𝐵
, 

where mA and sA are the mean and standard deviation, respectively, of gene expression levels observed in 

the phenotypic class A. More specifically for a gen i  

𝜇𝑖
𝐴 = 𝑁𝐴

−1 ∑ 𝐸𝑖
𝑗𝑁𝐴

𝑗 , 

𝜎𝑖
𝐴 = √∑(𝐸𝑖

𝑗
−𝜇𝑖

𝐴)
2

𝑁𝐴−1
, 

where NA is the number of individuals in the condition A. 

We performed the comparisons considering a subset of the C5 gene set (version 7.4, from MSigDB 

collection) that includes the BP ontology and a gene set size of 10-500 genes. GO sets are based on 

ontologies and do not necessarily comprise co-regulated genes. In all cases, we used 1000 permutations 

over genes to compute the statistical significance of enrichment scores. Next, we performed a cluster 

analysis of significant BPs by Enrichment Map Cytoscape App 3.3 [9] to obtain a BP network, where nodes 

represent BPs and edges represent gene overlap between gene sets associated with the connected nodes. 

Edges with a similarity score lower than 0.5 did not included in the BP network plot. Network clustering 

and annotation were performed by MCL (Markov Cluster algorithm), and Word Cloud (normalization 

factor 0.5) using the Cytoscape plug-in auto annotate [10]. 

Second, we used the GSEA algorithm to prioritize candidate miRNA-target interactions in patients with 

COVID-19 across the two primary clinical outcomes of interest, including patients with severe vs. patients 
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with mild/moderate disease. To this end, we used the subset of the C3 gene sets (version 7.4, from MSigDB 

collection) that includes miRNA-targets genes as catalogued by the miRDB v6.0 algorithm [11]. We 

considered only gene sets with a size of 300-1000 genes.  

Finally, we performed gene list functional enrichment of a selected input list (see the results section for 

further details) to predict gene-drug interactions and co-expression analysis that was compiled from various 

data sources and used to a build training set gene profile by the ToppGene/ToppCluster resource 

(https://toppgene.cchmc.org/) [12;13]. The same platform was used to interpret BPs, molecular functions, 

family genes, and human traits associated with particular subsets of genes or prioritize putative viral 

miRNA targets.  

A detailed flow chart to explain all steps of the methodology is shown in Figure 1.  

RESULTS  

We found that the number of cells of a given type varied considerably from patient to patient, and some cell 

types are rare in some individuals. Therefore, we only considered those patients that presented more than 

45 ciliary cells. Consequently, we included 13 healthy controls that were SARS-CoV-2 negative by PCR, 

13 patients with mild/moderate COVID-19, and 14 patients with severe COVID-19.  

Gene set enrichment analysis associated with COVID-19 across all levels of the disease severity 

identifies distinctive biological processes  

As explained earlier, we performed gene set enrichment analysis (GSEA) of BPs associated with SARS-

CoV-2 infection in cells of the respiratory epithelium located in the nasal mucosa. Hence, we analysed a 

total number of 12725 ciliated cells. We first compared BPs in infected patients presenting mild/moderated 

COVID-19 versus control (healthy) subjects. Besides the GO terms associated with innate immune 

response and TNF-mediated signalling, genome replication and viral release, viral budding and symbiont-

host interaction, granulocyte migration, and lymphocyte homeostasis that were already described by 

Ziegler et al. [7], we found some other BPs and or sub-networks that deserve further analysis (Figure 2). 

For example, we found that sub-networks associated with mitochondrial membrane permeabilization, 

protein targeting to mitochondria, and lysosome and protein targeting to the membrane were significantly 

enriched in mild/moderate COVID-19. In addition, sub-networks related to protein folding and misfolding 

are highlighted. This last observation could be related to a previous characteristic described for SARS-
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CoV2 codon composition of highly expressed genes, which could influence the tRNAs pools of the 

infected cells with relevant implications in host protein folding and expression [14]. The entire list of BPs, 

including the GO terms, is shown in Supplementary Table 1.    

We next asked whether the differential pattern of BPs observed in ciliated cells may distinguish mild and 

moderate cases from severe COVID-19. The most relevant sub-networks identified by GSEA are shown in 

Figure 3. Compared to mild/moderate COVID-19 infection, patients with the severe disease showed an 

overrepresentation of sub-networks linked to fatty acid metabolism and eicosanoid synthesis, acute 

inflammatory processes, keratinocyte differentiation, and humoral immune response, which were all 

described by Ziegler et al.[7]. However, we noted that cells derived from severe COVID-19 patients had 

some remarkable underrepresented sub-networks linked to epigenetic mechanisms, including histone H3K4 

methylation and regulation of histone methylation (Figure 3). In addition, GO terms associated with 

ciliogenesis (GO:0003341, GO:0035082, GO:1905515, and GO:0001578) were significantly 

downregulated in severe COVID-19 (Figure 3). The entire list of BPs, including the GO terms, is shown in 

Supplementary Table 2.                    

Gene expression profile of cells derived from the nasal mucosa in patients with COVID-19 across diverse 

stages of disease severity: sub-networks analysis focused on organelle function  

To gain further insight into the gene lists generated by the GSEA analysis, we focus on specific pathways 

connected with impaired organelle function. Specifically, we selected the pathways of mitochondrial 

membrane permeabilization, protein targeting to mitochondria, and lysosome and protein targeting to the 

membrane, in which transcript levels of most upregulated genes in COVID-19 M patients concerning to 

control subjects are in the percentile 0.10. Then, we compared the expression profile of these genes within 

each experimental group, including HC, COVID-19 M, and COVID-19 S; transcript levels in each group of 

subjects were referred to the media of all samples. A heat map of the results appears in Figure 4. Including 

the COVID-19 S group, the analysis shows significant downregulation of specific genes in cells derived 

from COVID-19 patients with severe disease. For instance, the expression of LCK (Lymphocyte Cell-

Specific Protein-Tyrosine Kinase, of which the encoded protein is a key signalling molecule in the 

selection and maturation of developing T-cells), TP63 (a member of the p53 family of transcription 

factors), TRAM1 (Translocation Associated Membrane Protein 1), and SLC40A1 (Solute Carrier Family 40 
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Member 1) were significantly decreased in severe COVID-19. Upon inspecting the expression pattern in 

members of the ribosomal protein family (RPL and RPS) that encode structural constituents of ribosomes, 

we found that patients with COVID-19 had significant upregulation regardless of the disease severity. 

Interestingly, these ribosomal protein members are associated with other viral diseases, particularly 

influenza [15]. 

The regulatory network of miRNAs associated with severe COVID-19 

We next sought to explore the putative regulatory mechanisms associated with more severe illnesses. 

Specifically, we asked whether miRNA-mediated gene expression deregulation may explain severe 

COVID-19. Hence, using the ranked list of genes obtained by GSEA from the comparison of COVID-19 S 

vs. COVID-19 M as input, we detected 29 miRNAs potentially affecting the disease severity.  

Some of these miRNAs share the same so-called seed region, which ultimately defines the mRNA target, 

and in that case, have the same gene targets. Therefore, we curated the list of miRNAs by an in-house script 

to avoid redundancy in the subsequent analyses. The correlations among the targets of the 29 miRNAs 

mentioned above are depicted in Supplementary Figure 1. Upon inspection of redundancy, 11 ranked 

miRNAs (miR-16-5p, miR-130-3p, miR548h-3p, miR-1283, miR548an, miR-19a-3p, miR144-3p, 

miR9983,  miR101-3p, miR181a-5p, and miR8485) were used in the search for their targets among the 

whole set of putative miRNA target genes of the human genome (hsa-miRNA targets as catalogued by the 

miRDB v6.0 algorithm). As a result, we found a total of 3076 target genes. The complete list of target 

genes associated with the 11 miRNAs is shown in Supplementary Table 3. 

In parallel, we selected the 10 % top-ranked genes downregulated in COVID-19 S vs. COVID-19 M 

according to the ranking based on the Signal2Noise metric, which yielded 1167 genes (Figure 5a). From 

the intersection of the 11 miRNAs-targeted genes (3076) and the above described 1167 downregulated 

genes in severe COVID-19, we found 336 deregulated transcripts also targets of the 11 miRNAs (Figure 

5b). The expression pattern of these 336 genes within each group of patients relative to the media of all 

groups (healthy controls, COVID-19 M, and COVID-19 S) is shown in Figure 5c. A comprehensive 

network of the BPs represented by these downregulated genes in patients with severe COVID-19 is shown 

in Figure 6. 

We then focused our analysis on those miRNA-target pairs involved in epigenetic mechanisms, including 
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BPs linked to H3K4 methylation and regulation of histone methylation. These 11 miRNAs together 

regulate most of the histone methylation pathway genes that were downregulated in severe COVID-19 

(MYB, BCOR, DNMT1, KMT2C, TET3, KMT2A, KMT2C, WDR82, GATA3, AUTS2, MECP2, and MLLT6) 

(Supplementary Figure 2). 

Gene list enrichment analysis based on functional annotations: insights into drug-target and co-

expression functional enrichments  

We finally sought to explore potential druggable targets in the list of differentially expressed miRNA-target 

genes associated with epigenetic mechanisms.   

The transcripts in the input list (MYB, BCOR, DNMT1, KMT2C, TET3, KMT2A, KMT2C, WDR82, GATA3, 

AUTS2, MECP2, and MLLT6) were then screened for gene-drug interactions using the ToppGene Suite 

resource.  

We found several compounds as putative ligands of the genes enriched in the input list; however, some 

specific drugs were ranked among the top ones. These drugs included diethylstilbestrol (FDR=2.904E-2), 

trichostatin A (FDR= 1.902E-2), hydralazine hydrochloride (FDR= 1.902E-2), and chlorambucil (FDR= 

1.902E-2). In addition, we found that a large proportion of the predicted tissue co-expression of the target 

genes was mainly located in cells of the immune system, including alpha-beta T cells and gamma-delta T 

cells of the pancreas, thymus, lymph node, spleen, and CD4 positive of the spleen (FDR 1.209E-2). 

Furthermore, by searching for clinical trial targets’ in the Therapeutical target database (TTD, 

http://db.idrblab.net/ttd/) [16] we found that MYB (LR3001, antisense anticancer drug in phase 2), DNMT1 

(S-110, DNA demethylating agent, phase 2/3), and KMT2A (KO-539, Menin-mll interaction inhibitor, 

phase 1/2), have specific interacting drugs in diverse clinical trial phases. 

DISCUSSION 

This study identified distinctive biological processes related to epigenetic mechanisms in patients with severe 

COVID-19. Specifically, we analysed scRNA-seq profiles from nasopharyngeal ciliated cells of patients with 

COVID-19 and performed pathway enrichment analysis. Our research was based on two distinctive 

strategies, including the analysis of scRNA-seq data at an individual-patient level rather than at the bulk cell-

level and the prioritization of molecular mechanisms associated with severe COVID-19.  

Patients with severe COVID-19 presented deregulation of gene expression in pathways linked to 
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mitochondrial function and membrane permeability. The expression of certain genes, including LCK- a 

tyrosine kinase involved in T-cells maturation and expansion, the tumour encoding protein TP63 that plays 

a role in the regulation of epithelial morphogenesis, TRAM1 that encodes for a multi-pass membrane 

protein that is part of the mammalian endoplasmic reticulum, and SLC40A1 that mediates iron ion 

transmembrane transporter activity-among other transcripts, were consistently decreased across ciliated 

cells from all severe COVID-19 patients. Collectively, these findings reinforce the importance of ciliated 

cells differentiation, maturation, and immune response in these specific cells of the nasopharyngeal 

epithelium as highlighted by Ziegler et al. [7]. In addition to the relevance of mitochondrial dynamics, 

impairment of mitochondrial membrane potential, and cell death in any viral infection, including SARS-

CoV-2 infection, one may speculate that some other molecular mechanisms are relevant to determine the 

worst disease outcome. For instance, Singh et al. reported that SARS-CoV-2 interferes with mitochondrial 

function to evade host cell immunity and facilitate virus replication and COVID-19 development [17]. 

Likewise, disturbances in iron transport may affect mitochondrial function and induce oxidative stress. 

Earlier reports demonstrated that hyperferritinemia is a predictor of increased mortality of the disease [18]. 

Besides, ferroptosis, an iron-related cell death program, may be involved in  COVID-19-induced multiple 

organ failure [19]. 

Furthermore, our results highlight the importance of ciliated cells in tissue homeostasis. Nasopharyngeal 

ciliated cells of patients with severe COVID-19 presented significant downregulation of pathways 

associated with cilium movement, microtubule bundle formation, and axoneme assembly. This finding has 

implications for understanding impaired physiological processes of the nasal mucosa, for instance, 

olfaction-related disorders and systemic functioning deregulation of ciliated cells across the body, including 

primary cilia in testicular cells. Recent clinical evidence suggests that the spermatogenic function of the 

testis is impaired in patients with COVID-19 [20]. It is then plausible to speculate that the dysfunction of 

ciliated cells in severe COVID-19 underlies pleiotropic effects in many different tissues and organs of the 

body. Here, we found that in this phenomenon, the dynein protein family may play a crucial role, a finding 

already reported by others [21]. Therefore, the associated signalling pathways resemble the syndromic 

disorders known as ciliopathies.  

We also noted that cells derived from severe COVID-19 patients had downregulation of sub-networks 
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linked to epigenetic mechanisms, including histone H3K4 methylation and regulation of histone 

methylation. As shown in Figure 6, genes in the pathways of histone modifications, histone lysine 

methylation, DNA methylation or demethylation, DNA modification, chromatin remodelling, chromosome 

organization, negative regulation of RNA biosynthetic process, negative regulation of the cellular 

biosynthetic process, and even cardiac morphogenesis -among many other pathways, are all dramatically 

downregulated in cells derived from severe COVID-19 patients. Some genes in this network belong to the 

Methyl-CpG binding domain-containing NuRD complex, Zinc fingers C2HC-type PHD finger proteins, 

Lysine acetyltransferases, and Zinc fingers CXXC-type gene families. Collectively, these findings might 

explain the differences in developmental and maturation trajectories of ciliated cells in severe COVID-19 

patients reported by Ziegler and co-workers [7].  

To expand the understanding of the potential molecular processes involved in the regulation of gene 

expression, we examined the enrichment of miRNAs in the list of genes deregulated in cells of patients 

with severe vs. mild/moderate COVID-19. We found some miRNA-gene-target pairs that might be relevant 

to the disease biology. For example, we highlight the miRNA-548, which has been shown to down-regulate 

host anti-viral response via direct targeting of IFN-λ1 [22]. Notably, miRNA-548 seems to participate in 

numerous signalling pathways, such as the Wnt, the MAPK and TGF-β pathways, and regulation of the 

immune system in the transition from immune tolerance to immune activation in chronic hepatitis B [23]. 

Notably, predictions of putative small ligands of genes enriched in the input list of predicted miRNAs 

showed some interesting gene-drug interactions that might explain differences in clinical outcomes 

mediated by epigenetic mechanisms or help treat the disease. For example, we predicted a significant 

interaction between five of the target genes of the list of enriched miRNAs with diethylstilbestrol. It 

appears that oestrogen treatment silences the inflammatory reactions and decreases virus titters leading to 

an improved survival rate [24]. Previous experimental studies showed that 17β-oestradiol protects females 

against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs 

[25]. Perets and colleagues showed that 17β-oestradiol reduces influenza A virus replication in primary 

human nasal epithelial cells derived from females [26]. Some other gene-drug target predictions suggest 

that compounds used to treat haematological conditions, such as leukaemia and lymphomas, or the 

antihypertensive agent hydralazine hydrochloride could be tested for drug repurposing in the treatment of 
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severe COVID-19.  

As a putative mechanistic explanation, we observed some overlap between the seeds of gene expression 

changes associated with miRNAs and those of the recently reported SARS-CoV-2-encoded viral 

miRNAs[27-29], as shown in Supplementary Table 4. Thus, these findings could indicate that SARS-

CoV-2 has miRNAs-like sequences [29],  and -like many other viruses-, hitchhikes the regulatory processes 

of the host cells by targeting epigenetic modulators. 

We are aware that our research may have limitations. First, the nature of retrieved metadata and the limited 

number of patients do not allow us to examine relevant demographic information of the infected patients. 

Therefore, we did not examine the correlation between the patients’ features, such as age and gender, with 

deregulated gene expression pathways. Second, the analysed dataset contains scRNA-seq data from the 

nasopharyngeal swabs collected within the first three days following admission to the hospital [7], which 

does not allow any assessment of patient’s follow-up. Hence, further validation of our observations using 

experimental models, either in cell lines or animal models is required.   

Together, our results may provide novel insights into the cellular and molecular mechanisms that modulate 

the clinical course of SARS-CoV-2 infection. Based on predicted biological processes and functional 

enrichment analysis, we detected some relevant mechanisms that may explain the pathogenesis of severe 

COVID-19. Among these molecular explanations, we found some clues on the importance of post-

transcriptional regulation of gene expression by small-non coding RNAs and epigenetic mechanisms of 

gene transcription regulation, such as DNA and histone methylation and ultimately chromatin remodelling. 
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FIGURE LEGENDS 

Figure 1: Methodology flow chart 

Step 1: The specific type of cells is selected from each patient (ciliated cells in our case). 

Step 2: Normalized counts for each gene are averaged (arithmetic mean) over the selected cells population 

of each patient, obtaining the average expression profile of ciliated cells for each patient. 

Step 3: Signal2Noise metric is computed among the patients of the two conditions of interest. mA(mB) and 

sA(sB) are the mean and standard deviation of gene expression levels computed in the previous step for 

patients under condition A (B). Then, the genes are ranked by decreasing order of the metric value.  

Step 4: Finally, it is determined if the ranked gene set, associated with a given biological process (BP), 

shows statistically significant, concordant differences between the two conditions. This last step can be 

performed with different BPs or even with gene set associated with molecular functions or miRNAs.
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Figure 2: Gene set enrichment analysis derived from ciliated cells in mild/moderate COVID-19 

patients vs. healthy controls  

The Figure illustrates a network of GO (Gene Ontology) terms corresponding to biological processes (BPs) 

significantly enriched in genes upregulated (blue nodes) and downregulated (red nodes) in mild-moderate 

COVID-19 (COVID-M) patients concerning to healthy control (HC) individuals (Bonferroni adjusted p-

value, FDR 0.05). The node’s size is proportional to the number of genes associated with that BP. The 

edges represent gene overlap between gene sets related to different GO terms. Connected nodes are 

organized in clusters of interconnected BPs obtained by the MCL algorithm, which considers similarity 

among gene sets to assign the edges, with a similarity score threshold of 0.5. 
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Figure 3: Gene set enrichment analysis derived from ciliated cells in severe vs. mild / moderate 

COVID-19 patients 

The Figure illustrates enrichment analysis of biological processes (BPs) upregulated (blue nodes) and 

downregulated (red nodes) in patients with severe COVID-19 vs. patients with mild/moderate 

disease(Bonferroni adjusted p-value, FDR 0.05). BPs were clustered by using the MCL algorithm with a 

similarity score threshold of 0.5.  
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Figure 4. Heat map of expression genes belonging to the pathways associated with mitochondrial 

membrane permeabilization, protein targeting to mitochondria, and lysosome and protein targeting 

the membrane. 

Blue squares correspond to downregulated genes and red squares to upregulated genes. We selected only 

the subset of genes most upregulated (the percentile 0.1 of the ranked genes)in severe vs. mild/moderate 

COVID-19 patients. The colour scale represents the RNA abundance relative to the media of transcript 

levels in all subjects and then log2 transformed.  
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Figure 5. The role of epigenetic mechanisms in COVID-19: a regulatory network of miRNAs-target 

genes  

A. Rank of genes according to the Signal2Noise metric as implemented in the GSEA platform (COVID-19 

S vs. COVID-19 M) using the media of the normalized counts of the whole cell population in each 

individual. The top 10% of downregulated genes (rank over the dashed line) was used in the subsequent 

analysis shown in panels B and C. 

B. Venn Diagram showing the overlap between the 3076 gene targets of the 11 miRNAs associated with 

the target sets enriched in COVID-19 S vs. COVID-19 M and the 1167 top-ranked genes downregulated in 

COVID-19 S (as explained in panel A). The intersection shows the 336 genes used in panel C.   

C. A heat map of the 336 genes that result from the intersection mentioned in panel B. Squares in blue and 

red represent genes with lower and higher RNA abundance relative to the media of transcript level of all 

subjects and then log2 transformed, respectively. 

COVID-19 S: severe disease; COVID-19 M: mild/moderate disease.  
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Figure 6. Network of the 336 genes downregulated in COVID-S and their associated GO terms for 

biological processes (BP)  

The network was constructed using the ToppGene/ToppCluster resource (https://toppgene.cchmc.org/) with 

an FDR of 0.05. Hexagons in red and squares in light blue stand for genes and BPs, respectively, which 

were distributed using the edge-weighted Spring embedded layout and slightly modified for readability 

using Cytoscape v3.4.0. In general, the upper left region shows BP associated with DNA and histone 

modifications, regulation of transcription, and chromatin or chromosome remodelling. In contrast,  the right 

middle part shows BPs associated with organ morphogenesis, particularly cardiac and vascular. The lower 

left region shows metabolic processes, primarily catabolic. 
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SUPPLEMENTARY MATERIAL 

Supplementary Figure 1 

The regulatory network of miRNAs associated with severe COVID-19: correlation analysis 

The comparative analysis of GSEA between cells derived from mild and severe COVID-19 shows that 

gene expression enriched in the group of mild patients (FDR <0.05) are the targets of 29 miRNAs. This 

Figure shows the fraction of target genes in common among the associated target genes of each of the 29 

miRNAs. The miRNAs associated with each target gene set show high redundancy (green clusters). 

Therefore, there are only 11 target gene sets with low redundancy among themselves. We selected the 

corresponding 11 miRNAs listed to the right for the subsequent analyses. 

 

Supplementary Figure 2  

miRNA-target pairs involved in epigenetic mechanisms 

The heat plot shows the percentage of overlap (green scale) between the target genes associated with each 

miRNA, with the genes involved in each downregulated BP  in patients with severe COVID-19 shown in 

Figure 2 (FDR <0.05) and listed in Supplementary Table 2. We only took those genes within the 10% most 

enriched genes in mild patients. It is observed that most of the genes linked to histone methylation 

processes (highlighted in blue font) and that were downregulated in patients with severe COVID-19 are 

also target genes of miRNAs, which suggests that the presence of these miRNAs (or their viral homologs) 

deregulates histone methylation in these patients. 

Supplementary Table 1 

Biological processes in mild/moderate COVID-19 vs. healthy controls.  

Biological processes down and upregulated in COVID-M with respect to HC as indicated by GSEA 

analysis (FDR<0.05), displayed in Figure 1. The enrichment score (ES) reflects the degree of 

overrepresentation of a gene set in the ranked list of genes. NES is the ES normalized across analysed gene 

sets.  

Supplementary Table 2 

Biological processes in severe vs. mild/moderate COVID-19 patients 

Biological processes down and upregulated in COVID-19 S concerning to COVID-19 M as indicated by 
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GSEA analysis (FDR<0.05), displayed in Figure 2. The enrichment score (ES) reflects the degree of 

overrepresentation of a gene set in the ranked list of genes. NES is the ES normalized across analysed gene 

sets.  

Supplementary Table 3: miRNAs with target genes downregulated in severe COVID-19 

miRNAs with target genes downregulated in COVID-19 S concerning to COVID-19 M as indicated by 

GSEA (FDR<0.05) after redundancy elimination. The last column lists the target genes associated with the 

specific miRNA. FDR stands for false discovery rate. 

Supplementary Table 4: Sequences of SARS-CoV-2-encoded vi-miRNAs compared to hsa-miRNAs 

targeting gene expression changes in COVID-19 S vs. COVID-19 M patients 

Local alignment between the 11 human miRNAs determined by GSEA and vi-miRNA sequences reported 

in three previous studies [27-29]. Shared sequences with 6 and 7 bp are highlighted in bold font. In 

addition, we highlighted in bold red font over the hsa-miRNA a defined seed shared by part of a vi-

miRNA. 
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Highlights 

⚫ Severe COVID-19 was associated with altered gene expression pathways involved in mitochondrial 

function, membrane permeability, and ciliogenesis, and downregulation of epigenetic mechanisms. 

⚫ Gene expression signatures mediated by miRNAs (either from the host, including miRNA-548 or the 

SARS-CoV2) may explain different clinical outcomes. 

⚫ Gene-drug interaction analysis showed diethylstilbestrol, trichostatin A, hydralazine hydrochloride, and 

chlorambucil as significantly predicted drugs associated with severe COVID-19. 
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