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Abstract: Light Detection and Ranging (LiDAR) technology is positioning itself as one of the most
effective non-destructive methods to collect accurate information on ground crop fields, as the analysis
of the three-dimensional models that can be generated with it allows for quickly measuring several
key parameters (such as yield estimations, aboveground biomass, vegetation indexes estimation,
perform plant phenotyping, and automatic control of agriculture robots or machinery, among others).
In this survey, we systematically analyze 53 research papers published between 2005 and 2022 that
involve significant use of the LiDAR technology applied to the three-dimensional analysis of ground
crops. Different dimensions are identified for classifying the surveyed papers (including application
areas, crop species under study, LiDAR scanner technologies, mounting platform technologies,
and the use of additional instrumentation and software tools). From our survey, we draw relevant
conclusions about the use of LiDAR technologies, such as identifying a hierarchy of different scanning
platforms and their frequency of use as well as establishing the trade-off between the economic costs
of deploying LiDAR and the agronomically relevant information that effectively can be acquired.
We also conclude that none of the approaches under analysis tackles the problem associated with
working with multiple species with the same setup and configuration, which shows the need for
instrument calibration and algorithmic fine tuning for an effective application of this technology.

Keywords: agriculture; smart farming; Light Detection and Ranging (LiDAR); ground crops

1. Introduction

LiDAR (an acronym standing for “Light Detection and Ranging”) is a popular remote-
sensing method used for measuring the exact distance of an object’s surface. LiDAR’s
first applications in the 1960s were in meteorology when laser scanners were mounted in
aircraft being used by the National Center for Atmospheric Research to measure clouds
and pollution [1].

Nevertheless, LiDAR did not deserve much attention until many years later with the
introduction of the Global Positioning System (GPS) [2].Since then, LiDAR has become a
popular method for calculating accurate geospatial measurements. Nowadays, its scope
has spread across a wide range of research areas, including autonomous vehicles [3], coast
management systems [4], wind speed prediction [5], archeological surveying [6], and
particularly in agriculture, among many others.

This ranging technology is based on the use of a pulsed laser beam to calculate a
target’s distance from the sensor’s detector [2]. These light pulses—put together with the
information collected by the reference system—generate accurate 3D information about the
target’s surfaces and visible shape; this is the main characteristic of LiDAR.
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For agriculture activities, LiDAR systems cover a wide spectrum of applications [7,8].
Generally speaking, LiDAR scanning of crop fields allows for acquiring an accurate and
quantifiable model of plant structures, which makes it possible to perform any type of
analysis indirectly and without resorting to methods that are traditionally destructive. This
allows, for example, to quickly measure the height and estimate the density of a crop in
an extensive way, estimate harvests and yields, and control robots or agricultural machin-
ery being partially or completely autonomous, paving the way to even more complex
applications (such as pests or diseases detection or analysis of the need for irrigation and
fertilization).

Apart from the mentioned applications, the morphological analysis of ground crops
involves many aspects of agronomic interest. The volume and shape of plants can be
seen as a reflection of the state of the soil, which is the main resource in the context of
agricultural production. In regions where soils are exposed to heavy erosive processes,
preserving an adequate vegetation cover is a possible approach to preserving or improving
the soil quality [9].

The use of LiDAR technology in agriculture has been reviewed before; for instance, the
work presented in [10] focuses on the main findings and pending challenges for each one
of the items of the analyzed bibliography, and the main difference with our contribution
lies in the fact that the classification proposed by the authors has different criteria, as it
only considers UAV-mounted sensors and does not take into account ALS mounted on
manned aircraft, which was a widely used method until the popularization of smaller and
accessible UAV units. The review presented in [10] is broader in the sense that it also takes
into account shrubs and other tree species, such as apple and olive plants, sugar cane, or
vineyards, and only the most relevant research articles are included in the literature review.

In this work, we attempt to summarize what the scientific community has performed in
2005 to 2022 in terms of three-dimensional ground crop scanning using LiDAR technology
and to provide an overview of the necessary tools to carry out new contributions in this
emerging field. The article is structured as follows: In Section 2, the methodology employed
during the systematic review is explained. Section 3 details the emerging taxonomic
categories resulting from our review. In Section 4, the main difficulties and challenges
that the original authors encountered during their research are listed along with some
alternatives to overcome them. Finally, Section 5 presents the final conclusions obtained,
also discussing some possible future research lines.

2. Methodology

We performed a comprehensive survey of the existing bibliography on LiDAR tech-
nologies starting with two major scientific databases for computer science research (namely
IEEE Xploreand ScienceDirect). Using the keywords “LiDAR” and “Agriculture”, we iden-
tified an initial list of 15 papers, which was expanded by computing the transitive closure
of the different references associated with those papers. In other words, bibliographical
entries referring to LiDAR associated with papers from the initial list were analyzed, as well
as the references associated with those entries.

Additionally, it must be pointed out that research papers involving trees and shrubs
were not taken into account, focusing only on those in which the associated crop corre-
sponded to herbs and/or vegetation at ground level. As a result, we ended up with a total
of 53 papers, and research articles which are listed in Table A1 of the appendix, at the end
of this article.

In order to analyze the collection of papers under study, the results were sorted
according to the categories listed in Table 1. Each of the taxonomic aspects that were taken
into account from the reviewed bibliography is detailed in the following section.
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Table 1. Categories used to classify the different articles.

Category Description

Application areas This sorting criterion allowed us to identify three major
sub-categories related to LiDAR technologies, namely 3D
reconstruction, parameter-based characterization of crops,
and automatic control for agricultural machinery.

Analyzed crop species This criterion refers to the different species of ground crops
under study when LiDAR technologies were applied.

LiDAR scanner technol-
ogy

Scanners may vary in brand, model, and specifications. We
surveyed the most relevant scanner technologies for LiDAR
and their salient features.

Mounting platform This category refers to different features that characterize
mounting platforms for LiDAR scanners (e.g., terrestrial
or airborne, stationary or mobile, etc.) as well as different
platform types.

Additional sensors and
instrumentation

In many cases, LiDAR scanners are enhanced through the
addition of specific sensors and instruments (such as ther-
mal cameras, spectrometers, etc.). In this category, we iden-
tified such sensors and instruments and discuss briefly their
applicability.

Software LiDAR technology relies on different software packages
used in data acquisition, data processing, or data visualiza-
tion. In this category, we discuss such software packages
and tools.

3. Classifying LiDAR Technology: A Taxonomic View

From the analysis of the reviewed articles, we could identify the different categories
mentioned in the previous section (application areas, crop species, scanner technology,
mounting platform, additional sensors and instrumentation, and LiDAR software). Such
categories provide a taxonomic view of LiDAR technology, helping to better understand
the key points that must be taken into account when carrying out a new study that involves
the use of LiDAR scanners in ground crops. The different criteria were selected considering
the impact they have on the development of this type of scanner. When considering a
range of possible application areas, it is clear that the main motivation to innovate in these
sensors is related to the different application possibilities they have. As in the previous
case, considering the existence of different crop species, as they differ in size and shape,
it is fundamental to consider them for the development of the scanner. The third axis
refers to the technology used and here it is important as not all wavelengths have similar
performances and should be selected in accordance with the application to which the
scanner is oriented. The mounting platform is also an important aspect, as it must consider
the associated technology and application area. The possibility of combining several sensors
in the equipment provides additional value to the scanner and is evaluated in that direction,
whereas the last axis, the software, is a key issue as it is the element that processes the data,
transforming it into information. To ease the understanding of some terms mentioned by
the original authors, Table 2 provides a complete list of acronyms that were found in the
reviewed bibliography. In what follows, we discuss in detail all of the previous categories.
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Table 2. Agriculture-/canopy-/vegetation-related (left) and technical (right) acronyms and their
corresponding meanings.

Abbreviation Meaning Abbreviation Meaning

AGB Aboveground Biomass ALS Airborne Laser Scanner
BGB Belowground Biomass ATLS Autonomous Terrestrial Laser Scanner
CC Canopy Cover AOS Active Optical Sensor

CHM Canopy/Crop Height
Model

CFI Comparative Fit Index

CSM Crop Surface Model DART Discrete Anisotropic Radiative Transfer
DBH Diameter Breast Height GFI Goodness of Fit Index
DEM Digital Elevation Model GNSS Global Navigation Satellite System
DSM Digital Surface Model HTPP High-Throughput Phenotyping Platform
DTM Digital Terrain Model ICP Iterative Closest Point
FVC Fractional Vegetation

Cover
LiDAR Light Detection and Ranging

GAI Green Area Index LPI Laser Penetration Metric
GC Ground Cover MEMS Micro-Electro-Mechanical Systems

GSD Ground Sample Distance NIR Near InfraRed
LAI Leaf Area Index OPALS Orientation and Processing of Airborne Laser

Scanning Data
LAD Leaf Area Density PDGPS Phase Differential Geographic Positioning System

LAYM Look Ahead Yield Moni-
tor

PS Phase Shift

LIA Leaf Inclination Angle RANSAC Random Sample Consensus
LWA Leaf Wall Area R-INS Reduced Inertial Navigation System

NDRE Normalized Difference
Red Edge

SEM Structural Equation Modeling

NDVI Normalized Difference
Vegetation Index

SfM Structure from Motion

NNI Nitrogen Nutrition Index SRI Spectral Reflectance Indices
PAD Plant Area Density SRS Spectral Reflectance Sensor
PRI Photochemical Re-

flectance Index
TLS Terrestrial Laser Scanner

ROI Region of Interest ToF Time of Flight
SSWM Site-Specific Weed Man-

agement
UTM Universal Transverse Mercator

TAI Tree Area Index VNIR Visible and Near InfraRed
TRV Tree Row Volume

3.1. Application Areas

By application, we refer to the potential problems that LiDAR technology solves when
applied to the 3D scanning and reconstruction of ground crops. Some of the reviewed
articles focus on the main aspects and challenges of reconstructing the three-dimensional
model of the crops with the highest accuracy possible, leaving the results open to many
potential applications. We categorize these papers as “general purpose 3D reconstruction”.
In other cases, it is intended to extract a set of specific parameters from the acquired
model having agronomic interest (e.g., the height of crops or the Leaf Area Index (LAI)),
where a high-resolution model is not mandatory, but rather an appropriate data-processing
technique. Finally, we identify a third group of applications where the goal is to achieve
automatic control of certain processes, such as automatic irrigation or fertilization systems.
This is the case of [11–14].

As an outcome of the above analysis, we established three categories to characterize
the reviewed articles according to their application area:

• General purpose 3D reconstruction.
• Parameter characterization of crops.
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• Agriculture machinery automatic control.

The bold highlighted text indicates the keyword used to identify the application, to be
used later in Table A1.

3.2. Analyzed Crop Species

The species of ground crops involved in the different studies and the frequency of
occurrence in the analyzed bibliography are slightly correlated with the statistics of world
crop production, being maize in the first place, followed by other cereals such as wheat,
rye, or barley, also including sorghum, rice, and soybean [15]. The list of ground crops also
includes sunflower [16], oat [17], sugar beet [18], Miscanthus giganteus [19], fescue [20],
cotton [21], American mint [22], and peas [23]. Figure 1 shows the proportion of each crop
that was used as species under study. At this point, it is important to emphasize again that
the choice of species of different crops that were analyzed using LiDAR technology was
made based on requirements that arise from the productive sector, so the fact that the crops
that were most studied are those that occupy the largest proportion of cultivated land at a
global level.

Figure 1. Species involved in the reviewed bibliography.

3.3. LiDAR Scanner Technology

There are two main types of LiDAR scanning technologies: those in which the working
principle is based on time of flight (ToF) and the ones based on phase shift (PS). The first
type usually has a larger measurement range (up to 6 km), whereas the latter has a higher
accuracy and speed (up to 2 million points per second) [24]. For ToF-based scanners, there
are two categories: discrete return and full waveform. Discrete return is based on proprietary
algorithms used to extract the range and energy of one or more targets along the laser
beam’s path. On the other hand, full waveform systems record all the reflected energy
as a function of range, giving a more complete description of the scattering event and
allowing a more accurate measurement of target properties over diffuse targets such as
vegetation [25].

Regarding the scanning devices, we have taken into consideration different aspects
that may be of interest to a researcher or practitioner when deciding what instrument to
use. The top applied devices are SICK LMS400 and Leica ALS70 (with five articles each).
The first one is a phase shift terrestrial laser scanner (TLS) with a maximum range of 3 m,
whereas the latter is an airborne scanner with a nominal range (flight level) of 3500 m.
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Table 3 shows the summarized specifications of the top ten most used devices men-
tioned in the bibliography. The specifications were extracted from online datasheets pro-
vided by manufacturers and also from other scientific publications [26]. Note that the
row corresponding to the Pulstec TDS-130L scanner, used in [27–29], is incomplete (since
the online datasheet for this device was not available for access at the time this article
was written).

Most parameters listed in the table are configurable and may vary depending on scan-
ning conditions. For example, the range and accuracy are affected by the target reflectance,
an issue that will be detailed in Section 4.1. For the case of power consumption, the nom-
inal values were selected for normal operating conditions, since some instruments have
different power modes or heating plates to operate in very cold environments. In a similar
way, the weight of each instrument considers the main device only without accessories that
can be attached to the scanning platform (such as lenses, tripods, heating plates, stabilizers,
and many others).

Table 3. Top ten used devices and their specifications.

Brand/Model Articles Method Wavelength
(nm)

Pulse Rate
(khz)

Range
(m)

Accuracy
(mm)

Power
(w)

Weight
(kg)

Sick LMS400 5 PS 650 0.5 3 3 25 2.3

Leica ALS70 5 ToF 1064 500 4412 380 972.4 107

Riegl VZ-400 4 PS 1545 300 600 5 80 9.6

Sick LMS111 4 ToF 905 0.05 20 30 8 1.1

Pulstec TDS-130L 3 N/D N/D N/D 9.5 N/D N/D N/D

Sick LMS291 3 ToF 905 0.075 80 10 20 4.5

Faro Focus X330 3 PS 1550 1350 330 2 40 5.2

Riegl VZ-1000 2 ToF 1550 122 1400 8 75 9.8

Faro Focus X120 2 PS 905 976 120 2 40 5

Leica Scanstation 2 2 ToF 400–700 50 300 6 80 18.8

3.4. Mounting Platform

There exist many ways to mount the LiDAR instrument in order to perform the
scanning of ground crops. At this point, we propose a taxonomic classification scheme
to organize the different categories. The most relevant categories in LiDAR devices are
terrestrial and airborne. The first one usually intends to cover small areas whereas the latter
allows for the scanning of larger surfaces (but usually with smaller accuracy). An exhaustive
comparison of both techniques when applied to land surface scanning was made in [30].

From the analyzed articles, there were eight papers that used aircraft as an airborne
transportation method, whereas the remaining three used UAVs. On the other hand, for the
case of terrestrial mount, depending on the change in the position of the laser scanner
during the scanning process, we classify the scanning platforms as stationary or mobile. Both
methods were used in almost the same proportion in the research work under analysis.
If the laser scanner moves or rotates within a small stationary platform, we classify it as
stationary. In order to perform the motion during the mobile scanning, a mobile mount
is required which can be a custom structure or platform, an autonomous rover, an ATV,
a passenger car, or agriculture machinery.

Figure 2 shows the hierarchical classification of the different scanning platforms and
the proportion of papers in which each method was used. Note that for some cases the sum
of percentages of child classes does not match the proportion associated with the parent
class (since some of the papers combine more than one platform type, whereas others do
not clarify the way the scanner was mounted).
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Aircraft-mounted LiDAR systems provide wide coverage and high-altitude data
collection capabilities, making them suitable for large-scale surveying and mapping of
plots or parcels of land. They can cover vast areas in a short time, but their high operational
costs and limited access to certain terrains or airspace can be a drawback.

UAVs offer the flexibility of low-altitude data collection with reduced costs compared
to aircraft. They excel in accessing challenging and remote terrains, making them ideal
for localized mapping tasks. However, their limited payload capacity and flight time
can restrict the area covered or limit the additional sensors to be used in combination
with LiDAR.

Stationary pole or tripod-mounted LiDAR systems provide precise and repeatable
data acquisition for monitoring specific crops. They are relatively cost-effective and easy
to deploy, but their static nature limits their applications to localized areas. Stationary
ground-based platforms are generally cost-effective and provide high accuracy. However,
they might not be practical for mobile mapping or large-scale areas.

Mobile or stationary vehicles, such as tractors, ATVs, or cars, equipped with the ap-
propriate mounting for LiDAR scanners, offer versatility for mobile mapping applications
of agricultural or even forestry surveys. They can cover diverse terrains efficiently, but chal-
lenges arise from vehicle mobility, sensor stability, and occlusions in forested areas. On the
other hand, CNC-based platforms provide precise control over LiDAR sensor movement,
enabling custom scan patterns and high accuracy. However, this type of mechanism can be
expensive or require extensive design work of hardware and software development, and
also may require skilled or trained operators [9].

In conclusion, selecting the most suitable mounting system for LiDAR sensors involves
carefully considering study requirements, budget constraints, and the specific challenges
posed by each system. Aircraft and UAVs excel in large-scale and remote mapping tasks,
whereas stationary options offer stability and precision for localized applications. Mobile
vehicles and CNC platforms bridge the gap between mobility and precision but may come
with higher costs and operational complexities. Understanding these differences and trade-
offs is crucial for optimizing LiDAR data acquisition and achieving successful outcomes.

3.5. Additional Sensors and Instrumentation

Additional instruments were used in the different articles, complementing the typical
facilities provided by LiDAR technology. Most of such instruments consist of imagery
systems (e.g., rgb and hyperspectral cameras) employed to complement the original models
obtained from LiDAR data acquisition. Next, we summarize some of the most relevant in-
struments along with a brief description, their different alternative models, and their usage:

• RGB cameras: Between the used devices, digital cameras are the most affordable in-
strument. Almost every smartphone today has a built-in RGB camera with a resolution
that matches most of the requirements for the purpose of processing crop images or
performing colorimetric analysis. Furthermore, recreational UAVs incorporate built-in
cameras and are able to record video in high definition, making it available for later
processing. Some of the models mentioned in the studied bibliography are Nikon
D200 (digital camera) [18], Canon Digital EOS 5D (digital camera) [31], PointGrey FL3
(high-speed video camera) [32], Phantom 3 (drone) [33], DJI FC6310 (drone) [34], and
Sony a7R III (digital camera) [35]. An example of application of this technology was
presented in [36], where the authors propose a tassel detection scheme in corn plants
using an airborne RGB camera (Sony Alpha 7RIII).

• Thermal cameras: This type of camera works with long wavelength infrared spectrum
(14 µm) that allows for measuring the heat emitted by objects as radiation [37]. This
type of camera was used in [32], particularly the Keii MC1-640 (IPI Infrared). Even
though this last camera model is typically designed for UAV mounting, the authors
in [32] used a custom stationary terrestrial scanning platform.

• Hyper-spectral cameras: This imagery system allows for measuring multiple vegeta-
tion indexes, as they measure hundreds of different wavelengths from the electromag-
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netic spectrum [37]. In [38], authors included the use of the Penta-Spek (developed by
the Julius Kühn Institute) to acquire hyper-spectral data from the plots of barley. In the
same line, the Compact Airborne Spectrographic Imager (CASI) is a hyper-spectral
sensor intended for use with light aircraft. CASI was developed by Itres Research Ltd.
(Calgary, AB, Canada) in 1988 and was designed for a variety of remote-sensing appli-
cations in forestry, agriculture, land-use planning, and aquatic monitoring [39–41].
Another example of a hyper-spectral camera is the BaySpec OCI-UAV-1000 [32], which
was mounted on a terrestrial stationary platform. This is a hyper-spectral camera
for use on UAVs. Finally, in more recent research, we find the UAV-mounted hyper-
spectral sensor (Headwall Nano-Hyperspec VNIR) mentioned by [35].

• Multi-spectral cameras: Multi-spectral cameras are cameras that can photograph the
environment with a limited number of spectra in the visible and infrared spectrum [37].
In [34], a UAV-mounted Parrot Sequoia (MicaSense Inc., Seattle, WA, USA) was used
to estimate Above-Ground Biomass (AGB).

• Spectrometers: These are instruments that can sense the amount of light reflecting
from objects. They measure light in the visible (400–700 nm) and infrared spectra
(700–2500 nm). Spectral sensors are used widely in agriculture because it has been
found that these measurements are related to a plant’s physiology and development.
In [42], eight spectral reflectance sensors (Meter Group Inc. Pullman, WA, USA) were
used to measure reflected radiation in wheat plots.

• Reflectance panels: In order to calibrate LiDAR scanners to correctly operate given the
environmental factors (temperature, humidity, etc.), high reflectance panels are used
as special targets (e.g., the Spectralon (Labsphere, Inc., North Sutton, NH, USA) [43]).

• Optical sensors: These sensors detect electromagnetic radiation that falls within
the visible spectrum, i.e., between infrared and ultraviolet wavelengths. In [20],
an active optical sensor was used, namely the Raptor ACS 225LR (Holland Scientific,
Holland Scientific Inc., Lincoln, NE, USA). This sensor was mounted in a passenger
car along with the LiDAR scanner in order to measure biomass in fescue pastures.
Another example of the usage of optical sensors is [42], where photodiodes paired
with interference filters are used to measure PRI (Photochemical Reflectance Index)
for the phenotyping of wheat plants.

• Canopy analyzers: The instrumentation that falls into this category combines dif-
ferent sensors (such as spectrometers or optical sensors) in order to measure certain
properties of leaves and plant canopies (e.g., LAI, NDVI, NDRE, among many oth-
ers). In [44], a leaf area index meter (LAI-2000, LI-COR Inc., Lincoln, Nebraska)
and leaf area meter (LI3000, LI-COR Inc.) were used to measure leaf area in maize
plants. A similar instrument (LAI-2200 Li-COR, Inc.) was used in [40,45] for the
same purpose. In the same line, an NDVI sensor, the GreenSeeker® (Trimble, USA),
was used in [46] to estimate ground cover. Although this instrument is an active
spectral sensor, it is specifically designed to measure NDVI in vegetation. Another
crop-specific instrument is the ceptometer, which is a type of analyzer that measures
the photosynthetically-active radiation that is reflected by plant leaves. A ceptometer
(Decagon Devices, Inc., Pullman, WA) was used in [16]. Finally, in [23], a crop sensor,
the RapidSCAN CS-45, was used. This device measures NDVI, NDRE, and reflectance
indexes, among others, and is equipped with GPS.

• Satellite imagery: As part of additional instruments, we include the satellite im-
ages, as they are acquired through additional systems apart from the LiDAR scan-
ners. In [44], GF-1 (Gaofen-1) data were used to estimate biophysical parameters in
maize fields.



Sensors 2023, 23, 7212 9 of 19

Airborne
27.27%

UAV - 10.91%

Aircraft - 16.36%

Terrestrial
72.73%

Mobile
34.55%

ATV—1.81%

Car—1.81%

Mob. Platform—7.27%

Rover—10.91%

Tractor—12.72%

Stationary
38.18%

Tractor—3.64%

Stat. Platform—7.27%

CNC—9.09%

Pole/tripod—18.18%

Figure 2. Hierarchy of scanning platforms and percentages of articles in which they were used.

3.6. Software

Depending on which point of the workflow was applied, we can classify the used
software in three categories: data acquisition, data processing, and data visualization. First,
LiDAR data are acquired through the instrument itself, so specific data acquisition software
is required. The data processing stage is the more complex and for some cases, the devel-
opment of custom software is required in order to implement specific algorithms. Finally,
a data visualization stage is usually included to assess the quality of the point clouds or
3D-generated models. In this case, the development of custom software is more complex,
but usually there is the availability of specific programs and formats for this task. It must
be noted that some manufacturers provide the software necessary for each stage, and also
custom software development may be involved.

Below, we describe the software that was mentioned in more than two articles,
among the analyzed papers, including a brief description of each one. The complete
list of software used in each article can be found in Table A1.

• General purpose software: In this category we can enumerate software products that
are currently being used in many fields, particularly when dealing with sensors and
similar equipment. Thus, Labview (National Instruments) was used by authors of
six different articles to implement the data acquisition stage. For data processing
and data visualization, Matlab (Mathworks), R (R Development Core Team), and
Excel (Microsoft) was used in nine, seven, and four articles, respectively. In [31,47],
AutoCAD (Autodesk) was used as a data and model visualization tool. Most recent
articles have incorporated machine learning tools, as the case of [48], where H2O-
AutoML was used to classify data.

• Scanner companion software: Riegl RiSCAN PRO is the companion software for
Riegl TLS Systems and was used in several papers. According to the manufacturer,
“the entire data acquired during a measurement campaign can be organized and
stored in the software’s project structure. These data include scans, fine scans, digital
images, GPS data, coordinates of control points and tie points, and all transformation
matrices necessary to transform the data of multiple scans into a common well-defined
coordinate system”. Riegl RiPROCESS was also developed by the same manufacturer,
and this software is designed for managing, processing, analyzing, and visualizing
kinematic data acquired with airborne laser scanning systems based on Riegl Laser
Scanners. It was used in [34,49], where the Riegl VUX-1UAV airborne laser scanner
was employed. Another TLS companion software is Faro Scene (which was mentioned
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in the six papers that used Faro scanners, except in [32]), where a custom software
called Crop3D was developed by the authors to implement specific algorithms.

• Point cloud data processing and visualization: Lastly, we mention specific software
applied to 3D point cloud data analysis. In four articles, the authors use TerraScan
(Terrasolid), which offers project structuring tools and automatic filtering algorithms.
In the cases of ArcGIS, a mapping and analysis solution, and ENVI, a specialized
software in geospatial image processing and analysis, both were developed by ESRI
and were used in three and two articles, respectively. LiDAR360 (Geosystems Inge-
niería), which was used in [34,49–51], is a post-processing software that includes a set
of tools to visualize, manipulate, and generate geospatial-based products from point
cloud data. OPALS (Orientation and Processing of Airborne Laser Scanning) was
developed by the Technische Universität Wien, and according to its authors, it pro-
vides a processing chain for airborne laser scanning data (waveform decomposition,
quality control, georeferencing, structure line extraction, point cloud classification,
and DTM generation) and has several fields of application like forestry, hydrography,
city modeling, and power lines. It was mentioned in [52,53]. CloudCompare, which
is an open-source project, is applied to 3D point cloud and mesh processing. It was
used in [23,42]. Finally, Photoscan Professional (Agisoft) was used in [34,54]. It is a
standalone software product for performing photogrammetric processing of digital
images and the generation of 3D spatial data. It is also worth mentioning that recent
articles propose different algorithms to improve the accuracy of LiDAR sensors, for ex-
ample in autonomous data acquisition vehicles, by combining data from multiple
sensors such as inertial (R-INS) and navigation (GNSS) sensors [55].

4. Challenges and Recommendations

The use of LiDAR technology to analyze herbs, ground crops, and cover crops imposes
certain challenges that should be taken into account. Some of these challenges are not
readily apparent and most of them are discovered when performing the experiments for the
first time. In this section, we analyze the most frequent difficulties and how to overcome
them as proposed in the different research articles considered in this review. Figure 3 shows
a visual summary of the main items detailed below.

Figure 3. Identification of main challenges when using laser scanning data acquisition systems.
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4.1. Instrument Accuracy

When speaking about distance measurement using LiDAR devices, the footprint size
of the laser beam is one of the factors that determine the accuracy of the sensor. As the
beam is projected from the light emitter with a conical shape, the footprint size is given
by the intersection of this cone with the reflective surface. It must be noted that the
bigger the footprint size, the larger the detectable target should be; this introduces possible
discrepancies that may affect the performance of the instrument for some applications.

Another factor that affects accuracy is the reflectance index of the surfaces being
measured. The higher the value of the reflectance index of a given target, the lower the
error will be when measuring the distance to that target. Related to the surface being
measured, its inclination angle with respect to the laser beam trajectory also contributes
to the measuring error. Given that the inclination angle of the surfaces corresponding to
vegetation is in general randomly distributed, in order to achieve a higher accuracy it is
recommended to have previous knowledge of this distribution and orient the instrument
in a way the laser beam is mostly perpendicular to the vegetation structure [16,30].

4.2. Ground Level and Terrain Irregularity

Ground level and detection is one of the most mentioned issues and becomes par-
ticularly relevant for those applications where it is necessary to measure crop height.
For instance, the accuracy when measuring the ground level is frequently mentioned in [11]
as an important issue for the estimation of crop volume.

When the extension of the crop analyzed is small, the terrain model (or DTM, Digital
Terrain Model) is usually assumed to be flat (i.e., a horizontal plane) [56]. For larger
extensions of crop—as in the case of airborne laser scanning—hills, slopes, and valleys in
the terrain should be taken into account, as such geographical accidents may affect the
accuracy of the height measurement of the plant species involved.

In some cases, the ground level is measured manually [12,14,42,57]. This is mostly
feasible in terrestrial laser scanning systems, because the distance between the laser scanner
and the ground is measurable. However, terrain irregularity affects mobile platforms or
robot-based terrestrial scanning systems because it introduces additional noise (given the
movement or vibration of the scanner). This condition can be improved by hardware,
using stabilizers such as gimbals (or alternatively, as proposed by most of the authors in
the analyzed bibliography, by specific software based on denoising algorithms). In [19],
for example, a terrestrial rover was used, and in order to eliminate the error caused by
changes in the inclination angles of the scanner, a correction algorithm was developed
that improved the measurement accuracy. In a similar way, in [13], a ground detection
algorithm was introduced in order to reduce errors due to terrain irregularity. Reducing
the size of the point cloud was also an alternative, as performed in [58], where the bottom
part of the point cloud was deleted (with a threshold of 0.005 m).

A simple way to measure the terrain model is by performing a scan prior to the growth
of the crops and assuming an invariant terrain model over time [16,18]. Another method is
to assume that points in the point cloud data that fall within a certain range correspond to
the ground, as proposed by [9,59,60]. Finally, the combination of the detection of ground
returns and the data-point heights may be used to classify the points corresponding to the
ground surface, as proposed, for example, in [54].

LiDAR systems that employ full-waveform return allow for detecting ground points
from information that is present in the return signal itself. In [44,61], a specific commercial
software (TerraScan) was used to classify point cloud data into ground points and non-
ground points. In addition to the use of this software, a method of faint returns retrieval
was also proposed in [45] to detect and obtain ground returns. With the same purpose,
alternative software products were used, such as the Lidar360 software [34] and the Faro
Scene software [62].
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In [35], a commercial software (manufacturer not mentioned) was used to generate
DTM and DSM, applying a ground filtering algorithm to separate bare earth points and
aboveground points.

In [50], an “improved progressive triangulated irregular network densification filtering
algorithm” was used to classify ground points and non-ground points, and a digital terrain
model of 5 cm resolution was calculated from the LiDAR ground returns using the “ordinary
kriging method”.

4.3. Weather Conditions

The weather dependency of the scanning process imposes another important drawback
of the LiDAR technology in general, as meteorological conditions may prevent performing
an evenly time-spaced sampling acquisition process. In particular, for some places with
bad weather conditions, many days may go by without a measurement being made.

The wind is mentioned many times as an uncontrolled negative effect that introduces
noise and increases the measurement error affecting the accuracy of acquired models and
measured or estimated variables [22,32,35,58,59,63,64]. For this reason, several authors
(such as [19,28,34,60,62]) stress the fact that outside experiments were performed on calm,
sunny days. Windless conditions are also important for the case of UAV-based scanning,
for flight stability reasons. In [64], it is stated that when flying at low altitudes, UAVs may
produce downwash winds that move the plant canopies.

Humidity also affects the properties of air as the medium through which light travels.
Some models of LiDAR sensors are prepared to withstand bad climatic conditions and
have configurable parameters to correct possible measurement errors, but it is desirable to
perform scans without fog or rain.

In [65], a fog filter was used, which is less sensitive in the near range (up to ap-
proximately 4 m). Not all LiDAR sensors seem to be affected by bad weather conditions.
For example, according to [13], the FX6 Nippon LiDAR sensor is not influenced by sunlight
or other weather conditions and is possible to operate in 24 h handling conditions like light,
fog, and dust.

4.4. Visual Obstruction Problems: Birds, Insects, and Small Airborne Particles

When performing LiDAR data acquisition outdoors, especially in places where the
presence of insects or birds prevails, the field of view of the instrument may be temporary
and unnoticeably obstructed, and therefore, the acquired model may contain errors. The use
of glass or plastic domes is not recommended by manufacturers as it may affect the speed
of light and phase of the traveling light pulse. Some difficulties related to insects or dust
were mentioned in [59]. In other cases, outliers can be produced by particles in the air,
and are to be manually removed [53,60].

4.5. Sunlight and Light Interference

Another drawback that arises from making measurements outdoors is the light inter-
ference [66]. As can be observed from Table 3, the wavelength of some LiDAR instruments
is near the visible spectrum (380–740 nm). Most commercial devices are prepared to work
in sunlight conditions. However, in [9] a very low-cost LiDAR sensor and slow CNC mech-
anism were used, providing a closed structure to protect the laser sensor from sunlight
and wind.

4.6. Plant Morphology

The accuracy of most LiDAR sensors depends on the shape of the object being scanned,
its distance to the scanner sensor, the object’s reflective index, and its angle, as was previ-
ously mentioned in Section 4.1. However, none of the reviewed articles include species
with well-differentiated features (for example, combining sunflower and wheat). It must be
observed that testing different species with LiDAR technology requires different instrument
configurations and algorithm settings.
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In [16], plant morphology was analyzed in more detail, as different geometries were
tested as ways of modeling maize leaves. In [47], it was mentioned that vegetation different
from the one of interest, as weeds, were previously removed “to avoid interferences”.

In conclusion, LiDAR technology presents an immense potential for a wide range
of applications, including remote sensing and environmental monitoring or assessment.
However, a successful utilization of LiDAR requires a deep understanding of the various
factors that can have an impact on data acquisition processes. From instrument-related
considerations (such as footprint size, reflectance index, and inclination angles) to en-
vironmental factors (such as weather conditions, visual obstructions, and interference),
each element plays a critical role in the quality of LiDAR data. Additionally, the terrain
irregularity and ground level detection are essential for accurate measurements, especially
in crop height estimation. Mitigating these challenges often involves a combination of
hardware enhancements and advanced software algorithms. Despite these complexities, re-
searchers and practitioners have made significant strides in overcoming obstacles, making
LiDAR an increasingly valuable tool in diverse fields. Continued advancements in LiDAR
technology, combined with robust methodologies for data processing and interpretation,
promise a bright future for harnessing the full potential of LiDAR in addressing complex
real-world challenges. By refining data acquisition strategies and continually innovating in
this field, LiDAR will undoubtedly play a pivotal role in shaping our understanding of the
environment and advancing numerous industries in the years to come.

5. Conclusions

In this work, a total of 53 research papers published between 2005 and 2022 was
comprehensively reviewed in order to assess the state-of-the-art in ground crop analysis
using LiDAR technology. Our analysis allowed us to identify different categories associated
with LiDAR, providing a taxonomic view based on possible application areas, crop species
under analysis, scanner technologies, and mounting platforms being used, additional
sensors and instrumentation for expanding LiDAR capabilities, and specific software
packages (such as data acquisition, data processing, etc.).

The proposed categories in this survey article have helped identify different salient
aspects of LiDAR technology in the context of real-world applications. Thus, three par-
ticular application areas were identified (general purpose 3D reconstruction, parameter
characterization of crops, and automatic control for agriculture machinery). We could
also determine the proportion of different crop species under analysis, and the role of the
two major LiDAR scanning technologies (ToF and PS), as discussed in Section 3. When
analyzing the different mounting platforms, we provided a specific taxonomy for classi-
fying those platforms according to their features (terrestrial, airborne, stationary, mobile,
UAV, etc.), establishing as well their proportion of usage. From the analysis of additional
sensors and instrumentation, we were able to identify a wide range of devices that can
be used to complement LiDAR technologies in order to improve their performance. Simi-
larly, we identified different specific software tools used with these technologies (such as
general-purpose software, scanner companion software, and point cloud data processing
and visualization).

The taxonomic view provided in this survey helped also to identify existing challenges
when deploying LiDAR technology in real-world scenarios (such as instrument accuracy,
terrain irregularity, weather conditions, visual obstruction problems, and plant morphol-
ogy), as discussed in Section 4. In our opinion, the trade-off between the economic cost of
LiDAR scanners and the agronomically relevant information that can be acquired with such
instruments seems to limit the wide adoption of this technology. This might be one of the
main reasons why these technologies are being actively researched for academic purposes
but not massively used yet in agriculture landscaping. Given this observation, and assum-
ing that the cost of the LiDAR technology will remain constant, the only alternative for
these techniques to be applied in ground crop production is to increase the added value of



Sensors 2023, 23, 7212 14 of 19

the information that can be acquired from scanning ground crop fields. This is the aim of
most of the reviewed articles and seems to be the current trend in this emerging area.

Finally, it is interesting to note that none of the articles from the reviewed bibliography
tackle the problems associated with working with multiple species with the same setup
and configuration, as all instrument and algorithm calibrations were fine-tuned to improve
the performance of proposed methodologies in very specific situations. An interesting
question to be considered for future research is the possibility of defining a general-purpose
LiDAR-based framework that could be suitably parametrized for working with multiple
species simultaneously.
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Appendix A

Table A1. Bibliographic references under analysis and their features.

Ref.-Year Crop Species Device Model Mount/Mobility/Platform Application Software Involved

[16]-2005 maize, sunflower OPTECH LiDAR Airborne/Mobile/Aircraft Param. characteriz. -
[17]-2008 wheat, oat, barley Faro scanner Terrestrial/Mobile/Platform Param. characteriz. Faro Scene
[18]-2009 sugar beet Riegl LMS-Z420i Terrestrial/Stationary/Tripod Param. characteriz. Riegl RiSCAN PRO + ArcGIS
[27]-2009 wheat Pulstec TDS-130L Terrestrial/Stationary / CNC Param. characteriz. -
[28]-2009 wheat Pulstec TDS-130L Terrestrial / Stationary/CNC Param. characteriz. -
[11]-2009 wheat SICK LMS200 + SICK

LMS400
Terrestrial/Mobile/Tractor Automatic control Labview

[12]-2010 maize IBEO ALASCA XT Terrestrial/Mobile/Tractor Automatic control Custom software + Excel
[13]-2011 maize Nippon-Signal FX6 Terrestrial/Mobile/Rover Automatic control Custom software + Gazebo
[29]-2012 rice Pulstec TDS-130L Terrestrial/Stationary/Tripod Param. characteriz. -
[19]-2012 miscanthus giganteus SICK LMS291 Terrestrial / Stationary+Mobile /

Tractor
Param. characteriz. -

[14]-2013 maize SICK LMS291 Terrestrial/Mobile/Rover General purpose Labview + Matlab
[31]-2013 maize SICK LMS111 Terrestrial/Stationary/CNC General purpose Matlab + AutoCAD
[47]-2013 maize Hokuyo URG-04LX Terrestrial/Mobile/ATV Param. characteriz. Labview + AutoCAD
[67]-2014 maize Hokuyo URG-04LX-UG01 Airborne/Mobile/UAV Param. characteriz. Robotic Operating System (ROS)
[52]-2014 rye, wheat Riegl VZ-400 Terrestrial/Stationary/Platform General purpose Riegl RiSCAN PRO + OPALS
[59]-2014 rice Riegl VZ-1000 Terrestrial/Stationary/Tripod Param. characteriz. Riegl RiSCAN PRO + ArcGIS + Excel + OriginPro
[63]-2014 maize Riegl VZ-400 Terrestrial / Stationary/Tripod General purpose Riegl RiSCAN PRO
[43]-2014 wheat Leica ScanStation 2 Terrestrial/Stationary/Tripod Param. characteriz. R + Cyclone + Interactive Data Language
[57]-2015 maize SICK LMS291 Terrestrial/Mobile/Rover General purpose Labview + Matlab
[44]-2015 maize Leica ALS70 Airborne/Mobile/Aircraft Param. characteriz. ENVI + TerraScan
[61]-2015 maize Leica ALS70 Airborne/Mobile/Aircraft Param. characteriz. TerraScan + AMOS
[38]-2015 barley, other weeds Riegl VZ-400 Terrestrial/Stationary/Platform General purpose Riegl RiSCAN PRO
[65]-2015 maize SICK LMS111 Terrestrial/Mobile/Rover General purpose Matlab
[68]-2016 wheat optoNCDT ILR 1191,

Micro-Epsilon
Terrestrial/Stationary/Platform Param. characteriz. Interactive Data Language + R

[45]-2016 maize Leica ALS70 Airborne/Mobile/Aircraft Param. characteriz. TerraScan + FV-2000 (LI-COR 2010)
[20]-2016 fescue SICK LMS151 Terrestrial/Mobile/Car Param. characteriz. Excel
[64]-2016 maize, soybean, wheat Faro Focus S120 Terrestrial/Stationary/Tripod Param. characteriz. Faro Scene + Matlab
[53]-2016 maize Riegl VZ-400 Terrestrial/Stationary/Platform Param. characteriz. OPALS + Riegl RiSCAN PRO
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Table A1. Cont.

Ref.-Year Crop Species Device Model Mount/Mobility/Platform Application Software Involved

[40]-2017 maize Leica ALS70 Airborne/Mobile/Aircraft Param. characteriz. TerraScan
[32]-2017 rice, sorghum, maize Faro Focus X120 Terrestrial/Stationary/CNC Param. characteriz. Custom software
[54]-2017 wheat SICK LMS400 Terrestrial/Mobile/Platform Param. characteriz. Matlab + Agisoft Photoscan Professional
[21]-2017 cotton SICK LMS511 Terrestrial/Mobile/Tractor Param. characteriz. Labview + Matlab
[69]-2017 wheat SICK LMS400 Terrestrial/Mobile/Rover Param. characteriz. -
[56]-2017 maize, wheat Leica ALS50-II Airborne/Mobile/Aircraft General purpose DART RTM + Blender
[33]-2018 maize, sorghum Faro Focus X330 + Leica

ScanStation 2
Terrestrial/Stationary/Tractor Param. characteriz. Leica + Faro Scene + Pix4Dcapture + Pix4Dmapper

+ Trimble’s Pathfinder Office + FUSION
[46] - 2018 wheat SICK LMS400 Terrestrial/Mobile/Platform Param. characteriz. Custom software + PointCloud library
[60]-2019 wheat Riegl VZ-1000 Terrestrial/Stationary/Tripod Param. characteriz. Riegl RiSCAN PRO + ArcGIS
[62]-2019 sorghum Faro Focus X330 Terrestrial/Mobile/Tractor General purpose Faro Scene
[50]-2019 maize Faro Focus X120 Terrestrial/Stationary/Tripod Param. characteriz. Faro Scene + LiDAR360 + WinFOLIA + Statistical

Product and Service Solutions
[70]-2019 wheat SICK LMS400 Terrestrial/Mobile/Tractor Param. characteriz. R + MiniGIS
[34]-2019 maize RIEGL VUX-1UAV Airborne/Mobile/UAV Param. characteriz. Agisoft PhotoScan Professional + ArcMap + ENVI

+ RiPROCESS + LiDAR360
[41]-2019 maize Leica ALS70 Airborne/Mobile/Aircraft Param. characteriz. TerraScan + R
[22]-2019 wheat, American mint RPLIDAR A2 Airborne/Mobile/Aircraft General purpose Matlab
[58]-2019 maize Velodyne HDL64-S3 Terrestrial/Mobile/Rover Param. characteriz. Robotic Operating System (ROS) + Velodyne

data acquisition
[71]-2020 wheat, barley SICK LMS111 Terrestrial/Mobile/Tractor Param. characteriz. -
[9]-2020 wheat, barley, rye VL53L0X Terrestrial/Stationary/CNC General purpose Custom software + Matlab + Excel + InfoStat
[42]-2020 wheat SICK LMS111 Terrestrial/Mobile/Platform Param. characteriz. Labview + CloudCompare + R
[49]-2020 maize Riegl VUX-1UAV Airborne/Mobile/UAV Param. characteriz. POSPac 7.2 (Applanix) + RiPROCESS + LiDAR360
[72]-2021 maize, wheat, soybean Leica ADS100 Airborne/Mobile/Aircraft Param. characteriz. R
[35]-2021 maize, sorghum Velodyne VLP-16 Puck

Lite
Airborne/Mobile/UAV General purpose -

[23]-2021 beans, peas, barley Faro Focus X330 Terrestrial/Stationary/Tripod Param. characteriz. Faro Scene + CloudCompare + R
[51]-2022 pasture Faro Focus 3D S70 + Riegl

VUX-1UAV
Terrestrial+Airborne/Stationary+Mobile
/ Tripod+UAV

Param. characteriz. LiDAR360

[48]-2022 maize Velodyne HDL32 Airborne/Mobile/UAV Param. characteriz. H2O-AutoML
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