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SPLIT EXACT SEQUENCES OF FINITE MTL-CHAINS

J. L. CASTIGLIONI AND W. J. ZULUAGA BOTERO

Abstract. This paper is devoted to presenting ordinal sums of MTL-chains
as a particular case of split short exact sequences of finite chains in the category
of semihoops. This module theoretical approach will allows us to prove, in
a very elementary way, that every finite locally unital MTL-chain can be
decomposed as an ordinal sum of archimedean MTL-chains. Furthermore, we
propose the study of MTL-chain extensions and we show that ordinal sums of
locally unital MTL-chains are a particular case of these.

Introduction

In [6], Esteva and Godo proposed a new Hilbert-style calculus called monoidal
t-norm based logic (MTL, for short) in order to find the fuzzy logic corresponding
to the class of all left-continuous t-norms. In [8], Jenei and Montagna proved that
MTL was, in fact, the weakest logic which is complete with respect to a semantics
given by a class of t-norms and their residua. Since in MTL the contraction rule
does not hold in general, such a logic can be regarded not only as a fuzzy logic and
as a many-valued logic, but also as a substructural logic. These results motivated
the introduction of a new class of algebras with an equivalent algebraic seman-
tics for MTL, the variety of MTL-algebras. MTL-algebras are essentially integral
commutative residuated lattices with bottom satisfying the prelinearity equation

(x→ y) ∨ (y → x) ≈ 1.
In [4], Castiglioni and Zuluaga characterized the class of finite MTL-chains which

can be decomposed as an ordinal sum of archimedean MTL-chains. Such a class of
finite MTL-algebras was called locally unital. Nevertheless, the general problem of
decompositions by ordinal sums of (arbitrary) MTL-chains still remains open. It is
worth mentioning that the general problem was already solved for the subvariety
of BL-chains (see [1, 2]) by proving that (arbitrary) BL-chains can be decomposed
as an ordinal sum of Wajsberg hoops.

Since its foundation, algebraic logic has been devoted to studying logics from
the perspective of universal algebra. But it is important to recall that there are
some works in the literature where—starting from algebraic structures which are
closer to rings—results of interest in algebraic logic have been obtained (see [3]).
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These facts bring out the question of the potential of employing tools of classical
algebra (rings, modules, etc.) in order to study algebraic structures associated to
non classical logics.

Inspired in extensions of rings and modules and their relation with ordinal sums,
we intend to apply such methods to the context of finite MTL-chains. We will
show that this approach allows us to prove results like the decomposition of locally
unital MTL-chains as an ordinal sum of archimedean MTL-chains (obtained in [4])
in a very self-contained and elementary way, by applying ideas of split short exact
sequences of finite chains in the category of semihoops. Additionally, we propose
a construction called MTL-chain extension and we prove that such a construction
turns out to be a suitable generalization of ordinal sums for locally unital MTL-
chains.

The first section is devoted to introducing all the concepts required to read this
work. In the second section we obtain a characterization of those extensions of finite
totally ordered semihoops which are isomorphic to an ordinal sum. In the third
section we show that every finite locally unital MTL-chain can be decomposed
as the ordinal sum of archimedean MTL-chains. Finally, in the last section, we
introduce the MTL-chain extensions and we prove that the ordinal sums of finite
totally ordered semihoops are a particular case of these.

1. Preliminaries

A semihoop1 [7] is an algebra A = (A, ·,→,∧,∨, 1) of type (2, 2, 2, 2, 0) such that
(A,∧,∨) is a lattice with 1 as greatest element, (A, ·, 1) is a commutative monoid
and for every x, y, z ∈ A the following conditions hold:

(residuation) xy ≤ z if and only if x ≤ y → z

(prelinearity) (x→ y) ∨ (y → x) = 1.
Equivalently, a semihoop is an integral, commutative and prelinear residuated

lattice. We write SH for the algebraic category of semihoops. A semihoop A is
bounded if (A,∧,∨, 1) has a least element 0. An MTL-algebra is a bounded semi-
hoop; hence, MTL-algebras are prelinear integral bounded commutative residuated
lattices, as usually defined [6, 10], and semihoops are basically “MTL-algebras
without zero”. An MTL-algebra (or semihoop) A is an MTL-chain (SH-chain) if
its semihoop reduct is totally ordered. It is a well-known fact that the class of
MTL-algebras is a variety. We write MT L for the category of MTL-algebras and
MTL-homomorphisms. A totally ordered MTL-algebra is archimedean if for every
x ≤ y < 1, there exists n ∈ N such that yn ≤ x. A submultiplicative monoid F
of M is called a filter if it is an up-set with respect to the order of M . For every
x ∈ F , we write 〈x〉 for the filter generated by x; i.e.,

〈x〉 = {a ∈M | xn ≤ a for some n ∈ N}.
For any filter F of M , we can define the relation ∼F on M by a ∼F b if and only
if a → b ∈ F and b → a ∈ F . It follows that ∼F is indeed a congruence on M .

1Also called basic semihoop in [11].
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On MTL-algebras there exists a well-known correspondence between filters and
congruences (see [10]) so we write the quotient M/∼F by M/F . For every a ∈M ,
we write [a]F for the equivalence class of a in M/F . If there is no ambiguity, we
simply write [a]. A filter F of M is prime if 0 /∈ F and x ∨ y ∈ F entails x ∈ F or
y ∈ F , for every x, y ∈M .

Let I = (I,≤) be a totally ordered set and F = {Ai}i∈I a family of semihoops.
Let us assume that the members of F share (up to isomorphism) the same neutral
element; i.e., for every i 6= j, Ai ∩ Aj = {1}. The ordinal sum of the family F is
the structure

⊕
i∈I Ai whose universe is

⋃
i∈I Ai and whose operations are defined

as

x · y =


x ·i y, if x, y ∈ Ai,
y, if x ∈ Ai and y ∈ Aj − {1}, with i > j,

x, if x ∈ Ai − {1} and y ∈ Aj , with i < j;

x→ y =


x→i y, if x, y ∈ Ai,
y, if x ∈ Ai and y ∈ Aj , with i > j,

1, if x ∈ Ai − {1} and y ∈ Aj , with i < j,

where the subindex i denotes the operations in Ai.
Furthermore, if I has a minimum ⊥, Ai is a totally ordered semihoop for every

i ∈ I and A⊥ is bounded, then
⊕

i∈I Ai becomes an MTL-chain. In order to clarify
notation, we will use the symbol � to denote the usual linear sum of lattices (as
defined in [5, Section 1.24]).

Let M be an MTL-algebra. Write 0, 1 for the trivial idempotents, I(M) for
the set of all idempotent elements of M and I∗(M) for I(M)− {0}. We say that
e ∈ I∗(M) is a local unit if xe = x, for all x ≤ e. Clearly, 1 is a local unit. If
M is archimedean, 1 is in fact the only local unit of M . Notice that there may
be idempotents which are not local units. As an example, one may consider the
MTL-algebra A whose underlying set is the totally ordered set A = {0, x, e, 1},
where 0 < x < e < 1, with the product determined by the following table:

· 1 e x 0
1 1 e x 0
e e e 0 0
x x 0 0 0
0 0 0 0 0

Table 1. MTL algebra with an idempotent which is not a local unit.

In [4], the class of MTL-algebras whose non-trivial idempotents are exactly the
local units was called locally unital MTL-algebras (luMTL, for short). In this
paper, locally unital MTL-algebras will be denoted by luMT L. Observe that
every archimedean chain is a member of luMT L.
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2. Another perspective on finite luMTL-chains

We start this section with the following observation: Let M be a semihoop and
F a filter of M . A straightforward verification shows that F is a subalgebra of M ,
which basically says that in SH, filters always belong to the same category of the
original algebra. Such a situation does not hold for MTL-algebras, since the only
filter of M which is a subalgebra is M itself. Hence, taking advantage of the fact
that MTL-algebras are “semihoops with zero”, along this section we will place
ourselves in the context of semihoops, rather than that of MTL-algebras.

In SH a sequence of morphisms

0 // A
f // B

g // C // 0

is a short exact sequence if f is injective and g is surjective. Here 0 = {1} is the
zero object of the category. The short exact sequence is a split exact sequence if g
has a section, i.e., if there exists h : C → B such that gh = idC .

An interesting problem is to classify all the split exact sequences in SH. Nev-
ertheless, in this paper we give a solution for a more modest problem. The aim of
this section is to present a characterization of the split exact sequences in which C
is a chain and B is isomorphic to the ordinal sum of C with A.

Lemma 2.1. Let K,E,C ∈ SH, where C is a chain. Consider the split exact
sequence

0 // K
k // E

p
// C

suu // 0.

Then, E ∼= C ⊕K if and only if
i) E = k(K) ∪ s(C) and
ii) k(K) ∩ s(C) = 0.

Proof. Let us assume that the split exact sequence above satisfies (i) and (ii).
Since s, k are injective morphisms of semihoops, s(C) and k(K) are subobjects
of E isomorphic to K and C, respectively. So let us simply write K for k(K) and
C for s(C). Let e ∈ E. By (i), e ∈ K or e ∈ C. If e ∈ K ∩ C, then, by (ii), e = 1.
If e ∈ K and f ∈ E is such that e ≤ f , then from 1 = p(e) ≤ p(f) we get that
p(f) = 1. Hence f ∈ K. Consequently, K is a filter in E, and every c ∈ C − {1} is
below every k ∈ K. Therefore, as a lattice, E ∼= (C − {1}) �K. Notice that both
K and C are closed by the product and the residuum. So we just have to calculate
ck, c → k and k → c for c ∈ C and k ∈ K. Observe that we can assume c 6= 1.
From the calculation

p(ck) = p(c)p(k) = p(c) · 1 = p(c)

we can conclude that ck = c for every c ∈ C and k ∈ K. Taking into account the
order of E, we obtain ck = c ∧ k. On the other hand, p(k → c) = 1→ p(c) = p(c)
so k → c = c; and p(c → k) = p(c) → 1 = 1, hence c → k ∈ K. Finally, since
c ∧ k′ = ck′ ≤ c ≤ k for every k′ ∈ K, we have c→ k = 1.
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We have proved that the binary operations on E ∼= (C −{1})�K are given by:

kc =


k ·K c, k, c ∈ K,
k ·C c, k, c ∈ C,
k ∧ c, otherwise;

k → c =


k →K c, k, c ∈ K,
k →C c, k, c ∈ C,
c, k ∈ K, c ∈ C,
1, otherwise.

That is to say, E ∼= K ⊕ C, the ordinal sum of semihoops. The converse follows
directly from the definition of ordinal sum of semihoops. �

To conclude this section we would like to remark that in SH there are split exact
sequences which are not of the kind presented in Lemma 2.1. In order to exhibit
one, consider the semihoop A = {0, x, e, 1} whose product is defined in Table 1. Let
F = ↑e and let 2 be the chain of two elements. It is clear that A/F ∼= 2 and that
s : 2 → A, defined by s(1) = 1A and s(0) = 0A, is a section of the quotient map,
so 0 → F → A → 2 → 0 is a split exact sequence. Nevertheless, x /∈ s(2) ∪ k(F )
so A � 2⊕ F .

3. Dealing with finite chains in luMTL

In [1], Aglianò and Montagna proved that every BL-chain can be decomposed
as an ordinal sum of totally ordered Wajsberg hoops. In [2], Busaniche provides
an alternative proof of this fact without using the axiom of choice. In [4], it was
observed that, as a consequence of the divisibility condition for BL-algebras2, it
follows that every BL-algebra is a locally unital MTL-algebra. The aim of this
section is to generalize the finite case of Aglianò and Montagna’s result to finite
locally unital MTL-chains. That is to say, to give, through the tools developed
along this work, an elementary proof of the fact that every finite locally unital
MTL-chain decomposes as an ordinal sum of archimedean MTL-chains (see [4] for
another proof).

Let M be a finite MTL-chain (or SH-chain). The following useful characteriza-
tion can be found in [4].

Proposition 3.1. Let M be a finite MTL-chain. The following are equivalent:
i) M is archimedean,
ii) M is simple,

iii) I(M) = {0, 1}.

Write 〈X〉 for the filter generated by X ⊆ M and LU(M) for the set of local
units of M . Note that in general LU(M) ⊆ I∗(M). Furthermore, M ∈ luMT L if
and only if LU(M) = I∗(M).

2That is, for every x, y the equation x(x → y) = x ∧ y holds.
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Proposition 3.2 ([4, Corollary 4]). In any finite MTL-algebra M , the following
are equivalent:

i) a ∈ I(M),
ii) 〈a〉 = ↑a.

Note that if M is finite and F is a proper filter of M , there exists a unique
e ∈ I∗(M) such that F = ↑e. We write eM for the set eM = {ex | x ∈M}.

Remark 3.3. Let M be a finite MTL-chain and e ∈ LU(M). Then the sequence

0 // ↑e // M // M/↑e // 0

is a split exact sequence of the type of Lemma 2.1 and M/↑e ∼= eM (which is in
fact true for any e ∈ LU(M)). Hence M ∼= ↑e⊕ eM .

Theorem 3.4. Every finite locally unital MTL-chain is an ordinal sum of archi-
medean chains.

Proof. Let M be a finite locally unital MTL-chain. It follows that LU(M) is also
a finite chain. In order to prove the statement, we proceed by induction over
the amount of local units of M . If |LU(M)| = 1, then by Proposition 3.1 M is
archimedean. Let us assume that |LU(M)| > 1 and let us order its elements in an
increasing way:

e1 < . . . < en = 1.
Let us suppose that any locally unital MTL-chain A with |LU(A)| = n − 1 is an
ordinal sum of n− 1 archimedean chains:

A ∼= C1 ⊕ . . . ⊕ Cn−1.

Since en−1 ∈ LU(M), by Remark 3.3 the sequence

0 // ↑en−1 // M
p
// en−1M

s
tt // 0

is a split exact sequence of the type of Lemma 2.1, whence M ∼= ↑en−1 ⊕ en−1M .
Furthermore, ↑en−1 is archimedean by Proposition 3.1, and |LU(en−1M)| = n− 1.
By inductive hypothesis we can conclude that en−1M ∼= C1⊕ . . . ⊕Cn−1. An easy
verification shows that

M ∼= ↑en−1 ⊕ en−1(↑en−2)⊕ . . . ⊕ e2(↑e1)⊕ e1M.

This concludes the proof. �

We conclude this section by presenting a characterization of some particular
split exact sequences of the kind of those of Lemma 2.1.

Theorem 3.5. Let Mn and Mn+1 be MTL-chains of n and n + 1 elements, re-
spectively, for some n > 1. Let α be the coatom of Mn+1. The following are
equivalent:

(1) α is a local unit.
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(2) The sequence

0 // 2 // Mn+1 // Mn
// 0

is a split exact sequence such that Mn+1 ∼= Mn ⊕ 2.

Proof. Observe that the first implication is a straight consequence of Remark 3.3.
So let us assume (2). Notice that as semihoops ↑α ∼= 2, then it follows that
↑α is a filter of Mn+1, so from Proposition 3.2, we obtain that α2 = α. Since
Mn+1 ∼= Mn ⊕ ↑α, we have that as a poset Mn+1 ∼= (Mn − {1Mn}) � ↑α. Hence,
if x ∈ Mn+1, since α is coatom, it is the case that x < α, so x ∈ Mn − {1Mn

} by
hypothesis. Consequently, x · α = x = x ∧ α. Therefore α is a local unit. �

4. A brief description of MTL-chain extensions

In this section we propose a construction involving finite MTL-chains, namely,
MTL-chain extensions. We will show that such a process is intimately related with
split exact sequences involving totally ordered semihoops. Finally, we will show
that such a construction can be regarded as a suitable generalization of ordinal
sums of locally unital MTL-chains.

Let F and A be two finite MTL-chains. Since A is finite, we can order its
elements in an increasing way; let us say, 0A < x1 < . . . < xn−1 < 1A. Let
C(F,A) = {Cj | j ∈ A} be a family of sets such that

(1) for every i ∈ A, Ci is a finite chain;
(2) for i = 1A, C1A

= F ;
(3) if i 6= j, with i, j ∈ A, then Ci ∩ Cj = ∅.

Let E :=
⋃
i∈A Ci with the order induced by the ordinal sum of lattices; that is, as

a poset, E = �i∈ACi. Hence E is a lattice. Observe that since each Ci is a finite
lattice it has a minimum element; let us write 0i for it.

Now, take a family of functions M(F,A) = {µij : Ci × Cj → Ci·j | i, j ∈ A}
(where i · j denotes the product in A), such that

(i) for every i, j ∈ A, µij is monotone in each coordinate;
(ii) for every ki ∈ Ci and kj ∈ Cj , µij(0i, kj) = µij(ki, 0j) = 0ij ;
(iii) M(F,A) is jointly associative; that is, the diagram

Ci × Cj × Ck
idi×µjk //

µij×idk

��

Ci × Cj·k
µi·(j·k)

��
Ci·j × Ck µ(i·j)·k

// Ci·(j·k) = C(i·j)·k

commutes, for every i, j, k ∈ A.
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(iv) M(F,A) is jointly commutative; that is, the diagram

Ci × Cj
µij //

τ

��

Ci·j

Cj × Ci µji

// Cj·i

commutes, for every i, j, k ∈ A.
(v) M(F,A) has a global unit; that is, the diagram

1× Ci //

1F×idi

��

Ci

C1 × Ci

µ1i

;;

commutes, for every i ∈ A. Here 1 is the singleton chain and 1 is the unit
of A.

This presentation leads us to introduce the following concept.

Definition 4.1. Let F and A be two finite MTL-chains. An MTL-chain extension
(induced by F and A) is a pair (C(F,A),M(F,A)) such that

1. the collection C(F,A) = {Cj | j ∈ A} satisfies (1), (2) and (3);
2. the set M(F,A) = {µij : Ci × Cj → Ci·j | i, j ∈ A} is a family of functions

satisfying (i)–(v).

Theorem 4.2. Let F and A be two finite MTL-chains. Then, every MTL-chain
extension (C(F,A),M(F,A)) induces a split exact sequence of MTL-chains.

Proof. Take E(C(F,A),M(F,A)) :=
⋃
C with the mentioned order. Endow E =

E(C(F,A),M(F,A)) with the binary operation

µ : E×E→ E

defined by µ(e, f) = µij(e, f), if e ∈ Ci and f ∈ Cj . Observe that conditions (i)–(v)
of M guarantee that (E,∨,∧, µ, 1F ) is an MTL-algebra. Furthermore, F = C1 is
a filter of E. Let us calculate E/F . For e, f ∈ E, e ∼F f if and only if there is
a g ∈ F such that ge ≤ f and gf ≤ e, so it is clear that F = [1]. Now, let us
assume e, f ∈ Ci for some i 6= 1A. From (ii), µ1Ai(01A

, e) = µ1Ai(01A
, f) = 0i so

e ∼F f . If e ∈ Ci and f ∈ Cj for some i 6= j, from (3), Ci ∩ Cj = ∅. Then for
every g ∈ F = C1A

we have that µ1Ai(g, e) ∈ Ci and µ1Aj ∈ Cj ; that is, e �F f .
Hence Ci = [e]F for any e ∈ Ci and i ∈ A. So we have a bijection E/F → A which
clearly is an MTL-morphism. Moreover, the map s : A→ E defined by

s(i) =
{

1F , i = 1A,
0i, otherwise
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is a section of p : E → A ∼= E/F . Hence, we get a split short exact sequence in
SH:

0 // F
j // E

p
// // A

s
vv // 0

where j is the inclusion. �

Let (P,≤) be a poset. A subset X of P is convex if for every x ≤ z ≤ y such
that x, y ∈ X we have that z ∈ X. An ordered commutative monoid is a structure
S = (S, ·,≤, 1) such that (S, ·, 1) is a commutative monoid, (S,≤) is a poset and ·
is monotone with respect to ≤. If 1 is the top element of (S,≤), then S is called
integral3. If S is convex, then we say that S is an integral commutative convex
monoid.

The following result is a partial converse of Lemma 4.2.

Theorem 4.3. Let

0 // F
j // E

p // A // 0
be a split exact sequence in SH such that

i) j(F ) is a convex subset of E and
ii) E, F and A are finite chains.

Then, there exists a MTL-chain extension (C(F,A),M(F,A)) such that
E ∼= E(C(F,A),M(F,A)).

Proof. Observe that, since j(F ) ∼= F is a convex submonoid of a finite integral
ordered commutative monoid, F is a filter of E and hence there exists a unique
idempotent eF ∈ E such that F = ↑eF . For the rest of the proof we shall simply
write e for eF . Notice that there is an isomorphism between A and eE. By
definition of short exact sequence, we know that A is just E/F , so we can define
a map f : E/F → eE by f([a]) = ea which is clearly bijective. From this fact we
can conclude that [a] = {x ∈ E | ex = ea}. Now, since each equivalence class is a
convex set of E (because each class is in particular a lattice congruence class), we
have a decomposition of E as a lattice as E ∼= �[x]∈AC[x], where the C[x]’s form
a partition of E by convex chains. Clearly, this corresponds to the quotient map.
Now take C = {[a] | [a] ∈ A} and define µ[a][b] : [a]× [b]→ [ab] by µ[a][b](α, β) = αβ,
that is, the restriction of the product to the respective C[x]’s. It is easy to check
that they form a family M satisfying conditions (i)–(v) of the beginning of this
section. �

Corollary 4.4. Ordinal sums of finite locally unital MTL-chains are MTL-chain
extensions.

Proof. Let {Mi}i∈I be a family of finite locally unital MTL-chains, where I is a
finite totally ordered set with top >. Take {M ′i}i∈I with M ′> = M> and M ′i =
Mi − {1Mi

} for i 6= >. Note that each M ′i is a semigroup. Take i · j = i ∧ j,
for i, j ∈ I. This makes I a finite MTL-algebra (in fact, a Heyting algebra). By

3In [11] integral ordered commutative monoids are called negative ordered monoids.
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regarding C(M ′
T
,I) = {M ′i}i∈I and M(M ′

T
,I) = {µij : M ′i ×M ′j → M ′i∧j | i, j ∈ I},

defined as

µij(a, b) =


a ·i b, if i = j,

a, if i < j,

b, if j < i,

from Lemmas 3.4 and 4.2 the result follows. �
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