
Effect of the Drug–Excipient
Ratio in Matrix-Type-Controlled

Release Systems: Computer
Simulation Study

ABSTRACT The main objective of this work is to study the drug release

behavior from inert matrix systems by using computer simulation. This study

allowed us to propose a new statistical method to evaluate the drug percolation

threshold as a function of the exposed surface area of the device. The matrix

system was simulated as a simple cubic lattice. The sites of the lattice were

randomly occupied at various drug–excipient ratios. By simulating a diffusive

process, the drug was delivered from the matrix system. The obtained release

profiles were fitted to two different models: near the excipient percolation

threshold, the square root of the time was well fitted, whereas close to (but

above) the drug percolation threshold, the power law described accurately the

release data. A relationship between the initial drug load and the amount of

drug trapped inside the matrix system at infinite time was found. This

relationship was conveniently described by an error function. Percolation

thresholds in the matrix systems were determined from the latter relationship

by using a nonlinear regression method. The assessment of percolation

thresholds depends on the exposed surface area of the matrix systems.

Moreover, estimated percolation thresholds were in agreement with the

predicted values stated in the percolation theory.

KEYWORDS Percolation theory, Drug release, Matrix systems, Monte Carlo simulation,
Anomalous diffusion

INTRODUCTION

A drug release profile from a delivery system has great impact over
therapeutic effect. Matrix platforms are commonly used to manufacture
sustained release dosage forms (Takada & Yoshikawa, 1999). The correct
assessment of the mechanisms involved in the drug delivery from matrix
systems becomes crucial in order to accurately predict release profiles, which
help in the correct technological and biological design of the pharmaceutical
devices. Different models were proposed to describe drug delivery from matrix
systems. Among them, there are the diffusion equation (Crank, 1975), the
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Salomón Cordero

UAM-Iztapalapa, Departamento

de Quı́mica, Mexico City, Mexico

Ana Maria Vidales

Departamento de Fı́sica, CONICET,

Universidad Nacional de San Luis,

San Luis, Argentina

Armando Domı́nguez

UAM-Iztapalapa, Departamento

de Quı́mica, Mexico City, Mexico

Order reprints of this article at www.copyright.rightslink.com

https://s100.copyright.com/AppDispatchServlet?publisherName=tandf&publication=LDDI&contentID=10.1080/03639040500215693&mac=&numPages=9&orderBeanReset=true


square root of the time law (Higuchi, 1963), and the
power law (Peppas, 1985). The last two models are the
most commonly used due to their simplicity (Costa &
Sousa, 2001).

On the other hand, it was found that the
percolation phenomenon greatly influences the release
profile from matrix systems (Bonny & Leuenberger,
1993; Caraballo et al., 1994; Ehtezazi & Washington,
2000; Leuenberger et al., 1992; Yamane et al., 1998). A
percolating system inherently forms a fractal structure,
which exerts a strong effect over the release profile
near the drug percolation threshold (pc1). The
excipient percolation threshold (pc2) is useful to
correctly design the mechanical properties of the
dosage form. Leuenberger et al. (1992) have estab-
lished that the concentration of a granular drug inside
the matrix can be expressed as a site percolation
probability, p. They found that the amount of drug
released as a function of time Q(t) from one face of the
tablet is proportional to tk, where the exponent k
directly depends on the percolation probability. When
the values of pc1, pc2, and p are expressed as a
function of the initial drug load, Q(t) follows one of
the next behaviors: 1) p<pc1——in this scenario, only a
few groups of particles are in direct contact with
the tablet surface, thus, Q(t) reaches a constant value;
2) p�pc1±0.1pc1——anomalous diffusion in three
dimensions with k� 0.2; 3) pc1<p<pc2——normal
matrix diffusion with k=0.5; and 4) pc2<p——zero-
order release kinetics with k=1.

The latter shows the importance of the experimen-
tal assessment of the percolation threshold. Several
methods were used to accomplish this task, among
them, the most outstanding are based on electrical
conductivity (Fernandez-Hervas et al., 1995; Sieg-
mund & Leuenberger, 1999), mechanical properties
(Leu & Leuenberger, 1993), and dissolution studies
(Bonny & Leuenberger, 1991). Percolation threshold
determined from drug release data is the standard
method proposed by Bonny and Leuenberger (1991);
this method uses the property b, which is obtained
from the Higuchi equation. When b is related to the
diffusion coefficient obtained from the scaling law,
they found that

b ¼ �cec þ ce ð1Þ

where e is the porosity of the carcass, ec is the drug
percolation threshold, and c is a constant. In this way,

Eq. 1 allows for the assessment of ec. This last method
was compared with experimental data and is consistent
with the expected values from the percolation theory.
However, this technique is restricted to drug release
from only one face of the tablet and cannot be used
if the release kinetic does not fit the Higuchi equation.
Leuenberger et al. (1995) developed another method
using the fraction of drug trapped in the matrix and
relating it to the Bethe lattice equations. Nevertheless,
this last technique can only be applied to this kind
of lattice.

So far, computer simulation has successfully been
used to study the drug release from two kinds of
matrix systems: 1) systems near the drug percolation
threshold (Bunde et al., 1985; Kosmidis et al., 2003a),
and 2) systems with Euclidean structure (Kosmidis
et al., 2003b). In this work, we study the drug release
profiles from cubic lattices using different drug-
excipient ratios. The main contribution of this work
is the development of a new method derived from
normal distribution elements, which makes possible
the determination of the drug percolation threshold
as a function of the exposed surface area of the device.
Finally, we examine whether there is a transition
zone going from typical Fickian release to an anom-
alous transport.

THEORY

According to percolation theory, if, in a lattice, a
certain fraction of sites is occupied, in a random way,
several aggregates of different sizes are formed
(Sahimi, 1994; Stauffer & Aharony, 1994). Some of
these aggregates will be connected to the external
medium, while others will be trapped inside the
lattice. In a drug–excipient matrix system, where the
excipient is inert, let us designate Qc as the fraction of
drug connected to the external medium and Qt as the
fraction of drug trapped inside the insoluble carcass.
Thus, the normalized amount of drug is

Qt þ Qc ¼ 1 ð2Þ

Now, every drug particle connected to the exterior can
be quantified by the amount of drug released at time
equal to infinity (M1). If this last quantity is divided
by the number of drug particles in the matrix at the
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beginning of the experiment (N0), then the fraction of
drug connected to the exterior is obtained by

Qc ¼ M1=N0 ð3Þ

and the fraction of drug trapped in the insoluble
carcass is given by

Qt ¼ 1 � M1
N0

¼ 1 � Qc ð4Þ

Both Qc and Qt can be described as a cumulative
probability. Then, Qc represents the cumulative
probability that a drug particle is connected to the
exterior:

Qc ¼
Z 1

0
nscsds ð5Þ

and Qt represents the cumulative probability that one
drug particle has no connection with the exterior
medium:

Qt ¼
Z 1

0
nsncsds ð6Þ

where nsc is the number of drug clusters of size s
connected to the exterior, and nsnc is the number of
drug clusters of size s not connected to the exterior.
When the above cumulative probabilities are approx-
imated to the cumulative probability of a normal
distribution, the function describing Qt has the
following form

Qt ¼ a þ a Erf½bð�ec þ eÞ	 ð7Þ

where Erf is the function error, a and b are constant
values associated with the process, e represents the
initial drug load, and ec represents the drug percola-
tion threshold. On the other hand, the change in the
connected amount of drug with respect to the initial
amount of drug (dQc/de) is obtained by deriving Eq. 7:

dQt

de
¼ � 2abffiffiffi

p
p e½�b2ð�ecþeÞ2	 ð8Þ

This last Gaussian distribution has a point at which
dQt/de is a maximum. At this point, the percolating
cluster is formed, i.e., the drug percolation threshold.
This maximum of dQt/de corresponds to the inflec-
tion point of Eq. 7, that is, �ec+e = 0. So, the
percolation threshold can be easily determined by
plotting the amount of drug trapped at time equal to
infinity versus the initial amount of drug inside the

matrix. The correct analysis of the latter data by a
nonlinear regression of Eq. 7 also makes it possible to
assess the values a, b, and ec.

METHODS

The matrix system is represented as a cubic lattice
with 273 sites. Thus, the idealized tablet is a con-
glomerate of sites of the same size. The matrix is
simulated as a binary system composed by a drug
(water soluble) and excipient (inert, nonsoluble
material). The sites are randomly occupied either by
isometric spherical particles of drug or excipient,
according to given proportions of drug and excipient.
The initial porosity is considered equal to zero, and
double occupation is excluded. The excipient is
considered as an inert material, so the carcass does
not change as a function of time. The diffusive process
is simulated by a random walk algorithm (Bunde et al.,
1985; Stauffer & Aharony, 1994). In this way, a site
occupied by drug is randomly chosen, then, one of its
nearest neighbor sites is chosen at random. If the
chosen neighboring site is empty, then the drug
particle moves to this new site; if it is not empty, then
the movement is rejected. This sequence of steps is
repeated until the drug particle reaches a site at the
exposed surface, where it becomes part of the
dissolution medium. At this point, we assumed sink
conditions, so the drug release is not limited by
solubility. After each trial, the time is increased by a
value equal to 1/Nt, where Nt is the number of drug
particles remaining inside the matrix when the time is
equal to t. Every Nt trials constitute an elapsed time
equal to one Monte Carlo step (MCS), the unit of
time. This is a standard method to consider time in a
Monte Carlo process (Bunde et al., 1985; Kosmidis
et al., 2003b; Sales et al., 1996), which may eventu-
ally correspond to a real time unit (Kosmidis et al.,
2003b). In this source, they tried to relate the mean
free path with the drug diffusion coefficient to get
the mean free time, a concept close to one MCS. The
time and the amount of drug released are recorded
at every moment. Different ratios of drug–excipient
were studied. The release kinetics through two
opposite faces (one-dimensional) and through the
total exposed surface area of the lattice are also
studied. Finally, the simulations of the cubic lattices
and the diffusive processes taking place therein were
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implemented with a program written in ANSI C++
code, and simulations were performed in a PC with an
AMD athlon processor and 512 MB RAM. The
program simulation was run in the compiler Borland
C++ version 5.0A.

RESULTS AND DISCUSSION

The drug release profile from a cubic network
(exposing only two opposite faces) as a function of
initial drug load is shown in Fig. 1. This profile is
associated with two factors: 1) initial drug load in the
network and 2) the barrier generated by increasing the
fraction of excipient. When the fraction of dose
released was related to the square root of the time, a

slightly sigmoid behavior was observed; however,
when a linear regression was made, we found a good
fit to this model for systems with initial drug load
from 0.45 to 1.0 (see Table 1). However, we observe
that the fit is not good as the initial drug load is
diminished. When the initial drug load was 0.35, the
squared correlation coefficient of

ffiffi
t

p
-evaluation was

0.9617, so it is no longer in agreement with the
ffiffi
t

p
-

model. At this concentration, the system is close to
the drug percolation threshold, ec=0.3116 (Stauffer &
Aharony, 1994), it means that a great extent of the
initial drug load belongs to the percolation cluster.
This cluster has a fractal structure, which means that
the system is macroscopically nonhomogeneous, so
the relation of the square root of the time is not
suitable at this point.

The computed power law exponents are shown in
Table 1: a linear behavior was observed for all systems
with initial drug load greater than the drug percolation
threshold. Below the drug percolation threshold, the
behavior is not linear. The above mentioned is
associated with the fact that only a fraction of the
initial drug load is able to leave the system through the
ramifications created by the drug itself. Drug particles
without communication with the exterior cannot
come out, in such a way that the entire connected
drug is gradually released, and finally, the fraction of
dose released becomes constant. Values for the
exponent n close to 0.5 were found in systems with
initial drug loads between 0.55 and 1——this implies that
the release of these systems is Fickian. In the systems
with initial drug loads less than 0.55, the exponent
associated with the time moves away from 0.5, and it
corresponds to an anomalous diffusion according to
the classic analysis of diffusion (Peppas, 1985). The

FIGURE 1 Release Profiles from Cubic Lattices Through Two
Opposite Faces, with Different Initial Drug Load (C0). (5) C0 =1.00;
(6) C0 =0.85; (4) C0 =0.65; (5 ); C0 =0.55; () C0 =0.45; (/)
C0 =0.35; (�) C0 =0.31; (*) C0=0.25; ($) C0 =0.15.

TABLE 1 Evaluation of Dissolution Data (Two Opposite Faces)

Drug content

Mt
N0

¼ aH þ KH

ffiffi
t

p
Mt
N0

¼ a0 þ b0tn

KH r2 n r2

1 0.033 0.9991 0.57 0.9983
0.85 0.029 0.9999 0.52 0.9997
0.65 0.023 0.9997 0.49 0.9999
0.55 0.019 0.9986 0.46 0.9999
0.45 0.012 0.9977 0.40 0.9997
0.35 0.008 0.9617 0.29 0.9967
0.31 0.005 0.8613 0.20 0.9970
0.25 0.004 0.8336 0.09 0.9652
0.15 0.002 0.8059 0.04 0.9536
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previous results can be explained as a function of the
formed structures. For concentrations between 0.55
and 1, a diffusive behavior is followed, although
clusters of excipient begin to appear. As these systems
are well above the drug percolation threshold, the size
of the network is greater than the size of these clusters
of excipient, so the matrix structure as a whole behaves
as a macroscopically homogeneous system (Sahimi,
1994), and the presence of the excipient only drags the
diffusion. Nevertheless, as the drug–excipient ratio
comes closer to the drug percolation threshold, clusters
of excipient with a size similar to the total size of the
network are formed. Therefore, the drug molecules

diffuse in a structure macroscopically nonhomoge-
neous, generating in this way an anomalous diffusion.

The release profiles from cubic lattices through
their total surface area are shown in Fig. 2. As
expected, when the total area of the matrix is exposed,
the release is faster than when the release occurs
through only two opposite faces. Data were analyzed
by means of the equation of the square root of the
time. A good fit to this model was observed when the
initial drug load was greater than or equal to 0.65.
However, at lower concentrations, the square root of
the time model does not successfully describe the drug
release profile (see Table 2). Applying the power law
model, a better fit to the release profile was observed,
although, it is necessary to emphasize that the model
was applied fitting data up to the point when 60% of
the release was completed. Beyond this percentage, the
model overestimates the fraction of dose released. The
exponents associated with the time in the power law
model for the initial drug loads between 0.65 and 1.0
were close to 0.5. These results confirm what we
previously mentioned in the sense that the square root
of the time describes successfully the release profile
from these matrix systems at these initial drug loads.
On the other hand, it was found that systems with
initial drug load less than or equal to 0.55 pres-
ent release exponents associated with an anomalous
transport. The value of the exponent decreases as the
drug load falls (see Table 2). As the initial drug load
decreases, the fraction occupied by the insoluble
carcass (excipient) is increased, making the drug
diffusion through the matrix system more difficult,
with the consequent decrease in the release rate, which
is reflected in the decrease of the exponent associated
with the time in the power law. Finally, when the

FIGURE 2 Release Profiles from Cubic Lattices Through Their
Total Area, with Different Initial Drug Load (C0). (5) C0 =1.00; (6)
C0=0.85; (4) C0=0.65; (5 ); C0 =0.55; () C0 =0.45; (/) C0 =0.35;
(�) C0 =0.31; (*) C0 =0.25; ($) C0=0.15.

TABLE 2 Evaluation of Dissolution Data (Total Area)

Drug content

Mt
N0

¼ aH þ KH

ffiffi
t

p
Mt
N0

¼ a0 þ b0tn

KH r2 n r2

1 0.070 0.9979 0.48 0.9987
0.85 0.064 0.9973 0.48 0.9965
0.65 0.049 0.9912 0.43 0.9993
0.55 0.044 0.9809 0.39 0.9955
0.45 0.032 0.9617 0.32 0.9983
0.35 0.014 0.9085 0.23 0.9952
0.31 0.007 0.7751 0.17 0.9900
0.25 0.005 0.5636 0.11 0.9693
0.15 0.004 0.3674 0.07 0.7811
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initial drug load is low (less than 0.3), only a small
fraction of the dose is connected with the external
medium, and thus, the release profile reaches a con-
stant value.

A pharmaceutical system fitting the assumptions of
our model was studied by Bonny and Leuenberger
(1991). They performed experiments on the release of
caffeine (as a water-soluble drug) from a matrix of
ethyl cellulose (nonswelling water-insoluble excipient).
In this study, the release exponent n ranges from 0.17
to 1.09 for matrices with initial drug load from 10 to
100% w/w, respectively. Around the drug percolation
threshold, an anomalous transport was found,
evidenced by an exponent, n, close to 0.3. Further-
more, a Fickian release was observed when the drug–
excipient ratio formed a bicoherent system, i.e.,
between 40 and 60% w/w. Our results agree with
these findings. Nevertheless, Bonny and Leuenberger
(1991) found a zero-order release kinetics (i.e., n tends
to 1) for high initial drug loadings (above the excipi-
ent percolation threshold). This behavior corre-
sponds to the release of a drug from a solid,
decreasing its volume, but with a constant exposed
surface area, generating in this way a constant drug
release as a function of time. In our case, we did not
find values of n close to 1 when e tends to 1, because
an erosion process was not considered, i.e., in our
work, when e is close to a unit, drug release was

simulated from a homogeneous matrix system without
volume change.

By means of computer simulations, the amount of
drug released at infinite time (M1) was also calculated.
We consider M1 as the amount of drug released to
the environment when MCS=100,000. From these
results, the amounts of drug trapped in the matrix
when exposing a fraction of area and when exposing
the total area of the matrix were determined (Fig. 3). In
Fig. 3, it is observed that in both cases, the amount of
trapped drug moves from zero to a maximum value as
the initial drug load inside the matrix goes down to
zero. The amount of drug trapped as a function of the
initial drug load was subjected to a nonlinear
regression according to the model represented by
Eq. 7. A square of the multiple correlation coefficient
of 0.9982 was obtained (exposing the total area), and
0.9958 was obtained when only two faces were
exposed. These values indicate that the model
reproduces our results quite well (see Fig. 3). When
the total area of the device is exposed, the fitted
equation has the following form:

Qt ¼ 0:386 þ 0:386 Erf½�10:269ð�0:293 þ eÞ	 ð9Þ

In this way, the estimated value of the percolation
threshold was 0.293 (standard error = 0.003). The
difference between this value and the reported value
of 0.3116 (Stauffer & Aharony, 1994) is due to the

FIGURE 3 Fraction of Dose Trapped in the Matrix (Qt) vs. the
Initial Drug Load, Exposing Different Area. Numerical Results,
Dots, and Their Fitting by Means of Eq. 7, Solid Line. Two
Opposite Exposed Faces (*), and Total Area Exposed (6).

FIGURE 4 Rate of Dose Trapped with Respect to the Initial
Drug Load in the Matrix (dQt /de). Exposing Two Opposite Faces,
Solid Line. Exposing the Total Area, Dotted Line.
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finite matrix employed here. By deriving the previous
equation, we find that the change of the trapped
amount with respect to the initial drug load is given by

dQt

de
¼ �4:518e½�105:457ð�0:293þeÞ2	 ð10Þ

The curve described by this equation is presented in
Fig. 4. For high initial drug content (above 60%),
practically all the drug molecules are connected
among them, so the trapped amount and its variation
are almost zero. Subsequently, as the initial drug load
inside the matrix decreases, the fraction of excipient
increases, and finite clusters of drug begin to be
trapped by the insoluble carcass. For an even lower
drug load (but greater than the drug percolation
threshold), the amount of trapped drug continues to
increase, as well as its reason for change (dQt/de). In
the vicinity of the drug percolation threshold, the
maximum variation of the trapped amount versus the
initial drug load was observed. This behavior must be
associated with the geometric transition of the matrix
at that point. Before the drug percolation threshold is
achieved, finite clusters of drug are dispersed, but
when the network is just percolated, the dispersed
clusters get together, i.e., a continuous cluster between
the ends of the matrix is formed, generating in this
way an abrupt change in the value of Qt. This
transition is better observed in the curve of dQt/de,
because the last one becomes a maximum at this point
of geometric change (see Fig. 4). At low initial drug
concentrations (e < 0.3), the amount of trapped drug
presents a plateau (c.f., Fig. 3), which finally reaches a
maximum value as the drug load moves to zero. This
limit of trapped amount can be determined theoret-
ically as follows: when there exists only one drug
particle inside the network, the trapped amount is the
probability that this drug particle is connected with
the exterior. In our network, the total number of sites
is 273, and among these sites, 4058 are located on the
surface. Therefore, if only one drug particle exists
inside the network, the probability that this drug
particle is in some superficial place is equal to 4058/
19683. This means that the fraction of drug connected
to the external medium is equal to 0.206, then
Qt=0.794. The value 0.794 is close to 0.784, i.e., the
value that we obtained by means of simulation.
Similar behavior is observed for the case of the release

through two opposite faces: the expected value of Qt is
0.926, which is very close to 0.931, the value obtained
by computer simulation.

When only two opposite faces of the matrix were
exposed, and using the previous methodology, a value
of 0.328 was found for the percolation threshold with
respect to the initial drug load (standard error=0.003).
From the case mentioned above, it comes out that the
trapped amount is a function of the exposed surface
area of the matrix system. This is due to the fact that
the number of cavities connected with the exterior is
in a direct relationship with the exposed surface. On
the other hand, the increase of the percolation
threshold when only two faces are exposed can be
explained by a decrease of the percolation probability,
because the system has only one direction in which to
form a continuous cluster. On the contrary, when the
total surface area of the matrix is exposed, the network
system has three directions (x,y,z) to form the per-
colating cluster. Therefore, more initial drug load is
required to compensate for the decrease in the
percolation probability in one direction.

In Fig. 4, it is shown that dQt/de suffers a greater
change around the percolation threshold when only a
fraction of the total surface area of the matrix is
exposed than when the total area of the system is
exposed. This is because, below the drug percolation
threshold, the clusters of drug have a higher
probability of being on the surface when exposing
the total surface area of the system than when only
one fraction is exposed. In this way, Qt increases
gradually when exposing the total surface area of the
matrix; therefore, dQt/de presents a less abrupt change
around the percolation threshold. When only a
fraction of the total surface area of the matrix is
exposed, the probability that isolated clusters are
located on the surface is low. However, around the
percolation threshold, when these isolated clusters
begin to be connected, Qt diminishes quickly. This
generates higher values of dQt/de than the analogous
values found when only a fraction of the matrix
surface area is exposed.

In spite of our matrix system being an idealized
model, some reported drug percolation thresholds
determined experimentally agree with our results. For
example, in Bonny and Leuenberger (1991, 1993) and
Caraballo et al. (1999), determined drug percolation
thresholds were close to the theoretical value of
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random site percolation in a simple cubic lattice. On
the other hand, there are some works that demon-
strated that the size ratio of drug–excipient modifies
the percolation threshold (Caraballo et al., 1996;
Millan et al., 1998). However, for matrix systems cor-
responding to a drug–excipient size ratio equal to one,
i.e., matrices formed with drug particles and excipient
particles with similar size, drug percolation thresholds
very near to the threshold value predicted by random
percolation in a simple cubic lattice were found. These
findings are in agreement with our numerical results.
Besides, these authors (Caraballo et al., 1996; Millan
et al., 1998) reported that the higher the drug–
excipient size ratio is, the higher the drug percolation
threshold. They also claimed that this could be
explained by a correlated percolation process, where
the lattice sites are no longer occupied at random.
Therefore, now these are occupied in a preferential way
according to certain parameters (e.g., particle size),
producing spatial correlations between the elements
that conform to the matrix system.

CONCLUSIONS

A Monte Carlo method allowed us to mimic drug
release from an inert matrix-type-controlled release
system for initial drug dose in the range from 0.15 to
1.0 fraction v/v. This simulation can generate useful
results independent of the shape of the matrix, as well
as of the exposed surface area. The obtained results
showed how device structure changes can affect both
kinetics and final yield of the drug release from these
kind of systems. The observed behavior can be
explained by the concepts of percolation theory, i.e.,
it was found that the drug spatial distribution in these
systems is associated with the random percolation
phenomenon. The drug–excipient ratio determines
the matrix structural properties and controls the drug
release profile. Close to the excipient percolation
threshold, the drug release process is carried through a
macroscopically homogeneous matrix (nonfractal),
and in this zone, the square root of the time can be
used to describe the release profile. Later, diminishing
the initial drug load, the matrix enters a transition
zone (prefractal) until arriving at the drug percolation
threshold (fractal structure, the matrix is macroscopi-
cally nonhomogeneous), and in this case, the power
law fit the found release profiles well.

Furthermore, a new method to estimate the drug
percolation threshold is presented. This method has
no assumption about drug release kinetics and is
capable of estimating the drug percolation threshold
as a function of the exposed surface area of the matrix
device. It was found that the amount of drug trapped
by the matrix (carcass) is a function of both the initial
drug load in the matrix as well as the exposed surface
area of the matrix. The amount of drug trapped in the
matrix was well described by the error function,
making it possible to establish the drug percolation
threshold. This function can be very useful to describe
the bioavailability of a matrix-type-controlled release
system with a certain initial drug dose. Special care
should be taken when a percolation threshold is
reported, given that the drug percolation threshold is a
function of the exposed surface area of the device. If in
a release experiment only a fraction of the total area of
the device is exposed, the obtained percolation
threshold will not correspond to the value obtained
when the total surface area of the matrix is exposed.
Attention should be paid to this point, especially
when in vitro studies are carried out with controlled
area versus in vivo performance, where the total area
of the matrix device is commonly exposed.

These findings can be valuable in the rational
design of matrix-type-controlled release dosage forms.
In fact, the modeling of drug release from delivery
systems is important in understanding and elucidating
the transport mechanisms, and it allows us to predict
the effect of the device design parameters on the drug
release rate and final yield.
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