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ABSTRACT One of the main challenges of glucose control in patients with type 1 diabetes is identifying
a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided
emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of
them are globally identifiable and observable at the same time. Thus, a general proposal was developed to
encompass four linear models according to suitable assumptions and transformations. After the correspond-
ing structural properties analysis, twominimalmodel structures are generated, which are globally identifiable
and observable. Then, the practical identifiability is analyzed for this application showing that the standard
collected data in many cases do not have the necessary quality to ensure a unique solution in the identification
process evenwhen a considerable amount of data is collected. The twominimal control-orientedmodels were
identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova
simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed
in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated
by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for
virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation
window was considered long enough for future artificial pancreas applications. The mean absolute error was
23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients.
These results confirm that linear models can be used as prediction models in model-based control strategies
as predictive control.

INDEX TERMS Glucose dynamics, identifiability, practical indentifiability, biomedical systems, model
identification.

I. INTRODUCTION
Insulin and glucagon play a key role in glucose home-
ostasis. Insulin promotes glucose storage as glycogen and
inhibits endogenous glucose production (EGP) while also
promoting glucose utilization in insulin-dependent tissues.
As a counterregulatory hormone, glucagon opposes to the
action of insulin, actively stimulating hepatic glycogenolysis
and gluconeogenesis and hence EGP to enhance a rapid
rise in the systemic glucose concentration in postabsorptive
and fasting periods, respectively. Unfortunately, the above
is lost in Type 1 Diabetes (T1D). T1D is a chronic disease
characterized by insulin deficiency due to the autoimmune
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destruction of the pancreatic beta cells, leading to an alter-
ation in the natural glucose regulatory system [1]. While T1D
mainly affects endogenous insulin production, its absence
(and even its exogenous administration) blunts the remaining
glucose-related metabolic processes. In this regard, people
with T1D face a lifelong optimization problem: limiting their
exposure to hyperglycemia while simultaneously avoiding
hypoglycemia [2]. Poorly controlled T1D increases the risk of
short- and long-term complications such as diabetic ketoaci-
dosis, retinopathy, nephropathy, and even death. [3].

Functional insulin therapy (FIT) deals with the accurate
titration of both short and long-term multiple daily injec-
tions (MDI) of insulin as a function of daily glucose
levels, pre-prandial glucose levels, and estimated carbohy-
drate (CHO) intake. According to the Diabetes Control and
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Complications Trial, FIT was related to a threefold increase
in severe hypoglycemic risk [3]. Nevertheless, the benefits
from transitioning the FIT from MDI to Sensor Augmented
Pump (SAP) are widely recognized, reducing the variabil-
ity of daily glucose profiles and the incidence of chronic
complications [3]–[5].

A second treatment for T1D that is under continu-
ous development is based on Artificial Pancreas Systems
(APS). APS consist of a sensor-augmented insulin pump
with a closed-loop control strategy to automatically titrate
the patient’s insulin infusion rate to keep blood glucose
(BG) levels within safe limits. Model-based control strate-
gies embedded into APS, such as Model Predictive Control
(MPC), have gained considerable attention during the last
decade [6]. MPC, rather than a single strategy, encompasses
a flexible control paradigm including (i) an explicit mathe-
matical model to predict the variable(s) of interest and (ii) an
online optimization problem designed to find the best insulin
injections subject to physical and design constraints over the
model variables.

The so-called minimal models or control-oriented models
target a simple mathematical description (few ordinary dif-
ferential equations and parameters) to evaluate and optimize
insulin therapies and design model-based control strategies,
i.e., these models are usable for both closed-loop control
in APS and open-loop control in FIT. The control-oriented
models include black-box models developed from experi-
mental data but are quite limited to properly represent the
physiology of a patient [7], [8] and gray-box models based
on physiological knowledge and real data [9]–[12]. Never-
theless, despite the number of models for T1D treatment,
model individualization remains a challenge for three main
reasons: (i) the error in CGM devices, (ii) the uncertainty
linked to self-reported information from users (meal and exer-
cise records, for instance) and (iii) physiological variations,
such as the circadian rhythm, that affect the glucose regula-
tory system. Therefore, appropriate model individualization
should be performed in order to minimize the overall model
uncertainty. [13].

Model identification/individualization in diabetes tech-
nology deals with finding the model parameters that best
describe the available data from a particular subject. The
authors in [14] presented an identification method in which
the glucose-insulin model is rewritten in terms of integrals
to individualize the insulin sensitivity and the time-varying
fractional clearance of plasma glucose at basal insulin.
In [15], the linearized UVA/Padova model was individualized
around a basal working point using a parametric identifi-
cation technique driven by constrained optimization where
the constraints are imposed over low and high glycemic
values. A constrained optimization problem was also used
in [16]–[18] where the sum of squared residuals was
minimized to identify a minimal black-box model. This iden-
tification method was later improved in [19] by introduc-
ing a data-driven multiple-model predictor that uses three
different identified models for specific periods of the day.

In [20], an adaptive identification procedure was provided
by recomputing the parameters with every new measurement
using a constrained weighted recursive least squares method
with a time-varying forgetting factor λ. In [13], three minimal
models were identified by minimizing the mean square error
concerning the CGMmeasurements. In addition, a long-term
glucose prediction algorithm based on a physiological model
and a deconvolution technique using CGM data was pre-
sented in [21] by adding information about meal absorption
to enhance prediction accuracy and using a constrained opti-
mization technique that minimizes the mean absolute relative
difference to identify 3 of the 10 parameters of the model.

In the context of T1D, other methods have been used as
interval analysis where the uncertainties are considered with
interval models by minimizing the sum of squares of the
distance between the samples and the predicted envelope
[22], [23]. Alternative identification strategies have also been
proposed in other applications. For instance, to model pros-
thetic hand fingers, an online identification algorithm that
uses Recursive Least Squares was implemented to identify
the parameters of a Takagi-Sugeno-Kang fuzzy model [24],
and a recurrent neural network was introduced in [25].

Although model individualization in the T1D field has
been typically carried out informally [13], neglecting the
lack of identifiability either in terms of the structure of the
model (structural) or in terms of the quality of experiments/
available data (practical) [26].

In this manuscript, a comprehensive review of control-
oriented models for both hybrid and fully automated APS
leveraging typical user-related physiological information
is provided [10]. The review focuses on gray-box lin-
ear control-oriented models. Based on these models, four
well-acknowledged linear models are analyzed in terms of
structure, identifiability and observability, and their relation-
ship with FIT. It is shown that most of these models are
not fully identifiable and observable simultaneously, which
implies that the parameters obtained in an overall identifi-
cation procedure are not reliable. As a consequence of this
analysis, the second contribution is the proposal of model
structures that encompass the previous four linear models
for the sake of information integration. Two minimal model
structures are generated, which are globally identifiable and
observable. Also, a discussion about practical identifiability
is addressed, including a methodology to select portions of
the data best suited for identification. This methodology is
validated with the two model structures using data from
33 virtual subjects and 77 real subjects.

The paper is organized as follows. Section II provides a
review of gray-box control-oriented models in the literature.
In Section III, four linear control-oriented models [9]–[12]
are analyzed and the structure of a general model is presented
including their relationship with personalized tools for FIT.
In Section IV, the identifiability and observability of all five
models are analyzed. In Section V, the results are presented
along with the collected data and the identification method
used. In addition, long-term validation of the identifiedmodel
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is carried out with in-silico and clinical data, the personalized
tools for FIT are assessed, and the performance of open-loop
control is also discussed. Finally, the conclusions are summa-
rized in Section VII.

II. CONTROL-ORIENTED MODELS: A REVIEW
This section presents a chronological review of the
control-oriented gray box models that stand out in the
literature.

The introduction of the so-called glucose-insulin Minimal
model (MM) is attributed to the pioneering work of Cobelli
and Bergman at the end of the 1970s [27], [28], although
earlier approaches to modeling the glucose homeostasis had
already been acknowledged [29]. The term ‘minimal model’
was coined concerning the model’s level of complexity [30].
It is worth pointing out that, despite its importance in today’s
diabetes technology, the model was initially intended to
characterize the insulin sensitivity in health during an Intra-
venous Glucose Tolerance Test (IVGTT) instead of designing
model-based control systems for T1D. This gray-box model
is nonlinear, and composed of two separate parts: the first part
describes glucose disappearance as a function of insulin in a
remote compartment and consists of two ordinary differential
equations. The second part consists of a single differential
equation and describes plasma insulin concentration when
BG concentration is a known forcing function. According
to the authors, despite the model’s simplicity, it cannot be
identified as a whole; this has to be done in two parts, which
is generally not recommended.

In [31], the physiological nonlinear model known as
Automated Insulin Dosage Advisor (AIDA) was introduced
to describe glucose-insulin interaction in subjects with T1D.
The model consists of four differential equations to account
for the change of glucose concentration, the change of plasma
insulin concentration, the ‘active’ insulin pool (which serve
to describe the delay in insulin action), and the amount of
glucose in the gut following the ingestion of a meal. With
this model, glucose uptake is linear when insulin is varied at
fixed glucose levels, but it saturates as glucose increases at
fixed insulin. A comparison of Bergman’s MM, the AIDA,
and the maximal model developed by [32] can be found
in [33]. The comparison was performed only for the glu-
cose/insulin subcomponent (glucose absorption due to meals
was not considered) and included IVGTT in the absence and
presence of an incremental change in insulin. Results showed
that the three models accurately followed the BG profile in
the presence of an incremental insulin response but failed to
predict BG levels in the absence of insulin.

Other contributions followed and improved the line
of Bergman’s MM. In [34], the authors analyzed previ-
ous linear compartmental and non-compartmental models
for glucose kinetics in a steady state. The comparison
revealed structural errors in the non-compartmental models,
which make it difficult to obtain a physiological insight,
especially when insulin is elevated. In contrast, despite being
more demanding in terms of modeling and computational

effort, compartmental models allow for a better use of the
informational content of kinetic data. In [35], [36], a non-
linear two-compartment MM of glucose kinetics was intro-
duced for labeled IVGTT. This model was required since
the monocompartmental representation available at the time,
provided a non-physiological pattern of hepatic glucose pro-
duction. Thus, two glucose pools were used to describe glu-
cose kinetics, one for plasma plus insulin-independent tissues
and the other for insulin-dependent tissues slowly exchang-
ing with plasma. This model was then improved in [37] to
obtain a more reliable insulin-independent glucose disposal
portrait and greater precision for metabolic indexes. The
improved version of the two-compartment model relied on
expressing insulin-independent glucose disposal as a frac-
tion of steady-state glucose disposal instead of considering
it as a constant. In addition, the authors in [38] added a
model for the metabolism of glucose in the liver into the
two-compartmental MM, to describe the endogenous glucose
kinetics during IVGTT.

A large number of papers have dealt with modified
versions of Bergman’s MM. The model proposed in [39]
stands out as it introduces a simple delay-differential model to
study glucose-insulin homeostasis as a single dynamical sys-
tem. It eliminates the insulin remote compartment included in
Bergman’s MM, and therefore, a single identification scheme
is required, solving the previously described problem of the
two-step identification scheme for Bergman’sMM. However,
the model’s equilibria do not represent the reality of subjects
with T1D because the basal rate depends on glycemia and
stabilizes the system after a meal without an extra insulin
injection. This last problem is not consistent with FIT and has
appeared in many subsequent models. Models in [40]–[42]
included a generalization of De Gaetano’s dynamical model
and alternative ways of incorporating the time delay associ-
ated with the insulin action.

In [43], a modified MM for T1D was formulated by
considering continuous insulin infusion, meals, and intra-
venous glucose administration (as in IVGTT) and with the
feature of representing circadian insulin sensitivity. [44] also
presented a model for T1D where Bergman’s MM was mod-
ified by replacing the endogenous insulin secretion with an
exogenous insulin infusion. Also, an extended MM was for-
mulated for the critically ill at the intensive care unit. Other
works presenting models for glucose-insulin dynamics in
critically ill patients are presented in [45]–[47] following the
same basic structure of the MM. An extension of the MM to
include plasma-free fatty acid dynamics with a primary focus
on subjects with T1D was introduced in [48].

In [49], [50], a linear MM was presented and evaluated
with data from subjects with T1D using a continuous subcu-
taneous insulin infusion (CSII). This model consists of two
linear differential equations and represents the interaction
of plasma glucose with insulin action. Although a rate of
appearance of absorbed glucose is considered in the model,
no dynamical model is added for the appearance of glucose
due to meals. This linear model showed similar results to
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Bergman’s MM. In fact, it was shown that both models
could not follow complex situations in T1D such as sev-
eral insulin bolus injections, incorrect insulin dosage, or the
absence of insulin supply. In [51], the Medtronic Virtual
Patient model was presented. This nonlinear model consists
of 5 equations that include three-compartment submodels
coupled with Bergman’s MM to describe plasma insulin
concentration in response to subcutaneous insulin delivery
and insulin effect, and a two-compartment model to describe
glucose appearance following a meal based on the maximal
model developed by Hovorka et al. [52], [53].
The last decade has seen tremendous progress on APS.

This upswing can be attributed to advances in computer
simulation, continuous glucose monitoring (CGM), insulin
pumps, mobile platforms, and control systems. Regarding
the latter, the analysis and development of control-oriented
models of the glucose-insulin and glucose-insulin-glucagon
systems have played a key role in model-based control strate-
gies. In [54] and [55], a first-order with integrator and time
delay continuous transfer function was proposed to account
for the effect on BG of both, the CHO consumption and
bolus insulin infusion. However, BG and insulin input are
deviation variables around basal values. The model can be
individualized with few FIT-related parameters. Following
this idea, [9], [56]–[58] introduced a second-order with inte-
grator transfer function to describe subjects under MDI. Even
though initially the authors considered two different poles
for each insulin and CHO subsystem, they observed that the
BG behavior is similar when considering equal poles in each
subsystem, so a reduced model was finally obtained with four
parameters to be identified. In [59], a second-order transfer
function plus a stochastic term was proposed to account for
unknown factors not previously considered and useful for
robust and adaptive control strategies.

In [60], the structural identifiability problem of Bergman’s
MM is discussed, which basically relies on fixing the basal
glucose and insulin parameters to be identifiable. Thus,
the authors presented an alternative identifiable nonlinear
control-oriented model to describe plasma insulin action
on glucose. The model consists of 3 Ordinary Differen-
tial Equations (ODE) and 4 parameters. In [61], a linear
model with three state variables (insulin, glucagon, and
glucose concentration) was developed. The control input
is intravenous insulin, but despite the states’ and inputs’
physiological meaning, the parameters of the linear sys-
tem have a non-physiological meaning. [62] extended the
Bergman’s MM to account for subcutaneous insulin infusion
and meal intake based on Hovorka’s model. Then, in [63],
[64], the extended MM with meal absorption and CSII was
also augmented with stochastic terms to include intra-patient
variability. Additional works conducted up until 2013 can
be seen in the review by [65]. In [66], two linear models
were developed, and their steady-state response analyzed,
arguing that the equilibrium of BG levels should depend on
the initial BG condition. From this work, the linear model
with improved BG predictions and parameter correlation with

therapy parameters has four parameters to identify as the
one in [56]. Regarding bihormonal APS, Lv et al. proposed
eight models including linear and nonlinear representations
of the subcutaneous transport of exogenous glucagon [67],
also in [68] a nonlinear control-oriented model including
glucagon was detailed. A minimal model of 6 ODE intro-
ducing the effect of physical activity was presented in [69].
Additional models used up until 2015 can be seen in the
review by [70].

In [10], a linear control-oriented model with close-to-
reality equilibria and FIT-related parameters for subjects with
T1D was presented. Its main feature consists of consider-
ing insulin sensitivity as a constant (i.e., not as a function
of glucose) in the range of normoglycemia, hypoglycemia,
and hyperglycemia. However, the insulin concentration and
CHO absorption equations are given as second-order ODEs.
In [71], a better state-space realization was performed where
all variables have physiological meaning. Themodel was also
analyzed and compared in terms of its identifiability prop-
erty with a subcutaneous oral glucose MM and an intensive
control insulin-nutrition-glucose model in [13]. The authors
found that any of the three models are structurally identifi-
able. Several parameters must be fixed to fulfill this property.

Adopting a similar approach to [10], in [11], a linear
glucose-insulin model with 3 sub-models (5 compartments)
was developed. Based on the maximal model in [52],
the authors got rid of one of the insulin compartments to avoid
identifiability issues. In [72], 6 models were proposed (3 of
them are linear) to characterize the influence of exogenous
insulin on postprandial glucose kinetics. However, this time,
the accessible compartments represented plasma, and the
non-accessible compartments corresponded to other tissues
such as the interstitium. Minimal physiological models sim-
ilar to the Medtronic virtual patient [51] but extended with
the model of CGM noise and stochastic terms to account for
unknown factors were developed in [73], [74].

A brief review of physiological models, including some
variants of the MM and Hovorka’s model, was presented
in [75], and a comprehensive review of different models
including an analysis of 38 control-oriented models can be
found in [76]. Another linear mathematical model was devel-
oped by [12] in order to simulate virtual patients for several
days (19 days). The model included two-compartments for
each subsystem of glucose, insulin, and CHO. A control-
oriented linear parameter-varying model was developed
in [77] consisting of a three-order transfer function, and then
augmented to include the insulin-resistant effect of hyperin-
sulinemia in [78]. Also, a nonlinear model with four ODE to
describe the interaction between insulin, glucose, free fatty
acid, and growth hormone in T1D was introduced in [79].

III. MODEL STRUCTURE ANALYSIS
In the following section, we analyze some properties of
control-oriented models that stand out because of their char-
acteristics.
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Bearing in mind that a good MM is not a large-scale one
and has desirable features such as: (i) it is physiologically
based, (ii) its parameters can be estimated with reasonable
precision from a single dynamic response of the system,
(iii) the parameters vary within physiologically plausible
ranges, and (iv) the model has the ability to describe the
dynamics of the system with the smallest number of iden-
tifiable parameters [30].

Additionally, as the overall nonlinearities of the dynamics
of glucose in terms of insulin delivery and meal consumption
have only a marginall effect [10], [50], [80], and as a linear
structure is beneficial in the development of control strategies
due to its simplicity, then the focus of this paper is on linear
control-oriented models. From the state-of-art, four models
are selected for satisfying these characteristics: Del Re’s
model [56], Magdelaine’s model [10], Hovorka’s model [11],
and Grosman’s model [12]. These models are discussed, and
then a general model which summarizes their properties is
proposed.

Each model’s structure is described in Table 1 along with
their state-space representation.G denotes the BG concentra-
tion, I1, I2 are the insulin in the first and second compartment
(interstice and blood), andD1,D2 denote the glucose concen-
tration due to meals in the first and second compartment. The
inputs of the models are the amount of ingested CHO r(t) and
the exogenous insulin delivered u(t). A detailed description of
the parameters and units of each model can be found in the
corresponding reference.

A. LITERATURE MODELS
We start the analysis with the model presented in [56],
denoted here as ‘‘Del Re’s model’’, which, as stated by
the authors, was intended for robust control design in
MDI-treated subjects. The model comprises two transfer
functions denoting the glucose response to a meal and an
insulin injection, respectively. Table 1 shows themodel’s real-
ization, where only four parameters were used, implying, for
instance, the time constant of insulin release being equivalent
to the one needed for its degradation (a similar assumption is
made for the meal dynamics).

We further consider the model presented in [10], denoted
here as ‘‘Magdeleine’s model’’. This is a simple model aimed
at representing the realistic behaviors of a subject with T1D,
focusing on the long term. The model describes BG excur-
sions after meal intake while treated with insulin therapy. The
model is made up of five state variables and six parameters.
Themain property of thismodel is that each glycemia equilib-
rium corresponds to a single value for the basal level, which
is consistent with FIT because the basal level does not depend
on the BG value. One of the model’s main features is that it
keeps an unstable equilibrium in the fasting state, as observed
in T1D. Unlike del Re’s model [56], this model includes the
term K1 − Kb corresponding to endogenous glucose produc-
tion and insulin-independent glucose consumption. Unlike
many other linear/linearized models of the glucose-insulin
system, the state variables in this model are absolute (no

deviation). Table 1 provides the block diagram and describing
equations of the model.

The third model, denoted here as ‘‘Hovorka’s model,’’
is introduced in [11]. Its purpose is to produce realistic
multi-day glycemic excursions of subjects with T1D with
day-to-day variability in insulin therapy and meals. The
inputs of the model are insulin dose and the amount of
CHO intake. The model is made up of five compartments,
and thus, five state variables. Unlike previous models, this
model incorporates a glucose self-regulation parameter K
associated with the renal clearance of glucose at high BG
levels or counter-regulatory hormone effects at lowBG levels,
leading to glycemia stabilization. This is not consistent with
the reality of patients with T1D because extra boluses of
insulin would not be necessary after a meal; it would be
enough to wait to self-regulate the levels. However, it can
be justified if the constant K is small enough, implying a
long stabilization time such that it cannot be reached during
postprandial periods, so in this case, it is a model that is
consistent with reality. Table 1 provides the block diagram
and describing equations of the model.

Finally, the fourth model is presented in [12] and denoted
as ‘‘Grosman’s model’’. It is a mathematical model formu-
lated to simulate virtual patients’ glucose dynamics derived
from the information provided by the Medtronic MiniMed
CareLink sensor-augmented pump during 19 simulation
days. This linear model consists of three two-compartment
submodels for glucose, insulin, and CHO dynamics, yielding
a model of 6 states and 9 parameters. The model is very
similar to the three previously described ones. As in Hov-
orka’smodel, the self-regulation term 1/τ3 has been included,
and it considers equal poles for the meal absorption sub-
model. However, the model considers different poles for the
insulin dynamics and has an additional state for subcutaneous
BG concentration Gsc. The block diagram and describing
equations of the model are provided in Table 1.

B. A GENERALIZED MODEL
For the sake of simplicity, we present a generalization of
the above models to condense the information and make the
analysis easier. To this end, let us consider the following
affine linear model with state-space representation

Ẋ (t) = AX (t)+ BU (t)+ E

Y (t) = CX (t) (1)

with matrices given by:

A =


−θ6 −θ2 0 θ4 0
0 −1/θ3a θ7a/θ3a 0 0
0 0 −1/θ3b 0 0
0 0 0 −1/θ5a θ8a/θ5a
0 0 0 0 −1/θ5b

 ,
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TABLE 1. Structure of the models.

B =


0 0
0 0

θ7b/θ3b 0
0 0
0 θ8b/θ5b

 , E =


θ1
0
0
0
0

 , U (t) =
[
u(t)
r(t)

]
,

and C =
[
1 0 0 0 0

]
. The state is given by X =[

X1, · · · ,X5
]T
=

[
G I2 I1 D2 D1

]T , and the inputs are
insulin rate u(t) and CHO intake rate r(t). The ODEs
of the model and the corresponding block diagram are
shown in Table 1, where θ1 is the net balance between the
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TABLE 2. Relationships between model parameters.

endogenous glucose production and insulin independent glu-
cose consumption, θ2 is the insulin sensitivity, θ3a and θ3b
correspond to the time constants of insulin diffusion in the
first and second compartment, respectively, θ4 is the con-
version constant of CHO to glycemia, θ5a and θ5b are the
time constants of CHO diffusion in the first and second
compartment, respectively, θ6 is the glucose self-regulation
fractional rate, θ7a and θ7b are the insulin bioavailability in the
first and second compartment, and θ8a and θ8b are the CHO
bioavailability in the first and second compartment.

This representation summarizes the previous models and
adds some degrees of freedom by considering different time
and bioavailability constants for each compartment. The rela-
tions between the original parameters of the analyzed models
with respect to the new ones are shown in Table 2.

C. FUNCTIONAL INSULIN THERAPY
FIT is a pedagogical approach to insulin therapy for sub-
jects with T1D. It empowers the patient to take control
of the treatment based on his/her clinical history, lifestyle,
diet, and everyday activities [81]. FIT involves frequent
self-monitoring of blood glucose (6 to 8 daily controls),
multiple daily insulin injections, and the subject’s therapeutic
and nutritional education. The main FIT parameters are the
basal insulin infusion rate (ub) and the fast-acting insulin
(bolus), which further depend on correction factor (CF),
raise, carbohydrate-to-insulin ratio (CIR), and insulin-on-
board (IOB). These tools are usually empirically calculated
by the physician using a population approximation (see [82]),
which involves a long process to obtain the specific value for a
subject [83]. One of the purposes of mathematical models for
T1D treatment along with the subject’s data and computation
tools is to estimate subject-specific tools for FIT. These tools
can be computed with the general model’s parameters, and
therefore, with the other four models’ parameters by using
the equivalences in Table 2. The description of each tool for
FIT and its mathematical expression are presented in Table 3.

IV. STRUCTURAL IDENTIFIABILITY AND OBSERVABILITY
The purpose of an identification process is to provide a
value for every parameter such that the model accurately
describes the data collected for a given user. To this end,
the model’s identifiability and observability are analyzed
first. Identifiability can be seen as a particular observability

FIGURE 1. Reduced identifiability tableau - Del Re’s model.

case, in which the initial states are considered model parame-
ters, thus, a system is defined identifiable if all its parameters
are observable [84].

Structural identifiability refers to the theoretical possibil-
ity to find a unique solution (set of parameters θ ) in the
identification problem, where confidence intervals are not
infinite [85]. It is a property of the model and cannot be
improved through measurements since it does not depend on
them.

Different methods and tools assessing structural identifia-
bility can be found in [86], [87]. In this work, the Generating
Series for Testing Structural Identifiability (GenSSI) tool was
used for structural identifiability analysis, which relies on
identifiability tableaus to determine whether the property is
local or global. The tableaus graphically represent the fulfill-
ment of the conditions of structural identifiability. They have
as many rows as nonzero coefficients and as many columns as
parameters to identify. When the tableau is a full-rank matrix,
at least local identifiability is guaranteed.

A. LITERATURE MODELS
Figures 1, 2, 3, and 4 show the reduced tableaus of the
four analyzed models when considering the complete set of
parameters and initial conditions. A summary of the out-
comes is shown in Table 4. Results show that the only glob-
ally structurally identifiable and simultaneously observable
model is Del Re’s because its reduced identifiability tableau
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TABLE 3. Relationship of the general model with tools for FIT.

FIGURE 2. Reduced identifiability tableau - Magdelaine’s model.

FIGURE 3. Reduced identifiability tableau - Hovorka’s model.

is a full-rank matrix of order 8. This may be explained by
the low number of parameters. However, simpler models tend
to overlook important phenomena. Hovorka’s, Magdelaine’s,
and Grosman’s models do not satisfy the global identifiable
and observable (GIO) condition when only considering the
CGM data as output and the CHO intake and insulin doses as
input signals. The lack of identifiability can be explained by

FIGURE 4. Reduced identifiability tableau - Grosman’s model.

TABLE 4. Summary of literature models structure: BA–Bioavailability;
EP–Equal poles; SR–Self-regulation; LI–Locally identifiable; GI-Globally
identifiable; GIO-Globally identifiable and observable; NU-Number of
unknown parameters.

correlated parameters and ambiguous solutions which make
it impossible to find a unique set of parameters.

B. GENERAL MODEL
In an initial analysis, it was shown that the complete param-
eter set, including the initial conditions of the state

θ =
[
θ1, . . . , θ8, X (0)

]T
is not globally structurally identifiable (although local
structural identifiability holds). Different combinations of
parameters were assessed in terms of structural identifiabil-
ity, considering different bioavailability rates, equal poles
in both subsystems, and the self-regulation term, to find
minimal realizations that are both globally identifiable and
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FIGURE 5. Reduced identifiability tableau - 5θ model (Str. A).

TABLE 5. Summary of general model structure variations:
BA–Bioavailability; EP–Equal poles; SR–Self-regulation; LI–Locally
identifiable; GI-Globally identifiable; GIO-Globally identifiable and
observable; NU-Number of unknown parameters.

observable. The tested variations of the general model are
detailed in Table 5, in which a reduction of parameters was
made until a structure was found to be GIO. Two of these
variations are further analyzed.

1) STRUCTURE A
This structure simplifies the general model as follows:
{θ7a, θ7b, θ8a, θ8b} = 1, {θ3a, θ3b} = θ3, and {θ5a, θ5b} =
θ5 =, θ6 = 0 i.e., all bioavailability parameters are set as 1,
the time constants are equal for each insulin and oral subsys-
tem, and the self-regulation term is not considered. With this
modification, the 4 initial states are deemed identifiable (the
glycemia value is known as it is the output signal) together
with the 5 resultingmodel parameters. The structure is similar
to Magdelaine’s model, but provides a solution to the ambi-
guity problem generated by the parameters KSI and Ku by
grouping both into θ2 = KSIKu/Vi. This minimal realization
yield both subsystems with critically damped dynamics.

Figure 5 shows the tableau for the general model with
structure A. We can see that the matrix is full-rank of order 9;
therefore, the model satisfies the condition of structural
identifiability.

2) STRUCTURE B
This structure extends structure A with the self-regulation
term θ6. Fasting conditions for the initial state are consid-
ered. The initial condition states X2(0) and X3(0) are set in

FIGURE 6. Reduced identifiability tableau - 6θ model (Str. B).

equilibrium Xb associated to the basal infusion rate, and X4(0)
and X5(0) are set as zero due to the absence of boluses.
The above holds only after several hours with no meal
intake nor insulin bolus, i.e., in the steady-state. With the
above, the model with structure B becomes GI and partially
observable.

Figure 6 shows the full-rank tableau for the generic model
with structure B. Although this structure has more parameters
in the model, structure A has a constraint-free initial state.

V. PRACTICAL IDENTIFIABILITY
Once the structural identifiability of the model is studied,
the next step is to perform a practical identifiability analysis
to determine whether it is possible to find a unique numerical
solution from noisy measurements, in this case, CGM data.
In terms of model individualization, experimental design
poses a significant challenge in diabetes technology since a
persistent exciting signal cannot be directly applied to a real
subject. Therefore, the model must be identified with input-
output data collected in outpatient conditions. The output of
the system is the data received by the CGM device corre-
sponding to the glycemia measurements every 5 minutes. The
first input corresponds to the delivered insulin doses. For this
input, both the basal insulin and the insulin boluses are taken
into account. Typically, the basal application is programmed
into the insulin pump, while the boluses are calculated by
the patient at mealtimes (keeping it as a record in the insulin
pump memory). The second input corresponds to the CHO
count made by the user at mealtime and reported either in the
insulin pump or the CGM application. The most significant
error source for the identification process comes from the last
two entries, as it depends entirely on the patient’s report.

Non-identifiable parameters can often be approximated to
fixed (population) values as long as their influence on the
measured variable is not significant. In this regard, modeling
strategies should target parameter identifiability for the most
influential parameters. As presented in [13], [26], parameters
can be ranked in terms of an importance factor, e.g., the indi-
vidual sensitivities of the measured variable to changes in a
given parameter set.
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First, let us consider the matrix that includes the sensitivity
terms of the output with respect to the model parameters

S =
∂Y (t)
∂θ
=
[
Sθ1 . . . Sθn

]
=


∂Y1
∂θ1

. . . ∂Y1
∂θn

...
. . .

...
∂Yk
∂θ1

. . . ∂Yk
∂θn


(2)

where Sθ1 . . . Sθn can be computed by expanding system (1)
with the sensitivity Sθi as a new state with initial condi-
tions equal to zero. The sensitivity matrix can be computed
through the Advanced Model Identification using Global
Optimization (AMIGO) software [26] along with the impor-
tance factor (3) which will be helpful to rank the parameters.

To consider a sensitivity analysis valid for the entire space,
nlhs different parameter sets within the possible range are
found using the Latin Hypercube Sampling (LHS) method
[88]. The importance factor for each parameter is given by

δ
msqr
θi
=

1
nlhs k

√√√√ nlhs∑
l=1

ne∑
e=1

(
S l,eθi

)2
(3)

where ne refers to the number of experiments. The higher the
factor for a particular parameter, the more relevant the effect
of the parameter on the output. Thus, for non-identifiable
models, this method is commonly used to consider only the
most relevant parameters and set the parameters to be less
sensitive to population values [13]. To guarantee uniqueness
in the solution, linear independence between/among columns
of the relative sensitivity Ŝ matrix should be verified

Ŝ =
[

Sθ1
‖Sθ1‖

. . .
Sθn
‖Sθn‖

]
(4)

There are several methods to determine the collinearity
degree in a group of parameters. The collinearity index [89]
CD(θ ) is used here to quantify that correlation

CD(θ ) =
1√
λŜT Ŝ

, (5)

with λŜ the minimum eigenvalue of the sensitivity matrix
relative to ŜT Ŝ. This index indicates that a change in the
output Y caused by a variation of parameter θi can be com-
pensated in a linear approximation of up to 1/CD% with
appropriate changes in the other parameters. In [89], a CD
boundary of 20 was proposed. This means that the change
in Y can be compensated by up to 1/20 = 5% of changes
in the other parameters. A high value of CD indicates that
the parameter set is weakly identifiable with the collected
data, while low values suggest linear independence of the
parameter set.

Collinearity tests in virtual and real subjects with T1Dwere
performed at different time intervals. Using the sensitivity
analysis in the collected data and for structures A and B,
the collinearity indexwas evaluated in periods of 3 hours from
the start of the data up to 5 days. The results obtained are
shown in Figures 7-10. On average, the minimum collinearity

FIGURE 7. Collinearity index CD - Virtual patients, Str. A.

FIGURE 8. Collinearity index CD - Virtual patients, Str. B.

FIGURE 9. Collinearity index CD - Real patients, Str. A.

index was reached in around one and a half days. This could
be explained by the input pattern since insulin and mealtimes
do not vary too much from day to day. Thus, longer periods
usually have the same distribution, and the collinearity index
remains constant or increases as denoted in Figures 7-10.

Due to a large amount of data in real subjects, it was nec-
essary to find the time interval that minimizes the collinear-
ity index and improves practical identifiability. A genetic
algorithm to craft identification data sets minimizing the
collinearity degree among parameters was implemented to
achieve this. For Structure B, the initial time was restricted
to periods between 3 am to 6 am, in an attempt to guarantee
that all states are steady.

Initial parameters are necessary to minimize theCD, which
were estimated considering an initial interval of 2 days.
A lower collinearity index was then found for every real
patient by varying the interval using a genetic algorithm.
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FIGURE 10. Collinearity index CD - Real patients, Str. B.

FIGURE 11. Collinearity index CD - Real patients, optimal index.

Figure 11 shows the collinearity index (CD) obtained for each
patient and for structures A and B, where 14 and 33 intervals
satisfy the condition CD ≤ 20, respectively, in comparison to
the CD previously reported in figures 9 and 10, where only
5 and 7 intervals satisfied this condition. The median of the
collinearity indexwas 28.7 for Structure A and 25.2 for Struc-
ture B. This outcome may be due to the strong correlation
between inputs (a bolus accompanies meals in most cases)
and because of the almost invariant pattern of basal levels
from day to day.

VI. IDENTIFICATION AND VALIDATION
In this section, the twomodel structures A andB are identified
with the suitable data sets defined in the practical identifiabil-
ity analysis, and the validation of each model for the virtual
and real subjects is presented. Figure 12 shows an overview
of the whole process required for model identification.

The first step for identification is the discretization of the
models since the CGM measurements are obtained with a
sampling time of ts = 5 min. Here, a zero-order holder and
sampler is considered, yielding

x(k) = Adx(k − 1)+ Bd

 ui(k − 1)
um(k − 1)
uf (k − 1)

 ,
y(k) = Cdx(k), (6)

where y(k), ui(k), um(k), and x(k) represent the output, insulin
injection, CHO amount, and state at the k − th sample. The
fictitious input uf (k − 1) is set to 1, and Bd is the discrete

FIGURE 12. Guidelines to perform the identification of a model.

equivalent of the augmented matrix Bd = [B E]d . The
input um (derived from the meal announcement) is a variable
duration pulse constructed as follows: um = ūm during n =
b(gCHO/Ts)/ūmc steps, where gCHO [g] is the CHO amount,
and um = (gCHO/Ts − nūm) ≥ 0 in the next step. The upper
bound of um is empirically set to ūm = 2 [g/min]. However,
it should be an average physiological parameter that depends
on the body mass index.

Following this, the identification problem is posed as an
optimization problem such that the error between the data
collected from the subject with T1D and the individualized
model is minimized. As per usual, the mean square error
function (MSE) is chosen as the cost function, which reads
as

MSE = f (θ ) =
1
m

m∑
k=0

(Y [k]− y[k, θ])2, (7)

where y(k, θ) represents the model output and Y (k) the actual
measurement of the system at time k . The performance index
is defined as the mean absolute error (MAE) to explain the
model error in mg/dL units. This function range is between 0
and∞ mg/dl, indicating an ideal and poor fit, respectively.

In this application, the system does not use persistent exci-
tation (neither insulin doses nor carbohydrate content can be
persistently varied in a real subject). Therefore, the identifica-
tion procedure should be performed using historical records
of CGM, meal, and insulin uploaded from the user devices.
In this regard, a gradient-based optimization technique is
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suitable for the identification procedure. Thus, the iterative
Gauss-Newton algorithm is used here to individualize the
proposed model [90] as shown in Algorithm 1.

Algorithm 1 Gauss-Newton
1: Define θ [0] {Initial parameters and states}
2: while max(dir) >= Toldir & k <= Limk do
3: α← 1 {Initial step size}
4: dir ←−Hf (θ )/Jf (θ ) {Max. slope}
5: i← 0
6: while f [i] >= f [i− 1] & fc <= Limfc do
7: θ [i+ 1]← θ [i]− α dir {Parameters update}
8: Calculate f (θ ), Jf (θ ) y Hf (θ )
9: fc← fc + 1

10: α← α/2 {Step size update}
11: end while
12: i← i+ 1
13: end while
14: return θ {Final guess of parameters} = 0

The algorithm founds the parameters θ that minimize the
MSE in (7), and computes the step direction as Hf (θ )

Jf (θ )
, where

Jf (θ ) and Hf (θ ) are the Jacobian and Hessian of function f
with respect to θ , which are given by:

Jf (θ ) =
∂f
∂θ
=

2
m

m∑
k=0

(Y [k]− y[k, θ])JY (θ ), (8)

Hf (θ ) =
∂Jf (θ )
∂θ

≈
2
m

m∑
k=0

JY (θ )JTY (θ ), (9)

JY (θ ) = Cd
∂x
∂θ
= Cd


∂x1
∂θ1

. . . ∂x1
∂θn

...
. . .

...
∂x5
∂θ1

. . .
∂x5
∂θn

 , (10)

Finally, the parameters are computed as:

θ [i+ 1] = θ [i]+ α
Hf (θ )
Jf (θ )

, (11)

in which the step α is initialized as 1, and the param-
eters are initialized with θ (0) = [ubISF, ISF,
80, ISF/CR, 50, 0.005] (θ6 only applies for Structure B),
where the constant values are population parameters
extracted from the literature. The initial state is taken during
the fasting period (no meal consumption) considering a fixed
insulin infusion equal to the basal value (i.e., x2(0) = x3(0) =
ub, x4(0) = x5(0) = 0). The error curve of this method
(descending gradient type) has several local minimums.
Therefore, convergence to the global minimum is achieved
when the initial value of the parameters vector θ is closer
to the global minimum than to another neighboring local
minimum. Matlab was used to perform the whole procedure.
The calibration (identification) dataset is the one defined by
the collinearity index that minimizes the input correlation
metric.

FIGURE 13. Parameter comparison between structures A and B in virtual
and real subjects.

Structures A and B were identified during fixed periods
of 3 days in virtual subjects and variable periods in real
subjects (depending on the interval with the lowest collinear-
ity index). Next, the individualized model is validated by
comparing the output of the model with data compiled during
the 24-hours following the calibration period for both virtual
and real subjects.

The data for 33 virtual subjects was obtained from the
UVA/Padova simulator. A simulation scenario was created in
which five different basal segments were applied each day.
For the identification period the input of meals was defined
as [(32, 5, 67, 20, 42), (52, 27, 67, 39, 51), (37, 11, 69,
17, 42)], and for the validation period as [(45, 15, 85, 54)]
grams of CHO. An insulin bolus was delivered for each meal,
whose amount was suggested by the UVA/Padova simulator
bolus calculator [91]. On the other hand, the data relating to
77 real adult subjects with T1D were collected from 2017 to
2019 (Clinica Integral de Diabetes, Medellin, Colombia).
The hardware configuration used for data collection was the
Paradigm Veo System, composed of CGM and an insulin
pump. Fourmodels of pumpswere found:Minimed Paradigm
722, 723, 754, and 640G, which have recently been updated
with the currentmodel 670G.All the identification scripts and
data can be found at https://github.com/judhoyosgi96/DM1-
script.

The identification results using the Gauss-Newton method
are reported in Table 6, which presents the parameters, ini-
tial states, the adjustment in the periods of identification
(MAEid ) and validation (MAEval), and tools for FIT, where
the sub-index ‘‘real’’ indicates the population value calcu-
lated by the UVA/Padova simulator (for virtual subjects)
or the one reported in the insulin pump (for real subjects).
Finally, the metric denoted as REz indicates the relative error
between the real value and the identified value of variable z.
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TABLE 6. Summary of identified parameters, initial states, and FIT tools using structures A and B.

FIGURE 14. Model fit of virtual patients - 5θ model (Structure A).

FIGURE 15. Model fit of virtual patients - 6θ model (Structure B).

The outcomes are reported as mean ± standard deviation for
normally distributed data and as median (interquartile range)
otherwise.

A better fit to the curve in virtual subjects was obtained
with Structure B than Structure A. However, with Structure B,
the results in terms of FIT tools are not improved when
comparing them to nominal values in UVA/Padova simulator.
On the other hand, the fit to the curve was not improved for
real subjects when using Structure B. We can speculate that
this is due to more significant variability in the real subjects
than the virtual subjects.

Figure 13 shows the comparison of structures A and B,
with data of virtual and real subjects. Although all parameters
are close on every scenario, time constants θ4 and θ5 are
bigger in real patients than they are in virtual ones under both
structures. This could be explained by the uncertainty of the
(self-reported) meal record.

Figures 14 and 15 show the model fit on the average virtual
subjects (child, adolescent, and adult) of the UVA/Padova
simulator when using structures A and B in the identifica-
tion and validation periods. An improvement in MAE can
be seen when using Structure B (MAEid = 9.9 mg/dl,
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FIGURE 16. Model fit of real patients - 5θ model (Structure A).

MAEval = 12.3 mg/dl) with respect to Structure A (MAEid =
16.8 mg/dl,MAEval = 23.9 mg/dl).

Figure 16 shows the model fit after identifying Struc-
ture A with data for real subjects. The identification period
was defined according to the collinearity index (an average
interval duration of 2 days was obtained). For Structure A,
6 subjects are depicted with satisfactory results, representing
the glycemic dynamics within both the calibration and val-
idation periods. Complete results are shown in the Table 6
for structures A and B. Poor performance can sometimes be
explained by inaccurate data, i.e., data sets with missing CHO
or bolus entries, intra-patient variability, and non-accounted
non-linear behavior.

VII. CONCLUSION
Model-based APS use a prediction model of the glucose-
insulin system to plan timely insulin therapy. Linear control-
control-oriented models can provide acceptable prediction
accuracy while keeping the computational load stable.
To guarantee the uniqueness of the solution after the identi-
fication process, an analysis of structural and practical iden-
tifiability is required. In this work, four linear models of the
literature were studied, and a general model was proposed
that summarizes the dynamics described in all of them. Using
different parameter combinations, two minimal globally and
structurally identifiable realizations were proposed, which
were identified with simulated and real data. Satisfactory
results were obtained in both data sets, fitting the CGM
measurements and estimating the tools for FIT. Although
Structure A better represents glycemic behavior in subjects
with T1D, Structure B can be useful in some cases, as evinced
in virtual patients. These structures also allow patients’ indi-
vidualization and, through a practical identifiability analysis,
the definition of reliable data chunks to avoid parameter
correlation.
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