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Nonlinear optical response of α-terpinolene and β-phellandrene chromophores: an
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r new materials with improved nonlinear optical (NLO) response is a field of growing interest in materials
dipole ΦJ=1 contributions exceed the octupolar ΦJ=3 ones and dominate the optical behavior. However,
r NLO device engineering. Under this scenario, this work investigates the electronic-optical properties
d β-phellandrene molecules within the Hyper-Rayleigh scattering formalism (HRS). It includes solvent con
tial Monte Carlo / Quantum Mechanics procedure. According to Density Functional Theory analysis, mole
acts differently for the two chromophores. While α-terpinolene undergoes a hypsochromic effect, the β-phe
s moderate bathochromism, both with a strong absorption band in the ultraviolet region (λmax < 240 n

ctive for potential UV filters. Regarding the NLO response, both compounds present similar values fo
endent hyperpolarizability (βHRS) with values that vary from 62.46 to 138.73 au in aqueous environment, s
2 au), a standard optical material. Furthermore, while one of these chromophores is best described by di
=1 ≈ 68%), the other is dominated by the octupolar term (ΦJ=3 ≈ 60%) even when the solvent moderates
allow the building of optical switches without losing the strength of the NLO response. In addition, the po
ue to the solvent conveniently reduces the refractive index (n), providing light conduction applications. T
hores can be used to promote a decoupling between dipolar and octupolar contributions in NLO.

nlinear optics, DFT methods, Solvent effects, Monte Carlo simulations

on

terials are a growing group with enormous po-
rials science as they enable a variety of optical

as solar cells, field-effect transistors, and light-
s, which propagate some of the information as

eed of light, in the material, allows. Thus, the
ing the NLO survey were characterized by great
ver and propose new chromophores for a variety
ications.
known that, unlike inorganic compounds, or-

phores have a particular functionality for optical
ey interact better with high-power lasers with-
own, making it easier to miniaturize the devices
and their physicochemical properties can be im-

h molecular synthetic techniques. For example,
c chromophores have been shown to have lower

facilitate electronic transitions, amplifying the
the first and second hyperpolarizability (β and γ)
re the most relevant NLO parameters.
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On the other hand, not only low bandgap materials
esting. Various initiatives have shown that deep ultravi
optical materials (absorption edge < 200 nm, bandg
eV) are particularly useful in the fabrication of laser
generation of attosecond pulses, construction of sem
tors and uses of photolithography [3]. Also, on the sa
nonmetals, particularly boron-containing chromopho
shown promise in producing a variety of low refract
glasses, which is interesting for optical and radiatio
ing applications in nuclear medicine and industrial us
Thus, with the expectation of fully exploiting such p
many efforts have been made to synthesize and cor
ONL response of these materials to the effects of the
ment and mainly the molecular structure of these co
[8].

However, chemical synthesis is not the only way
trol the optical response of a chromophore. Specifi
solvent interactions, such as the Keeson, London, an
forces, affect the electronic structure of the materia
fluence several, if not all, molecular properties [9].
ular solvatochromism, for example, changes in the s
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een the electronic excitations and the NLO re-
material. When the solvent shifts the electronic
rd higher energies, a hypsochromic shift occurs,

chromic shift denotes a trend toward lower en-
. Since the NLO effects are properties that in-
e electrons that are normally delocalized over the
lar system, they present an equivalent sensitivity
Thus, one strategy is to choose a solvent that can
esired property in specific technological applica-

pt to predict the behavior of NLO, sometimes an
discussion can be a difficult task, but molecular
niques associated with appropriate quantum me-
ximations can be easily applied to give reliable
lthough studies have shown the use of DFT cal-

edict and interpret Hyper-Rayleigh scattering ex-
ults, they highlight the importance of combining
experimental approaches to fully understand the

es of materials. Therefore, several papers that
olecular structures can be manipulated to im-
prototype [11–13], or even discuss the effects

echanics on which is difficult to access experi-
ues [14–16]. The dipolar (ΦJ=1) and octupolar
utions to β are interesting examples extensively
y Zyss et al. [17–25].
ibutions are important because they represent dif-
isms of interaction between the material and the
ic field. While the dipole term is associated with
of the electric dipoles in the material, the octupo-
n, on the other hand, is related to the deformation
phore [26, 27]. When an external electric field is
aterial deforms, and this deformation leads to an
. In summary, these first hyperpolarizability con-
esent different physical mechanisms by which a
espond to an external electric field and generate
nse. Although most compounds are dominated by
cter [28], octupolar systems are less common but
nt as they allow the engineering of NLO devices
tilities. Therefore, there is a special concern in

of new octupolar chromophores with high NLO
mply in how to tune and decouple these two con-
24, 29–31].

h for new NLO materials, eyes are often focused
natural products, which are molecular systems
ance in certain plants and fungi. In this work we
first time, the optical behavior of the molecules

and β-phellandrene (see Fig. 1). They are found
recolea [32], a bush specie with herbicide action.
ally active, the former is the most abundant com-
%), and the latter is much lesser abundant (5%).
t to assess these potentialities, this work uses ap-
tum chemical methodologies to understand how
-solvent interactions govern the molecular solva-
d optical response of these compounds.

(a) α-terpinilene

(b) β-phellandrene

Figure 1: The optimized structures of α-terpinolene and β-p
molecules at M062X/6-311++G(d,p).

2. Methodology

The analysis of solvent effects, in this work, is
a sequential Monte Carlo / Quantum Mechanics (s-
procedure which applies classical MC simulations to
uncorrelated liquid structures for further quantum m
treatment. The liquid simulations were carried out
DICE program [34–36] for one solute solvated by 30
molecules in the NpT ensemble at 1.0 atm and 398 K.

Intermolecular interactions were mediated by the
Lennard-Jones plus Coulomb potential. While the SP
site water potential [37] was used to describe t
molecules, only the LJ parameters of the solute were
from the Optimized Parameters for Liquid Simulati
The solute geometry was previously obtained by o
the solute molecule in water solvent using the Po
Continuum Model within the Integral Equation F
(IEF-PCM) [40]. The Coulomb charges were also obt
ing the continuum model with an electrostatic fit of the
potential [41].

The simulations were divided into two parts. The
sists of a thermalization stage of 7 × 108 MC steps,
by a production interval of a further 8 × 109 MC steps
liquid structures in thermodynamic equilibrium were p
More details about the simulations and sampling proc
be found in other works [39].

The contribution of the solvent to the molecular p
of interest has been taken into account using three ind
models.

• Gas-phase: In this stage, the properties of the
molecules of interest are evaluated.

• PCM: Designates the Integral-Equation Formali
Continuum-Polarizable Model [40] that enclose
lute in a cavity conforming to the shape of the m
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and considers the solvent as a continuum environment with
a dielectric constant ε.
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his solvation model designates a single repre-
normalized configuration of solvent [42] formed
perposition of one hundred uncorrelated Monte
ctures composed of an explicit solute surrounded
water molecules accounted for only as point

This model includes all electrostatic interactions
adius of 13Å.

This model embeds the solute and the nearest
molecules in the electrostatic field of the re-

3000 solvent molecules accounted for as point
This model couples specific solute-solvent inter-
ith the electrostatic forces of the bulk molecules.

he NLO effects, these contributions arise when
with matter. In such a case, the induced molecu-
ent can be expanded into a Taylor series as:

µi +
∑

j

αi jF j +
1
2

∑

jk

βi jkF jFk + ... (1)

n, µ is the permanent dipole moment, α is the
of the dipole, a tensor of rank 2, whose diagonal
an be combined to give the isotropic contribution

αiso =
1
3

(αxx + αyy + αzz). (2)

larizability can be used to infer the refractive in-
he Lorentz-Lorenz equation [43, 44]

n2 − 1
n2 + 2

=
4παiso

3Vmol
, (3)

the molecular volume.
r hand, β is a cubic tensor (3×3×3) with twenty-
ents, and in the presence of frequency-dependent
tity is best described by the hyper-Rayleigh scat-

us (βHRS) [46] as

2ω;ω,ω) = βHRS =

√〈
β2

ZZZ

〉
+
〈
β2

ZXX

〉
. (4)

ulation,

ZZ

〉
=

1
7

x,y,z∑

i

β2
iii +

1
35

x,y,z∑

i, j

(
β2

ii j + 4β2
jii

)

+
2
35

x,y,z∑

i, j

(
βiiiβi j j + 4β jiiβii j + 4βiiiβ j ji

)

1
105

x,y,z∑

i, j,k

(
βii jβ jkk + βii jβ jkk + βi jkβ jik

)

+
4

105

x,y,z∑

i, j,k

(
β jiiβ jkk + 2β2

i jk

)

(5)

〈
β2

ZXX

〉
=

1
35

x,y,z∑

i

β2
iii +

4
105

x,y,z∑

i, j

(
βiiiβi j j + 2β2

ii j

+
1

35

x,y,z∑

i, j

(
3β2

i j j − 2βiiiβ j ji − 2βii jβ jii

− 2
105

x,y,z∑

i, j,k

(
βiikβ j jk + βii jβ jkk + βi jkβ jik

+
1

105

x,y,z∑

i, j,k

(
2β2

i jk + βi j jβ jkk

An NLO system can be classified according to it
(βJ=1) and octupolar (βJ=3) terms [21] defined as

|βJ=1|2 = 3
5

(βxxx + βxyy)2,

and

|βJ=3|2 = 1
20

[3(βxxx + βxyy)2 + 5(βxxx − 3βxyy)2

Throughout the analysis of these components, it is
sible to know how a dipolar or octupolar system can
the concept of nonlinear molecular anisotropy ratio [1
is defined from the above equations as follows :

ρ =
|βJ=3|
|βJ=1| .

The anisotropic polarizability ciges origen to th
ΦJ=1 =

1
1+ρ and octupolar ΦJ=3 =

ρ
1+ρ contributi

[26]. Furthermore, one has the option of the depolariza
(DR), which is defined as [47]

DR =

〈
β2

ZZZ

〉
〈
β2

ZXX

〉 ,

and also provides information about the dipole and
characteristics of a chromophore.

Finally, the geometries of α-terpinolene and β-phe
molecules were optimized at M062X/6-311++G(d,p)
1) while all quantum mechanical calculations were p
considering a variety of DFT-based methods coupled
6-311++G(d,p) basis set [49, 50] as implemented in t
sian 09 program [51]. The analysis of the NLO param
performed with Multwfn [52].

3. Results

3.1. Dipole moment and solute polarization
Two chromophores were investigated in this w

terpinolene and β-phellandrene, extracted from
macrecolea [32]. Table 1 presents the results obtaine
permanent dipole moment (µ) in gas and liquid c
calculated in the M06-2X/6-311++G(d,p) theoretical

3
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-terpinolene) (b) ASEC (α-terpinolene)

hellandrene) (d) ASEC (β-phellandrene)

lecular electronic potential (MEP) plotted for α-terpinolene (a
for β-phellandrene (c and d) in gas and ASEC environments.

is the most abundant (ca. 77%) and with the low-
ment. In the gas phase, the calculation indicates
D. Whereas in a solvent, within the PCM model,
indicates a value of 0.35 D, which means a po-

ct of 52% with respect to the gas. Within the
the calculation indicates an even greater polar-
i.e. a value of 0.52 D, which is an increase of
pect to the gas.

the molecular electronic potential (MEP) map-
olecules, providing an understanding of how the

the permanent dipole moment regarding the gas
tively, deep red and blue colors indicate concen-
ative and positive electronic densities. From gas
ronments, both α-terpinolene and β-phellandrene
w an increase of electronic charges on specific
s, while the left side of the molecules becomes
ect indicates an internal charge transfer proce-
by the solvent, which improves µ.

as a much lower abundance (ca. 5%) but with the
r moment. In the gas phase, the dipolar moment
again, the solute polarization is pronounced. The
dicates a value of 1.11 D, which is an increase of
ect to its value in gas, and the ASEC model rise
iving a value of 1.16 D, which is an increase in
n of 49% respect to gas.

ce of solute polarization has been reported for
ular systems. Previous work suggests that larger
appear to be less sensitive to solvent polariza-
or example, some azo-dyes indicate a polariza-

t varies between 20% and 30% at the permanent
t [53, 54]. However, small molecules with lower-
e moments are easily polarizable. Some systems
mide, uracil, ammonia, and pyridine have under-
tween 40

(∆Egap), the isotropic component of the polarizabili
dipole (αiso), the molecular volume (Vmol), and the refr
dex (n). Concerning the polarizability of the dipole, tw
must be remarked. First, from α-terpinolene to β-phe
there is no significant variation in αiso. For example, i
phase, these chromophores show values of 116.56 an
au, respectively, which means slight contributions from
in the molecular structure.

The notorious point is the disagreement regarding
diction of solvent effects on αiso. Therefore, as can b
Table 1, the continuous model predicts a value of 1
which represents an increase of 32.31% with respect t
phase, while the discrete model predicts a value of 1
that goes in the opposite direction, showing a net de
0.88% with respect to the gas phase. Likewise, the sam
are obtained for β-phellandrene, as can be seen in Tab

Since the Lorentz-Lorenz equation allows connec
αiso and n, the analysis of the refractive index and
tronic structure of the material can indicate what th
trend would be. Also, Moss’s relation, n4(∆Egap−0.36
[60], says that the refractive index should vary inver
the HOMO→LUMO energy gap. Taking the α-te
molecule into account, from gas to solvent, the energ
creases respectively to 7.48 and 7.85 eV, for PCM an
Therefore, as determined by the Moss relation, n s
smaller than that reported in gas, but only the ASEC m
responds to the expectation and predicts a value of 1.4
refractive index of α-terpinolene in an aqueous solve
rationalization can be extended to β-phellandrene. F
to solvent, the energy gap increases, consistent for b
els, PCM and ASEC, and again only the latter model
correct tendency for the refractive index.

As experimental results are not yet appreciable, i
vant to confirm these predictions using other method
1 presents results obtained using CAM-B3LYP and ω
which respectively account for long-range and specifi
sion corrections. As one can realize, these approx
agree very well with M06-2X results.

3.3. UV-Vis spectra interpretation
Figure 3 presents the absorption spectra of the mol

interest in different environments, and Table 2 shows
results. For α-terpinolene, the absorption spectrum
some strong excitations at the limit of the ultraviol
(190 nm). Although these excitations are readily a
by computational methods, most spectrometers are b
these states. Therefore, we will focus on the region a
nm.

The α-terpinolene in the gas phase shows a mode
sition line at 226.43 nm occurring with an oscillator
of 0.0102 that remarks the lowest-lying spectral reg
analysis of the molecular orbitals indicates a HOMO→
excitation with n→ σ∗ symmetry [10].

In most molecules, σ’s are the occupied orbitals
lowest energies, orbitals with π symmetry have slight
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Table 1: The permanent dipole moment (µ/D), the isotropic component of the dipolar polarizability (αiso/au), molecular volume (Vmol/Bohr3· mol−1), and refractive
index (n). All par
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ameters were obtained at different DFT/6-31++G* methods:
Chromophore Method Medium µ αiso Vmol n ∆Egap

α-terpinolene M06-2X Gas 0.23 116.56 1548.03 1.54 7.38
PCM 0.35 154.22 1363.74 1.92 7.48
ASEC 0.52 115.53 1676.83 1.48 7.85

CAM-B3LYP Gas 0.24 116.45 1584.89 1.53 7.91
PCM 0.36 153.71 1326.88 1.75 8.00
ASEC 0.52 115.34 1354.37 1.63 8.35

ωB97XD Gas 0.24 116.51 1234.74 1.72 9.19
PCM 0.37 154.27 1290.03 2.00 9.29
ASEC 0.53 115.51 1418.86 1.60 9.44

β-phellandrene Gas 0.78 119.24 1502.38 1.57 7.40
PCM 1.11 159.61 1555.41 1.80 7.57
ASEC 1.16 118.52 1504.77 1.57 7.65

CAM-B3LYP Gas 0.83 119.48 1272.61 1.72 7.93
PCM 1.19 159.72 1502.39 1.85 8.01
ASEC 1.21 118.67 1430.47 1.61 8.06

ωB97XD Gas 0.84 119.58 1343.31 1.67 9.18
PCM 1.20 160.38 1555.41 1.81 9.20
ASEC 1.23 118.85 1465.32 1.59 9.23

west-lying electronic absorption of α-terpinolene and β-
ifferent environments. All parameters were obtained at the
G(d,p) level of calculation:
Medium λ Osc. Force ∆λ = λsol − λgas
Gas 226.43 0.0102
PCM 224.13 0.0124 −2.30
ASEC 213.11 0.0147 −13.32
HB+PC 218.20 ± 1.24 0.028 ± 0.003 −8.23 ± 1.24

Gas 224.91 0.5114
PCM 229.66 0.6803 4.75
ASEC 222.60 0.6039 −2.31
HB+PC 233.82 ± 0.62 0.359 ± 0.019 8.91 ± 0.62

and the lone pair states or nonbinding orbitals
ven higher energies. Concerning the unoccupied
nti-bonding states (π∗ and σ∗) are those with the
es. For these reasons, it is expected that n → π∗
ransitions occur before the n → σ∗ ones, as in

e PCM and ASEC models, the solvent imposes
ic effect on the n → σ∗ excitation. For example,
CM, the solvent shifts the excitation to 224.30
ans a slight blueshift of −2.30 nm from the gas
. The second model, ASEC, confirms molecu-

mism and sketches that the state should occur at
ith a strong oscillator force of 0.0147. Thus, the

s a shift of −13.32 nm toward higher energies.
to the purely electrostatic descriptions, the

l allows an extension of the wave function meth-
est solvent molecules, considering the long-range
ffects of the bulk molecules. Of course, this
ost consistent once it considers specific solute-

tions like the Keeson, London, and Dedye forces.
picts a typical hydration shell around the solute

molecule sampled from the classical MC simulation
the α-terpinolene molecule is an aprotic and low po
mophore, the water molecules of solvents better form
bonds with each other. This fact means that dipole-d
dipole-induced forces play a relevant role in the liqui
nation around the solute that impacts the electronic str
the chromophores. The HB+PC estimation indicate
n→ σ∗ absorption should occur at 218.20 ± 1.24 nm,
a hypsochromic displacement of −8.23±1.24 nm. Furt
the solvent not only affects the relative position of th
lines π → π∗, but according to the forces of the oscil
solvent also makes such excitation more intense. One c
compare these two effects by analyzing Fig. 3.

For β-phellandrene, the effect of the solvent is q
ferent, see also Figure 5. In gas, there is a ver
HOMO→LUMO+1 excitation at 224.91 nm, that oc
an oscillator force of 0.5114. After a quick analysis
orbitals in Fig. 6, it is noted that both orbitals involv
jump are π→ π∗.

For such type of excitation, it is expected that a pola
like water shifts π → π∗ lines to higher wavelength
means that the energy of the transition decreases in th
(bathochromic) [10]. However, a hypsochromic effe
served, which in principle is not prohibited for the
π→ π∗ but generally, they occur only under specific c
[61, 62].

Table 2 shows that the PCM and the ASEC calcul
in opposite directions with respect to the gas phase
stance, while PCM corroborates the expectative and
a bathochromic shift of 4.75 nm, the ASEC estima
cates a blue shift of −2.31 nm. The HB+PC model sup
the bathochromism is the right behavior for this π →

5



Journal Pre-proof
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, despite
and con-

both α-
ance. For
u for the
ich is far

ophores
ditive pa-
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lectronic absorption spectra of α-terpinolene (top) and β-
tom) within different environment models.

Consistently with this estimation, the maximum
uld occur around 233.82 ± 0.62 nm, which rep-

hift of 8.91 ± 0.62 nm, as best seen in Fig. 3.
one configuration sampled from the MC simula-
hows the molecular orbitals responsible for such
e presence of the solvent. As one can see, these
localized on the solute molecule, which means

sfer to the solvent.

erpolarizability

sents the frequency-dependent data collected for
polarizability within the Hyper-Rayleigh scatter-
malism. In gas-phase, both chromophores show
, 66.18 and 63.46 au respectively, for the α-
-phellandrene molecules.
o Oudar and Chemla’s relation [63], the first hy-
ity should vary inversely with the energy gap as
) when accounting for the gas-to-solvent effect.
drene, the predictions made with the PCM and

follow Oudar and Chemla’s prevision. Where
p increases by 0.17 and 0.25 eV respectively,
an increase of βHRS to 105.86 au as reported by
0.79 au as reported by ASEC.
olene, on the contrary, the solvent also increases
making the system more insulating. The ASEC

(a) n (HOMO) (b) σ∗ (LUMO

Figure 4: The molecular orbitals involved in the lowest-lying n→ σ
excitation of α-terpinolene in the gas phase.

(a) α-terpinolene

Figure 5: A typical hydration shell sampled to form the classical M
simulations. The dashed lines represent hydrogen-bond interacti
between the solvent molecules. The solute is hydrophobic, therefo
no such solute-solvent structures.

model, for instance, predicts an increase of 0.47 eV
to solvent, which downs βHRS to 62.6 au. whereas,
model shows the opposite trend for the first hyperpola

Furthermore, the results suggest that the NLO be
α-terpinolene is less sensitive to environmental effect
phellandrene. According to the ASEC model, from g
vent, βHRS shows a variation of only 5.62% for α-ter
while the variation is 26.25% for β-phellandrene.

Again, due to the absence of experimental results,
front the M06-2X data to those obtained using CAM
and ωB97XD methods (see Table 3). One more time
different philosophies, these methods agree very well
firm the results.

Compared to other standard NLO materials,
terpinolene, and β-phellandrene exhibit good perform
example, Alam [66] and Abbas [67] reported 42.82 a
first hyperpolarizability of urea in the gas phase, wh
from the current results reported for the studied chrom
in this work. Furthermore, the NLO properties are ad

6
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Table 3: The first hyperpolarizability (βHRS/au), the dipolar (ΦJ=1) and octupolar (ΦJ=3) contributions, anisotropic polarizability (ρ), depolarization ratio (DR), and
energy gap (∆Ega

rameters, whic
improved NL
mophore [68].
of α-terpinole

3.5. Dipolar Φ

The NLO r
dipolar and oc
alyzing the re
First, the struc
β-phellandren
and ΦJ=3, in
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ΦJ=1 = 61.7%

The charac
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Otherwise, wh
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firming that th
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e solvent
o solvent
e default
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this state-
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t respec-
h exceed
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e solvent
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9.5%

olar and
g the av-
extremes
ters. Ac-
tion ratio
landrene,
olar.

alues for
rnate be-
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p/eV). All parameters were obtained at different DFT/6-31++G* models quantum mechanics:

Chromophore Method Medium βHRS |βJ=1| |βJ=3| ΦJ=1 ΦJ=3 ρ DR ∆Egap

α-terpinolene M06-2X Gas 66.18 101.252 148.533 0.405 0.595 1.467 3.10 7.38

PCM 85.96 132.529 191.298 0.409 0.591 1.443 3.14 7.48

ASEC 62.46 97.348 137.294 0.415 0.585 1.410 3.20 7.85

CAM-B3LYP Gas 66.87 103.153 148.716 0.410 0.590 1.442 3.14 7.91

PCM 87.69 137.623 191.190 0.419 0.582 1.389 3.24 8.00

ASEC 62.67 98.284 136.731 0.418 0.582 1.391 3.24 8.35

ωB97XD Gas 65.14 91.296 158.450 0.366 0.634 1.736 2.72 9.19

PCM 86.86 124.873 206.981 0.376 0.624 1.658 2.81 9.29

ASEC 62.88 90.692 149.420 0.378 0.622 1.648 2.83 9.44

β-phellandrene M06-2X Gas 63.92 125.648 77.858 0.617 0.383 0.620 6.02 7.40

PCM 105.86 210.064 121.223 0.634 0.366 0.577 6.27 7.57

ASEC 80.79 163.939 76.299 0.682 0.318 0.465 6.97 7.65

CAM-B3LYP Gas 84.31 170.231 83.735 0.670 0.330 0.492 6.80 7.93

PCM 132.72 269.143 126.175 0.681 0.319 0.469 6.95 8.01

ASEC 97.73 199.884 84.017 0.704 0.296 0.420 7.26 8.06

ωB97XD Gas 87.43 176.50 86.964 0.670 0.330 0.493 6.80 9.18

PCM 138.73 281.016 133.498 0.678 0.322 0.475 6.91 9.20

ASEC 100.78 206.404 85.096 0.708 0.292 0.412 7.31 9.23

h means that it is possible to build devices with
O behavior by packing or crystallizing a chro-

These features open up possibilities for the use
ne and β-phellandrene.

J=1 and octupolar ΦJ=3 contributions

esponse of a chromophore can be divided into
tupolar contributions as ΦJ=1 + ΦJ=3. After an-

sults shown in Table 3, two effects are observed.
tural impacts. For instance, from α-terpinolene to
e, there is an inversion of the contributions, ΦJ=1
the gas phase. The octupolar contribution pre-
=3 = 59.5%) for β-phellandrene, whereas the β-
olecule is ruled by the dipolar contribution with

.
ter of the contribution to the NLO response of
e can best be analyzed using the anisotropy ra-
ich, when ρ → 0, the system is purely dipolar.
en ρ → ∞, the chromophore is said to be pre-
tupolar. From Table 3, it can be seen that the
o for α-terpinolene (ρ = 1.467) is more than dou-
ed with β-phellandrene (ρ = 0.620) in gas, con-
e first compound is much more octupolar than the

The second aspect that must be accounted for is th
effect. For a ground state system, the polarization due t
normally acts improving the dipole moment. Thus, th
is that the solvent enhances the dipolar contribution
pense of the octupolar term. Table 3, it is verified that
ment is verified in an accentuated form for the β-phe
molecule. Thus, the PCM and ASEC models predic
tively dipolar contributions of 63.4 and 68.2%, whic
the prognosis in gas (ΦJ=1 = 61.7%).

However, the mentioned effect is slighter for α-ter
Consistent with the quantum mechanical prediction, th
hardly affects the different contributions to the first hy
izability. For example, the PCM and ASEC models
βJ=3 contributions of 59.1 and 58.5%, respectively, w
very close to those reported for α-terpinolene in gas, 5

The depolarization ratio (DR) also exposes the dip
octupolar characters of the chromophores by analyzin
erages

〈
β2

ZZZ

〉
and
〈
β2

ZXX

〉
. Within the DR scale, the

lie between the octupolar (1.5) and dipole (9) charac
cording to Table 3, for example, in gas, the depolariza
ranges from 3.10 for α-terpinolene to 6.02 for β-phel
indicating that the first chromophore is the most octup

Thus, since these two chromophores have similar v
βHRS, one can use them for constructing gates that alte

7



Journal Pre-proof

(a) π (H

(c) π (

Figure 6: The mo
excitation of β-ph
of the explicit wa

tween dipolar
sity of the NL

4. Conclusion

This work
vent effect on
phellandrene,
ula macrecole
MC/DFT proc
els, continuum
Hyper-Rayleig
havior of such

The results
trical propertie
crease for the
phase for α-ter
The refractive
gas phase. T
ability to cond
toward a pote
tions.

The UV-vis
higher energie
the ASEC mo
but more likel
model, HB-PC

In addition
dependent hyp
parameter, sho
reported for u
dipolar and oc
ity, β-phelland
iors. While th
compound, th

lar contribution drives its optical response. Since both chro-
mophores have a similar NLO intensity, it is possible to switch

ptical re-
t both α-
mise for

ação de
- Brasil

entı́fico e
Amparo
es finan-
467CO).

s, Applied
90050502
aszkowska,
oui, Transi-
ctionalized
. 10 (2020)

alasyamani,
. 28 (2016)

hi, E. A. A.
ptical, ther-
i2O glasses,
07/s11082-

di, Z.A. Al-
rs: Fabrica-
eramics In-
0.124.
riwunkum.
rization of

hielding ap-
tron Optics

Al-Buriahi,
cated WO3
emistry 193

tes: A Rich
30. DOI:

ffects in Or-
2010, DOI:

ntroduction
ing, 2008,

war, S.F.A.
ning of ba-
eptors moi-
d Quantum
w.
Design and
nd photore-
2190.
nlinear op-
hem. Phys.,
Jo
ur

na
l P

re
-p

ro
of

OMO) (b) π∗ (LUMO+1)

HOMO) (d) π∗ (LUMO+7)

lecular orbitals involved in the lowest-lying π→ π∗ electronic
ellandrene in the gas phase (a and b), as well as in the presence
ter molecules (c and d).

and octupolar responses without losing the inten-
O response.

s

presents a theoretical discussion about the sol-
the NLO response of α-terpinolene and β-

two chromophores originally extracted from Fer-
a. The investigation is based on a sequential
edure and takes advantage of both solvation mod-

and discrete, and of the frequency-dependent
h scattering formalism to discuss the optical be-
compounds.
indicate that the solvent affects all relevant elec-
s. Hence, within the ASEC model, there is an in-
gas-to-solvent effect of 126% concerning the gas
pinolene and from 42 to 49% for β-phellandrene.
indices are lower than their counterparts in the

his means that the environment improves their
uct light and therefore, information and points

ntial use in optoelectronics and telecommunica-

ible spectra, gas-to-solvent, show a shift toward
s as much as -13.32 nm for α-terpinolene within
del and mixed trend for β-phellandrene (Table 2),
y a shift to lower energies according to the best
.

to these discoveries, the first frequency-
erpolarizability (βHRS), which is the main NLO
ws, in the solvent, values comparable to those

rea, a standard optical compound. Regarding the
tupolar contributions to the first hyperpolarizabil-
rene, and α-terpinolene present different behav-
e dipole prescriptions better describe the former
e latter is a non-trivial system, whose octupo-

between dipole and octupolar circuits without losing o
sponse. These findings for n and βHRS suggest tha
terpinolene and manly β-phellandrene may hold pro
optical applications.
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Broad ultraviolet absorption band signalizing possible UV filter use.

Intense and uncommon octupolar (βJ=3) feature.

The solvent enhances the NLO response and improves the dipolar (βJ=1
characteristics.

A possible dipolar/octupolar switch.
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