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The mass spectrum of πþ and ρþ mesons in the presence of a static uniform magnetic field B⃗ is studied
within a two-flavor Nambu-Jona-Lasinio-like model. We improve previous calculations, taking into
account the effect of Schwinger phases carried by quark propagators and using an expansion of meson
fields in terms of the solutions of the corresponding equations of motion for nonzero B. It is shown that the
meson polarization functions are diagonal in this basis. Our numerical results for the ρþ meson spectrum
are found to disfavor the existence of a meson condensate induced by the magnetic field. In the case of the
πþ meson, π—ρ mixing effects are analyzed for the meson lowest-energy state. The predictions of the
model are compared with available lattice QCD results.
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I. INTRODUCTION

It is well known that the presence of a background
magnetic field of magnitude jBj≳ 1019 G has a large
impact on the physics of strongly interacting particles,
giving rise to significant effects on both hadron properties
and QCD phase transition features [1–3]. Such huge
magnetic fields can be achieved in matter at extreme
conditions, e.g., at the occurrence of the electroweak phase
transition in the early Universe [4,5] or in the deep interior
of compact stellar objects like magnetars [6,7]. Moreover,
it has been pointed out that values of jeBj ranging from m2

π

to 15m2
π (jBj ∼ 0.3 to 5 × 1019 G) can be reached in

noncentral collisions of relativistic heavy ions at the
Relativistic Heavy Ion Collider (RHIC) and LHC experi-
ments [8,9]. Though these large background fields are
short lived, they should be strong enough to affect the
hadronization process, offering the amazing possibility of
recreating a highly magnetized QCD medium in the
laboratory. From the theoretical point of view, the study
of strong interactions in the presence of a large magnetic
field includes several interesting phenomena, such as the

chiral magnetic effect [10–12], which entails the generation
of an electric current induced by chirality imbalance, and
the so-called magnetic catalysis [13,14] and inverse mag-
netic catalysis [15,16], which refer to the effect of the
magnetic field on the size of quark-antiquark condensates
and on the restoration of chiral symmetry.
Yet another possible effect has been discussed in the

past few years. It has been claimed that, for a sufficiently
large external magnetic field, one could find a phase
transition of the QCD vacuum into an electromagnetic
superconducting state. This transition could be produced at
zero temperature, driven by the emergence of quark-
antiquark vector condensates that carry the quantum
numbers of electrically charged ρ mesons [17,18]. The
existence or not of such a superconducting (anisotropic and
inhomogeneous) QCD vacuum state is presently an inter-
esting subject of investigation and still remains as an open
question [19–27].
It is clear that the study of the properties of magnetized

light hadrons, in particular π and ρ mesons, comes up as a
crucial task toward the understanding of the above-men-
tioned problems. In fact, this subject has been addressed in
several works in the context of various effective schemes
for QCD. These include, e.g., Nambu-Jona-Lasinio (NJL-)
like models [18,25,27–42], quark-meson models [43,44],
chiral perturbation theory (ChPT) [45–47], hidden local
symmetry [48], path integral Hamiltonians [23,49], and
QCD sum rules [50]. In addition, results for the charged π
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and ρ meson spectra in the presence of background
magnetic fields have been obtained from lattice QCD
(LQCD) calculations [15,24,51–54].
In this article, we concentrate on the analysis of charged

πþ and ρþ mesons, which turn out to get mixed in the
presence of an external magnetic field B⃗. Our analysis is
carried out in the framework of a two-flavor NJL-like quark
model [55–57]; within a similar context, the properties of
magnetized neutral pseudoscalar and vector mesons have
been studied in Ref. [58]. It is worth noticing that in the
present case the calculations involving quark loops for
nonzero B require some care due to the presence of
Schwinger phases [59]. While these phases cancel out
for neutral mesons, in general they do not vanish when
charged mesons are considered; this has been shown
explicitly in the case of charged pions in Refs. [37,40].
At the same time, instead of dealing with free charged πþ or
ρþ meson fields, at the zero order, one should consider the
wave functions obtained as solutions of the charged meson
equations of motion in the presence of a constant external
magnetic field B. In fact, at the one-loop level, Schwinger
phases induce a breakdown of translational invariance in
quark propagators, which is compensated by the wave
functions of the external πþ or ρþ mesons. It is seen that the
charged meson polarization functions are not diagonal
for the standard plane-wave states, while they become
diagonalized in the basis associated to the solutions of the
corresponding equations of motion for nonzero B. In
addition, it is important to care about the regularization
of ultraviolet divergences, since the presence of the external
magnetic field can lead to spurious results, such as
unphysical oscillations of physical observables [60,61].
Here, we use the so-called magnetic field independent
regularization (MFIR) scheme, [30,31,37,62], which has
been shown to be free from these effects and to reduce the
dependence of the results on model parameters [61].
Concerning the effective coupling constants of the model,
we consider both the case in which these parameters are
fixed and the case in which they depend on the external
magnetic field. This last possibility, inspired by the
magnetic screening of the strong coupling constant occur-
ring for large B [63], has been previously explored in
effective models [64–70] in order to reproduce the inverse
magnetic catalysis effect obtained in finite-temperature
LQCD calculations.
From our calculations, it is found that the energy of the

ρþ meson fundamental state—which corresponds to a
Landau level k ¼ −1—does not show a large reduction
for values of eB up to 1 GeV2, in both the cases of fixed
and B-dependent couplings. Hence, our approach, which
improves upon previous two-flavor NJL model calculations
that use a plane-wave approximation for charged meson
wave functions, disfavors the existence of a charged vector
meson condensate induced by the magnetic field. On the
other hand, we find that for nonzero B the lowest-energy

state for the πþ state—Landau level k ¼ 0—gets mixed
with the corresponding ρþ state, this mixing being quanti-
tatively significant for eB above 0.5 GeV2.
The paper is organized as follows. In Sec. II, we

introduce the theoretical formalism used to obtain the
masses of charged meson eigenstates. In particular, we
obtain πþ and ρþ polarization functions for the lowest
Landau levels k ¼ −1 and k ¼ 0. In Sec. III, we present
and discuss our numerical results, while in Sec. IV, we
provide a summary of our work, together with our main
conclusions. We also include Appendixes A, B, and C to
provide some formulas related with the formalism as well
as some technical details of our calculations.

II. THEORETICAL FORMALISM

A. Effective Lagrangian and mean field gap equation

Let us start by considering the Euclidean action for an
extended NJL two-flavor model in the presence of an
electromagnetic field. We have

SE ¼
Z

d4xfψ̄ðxÞð−i=DþmcÞψðxÞ

− gs½ðψ̄ðxÞψðxÞÞ2 þ ðψ̄ðxÞiγ5τ⃗ψðxÞÞ2�
− gvðψ̄ðxÞγμτ⃗ψðxÞÞ2g; ð1Þ

where ψ ¼ ðudÞT , and mc is the current quark mass, which
is assumed to be equal for u and d quarks. The interaction
between the fermions and the electromagnetic field Aμ is
driven by the covariant derivative

Dμ ¼ ∂μ − iQ̂Aμ; ð2Þ

where Q̂ ¼ diagðQu;QdÞ, with Qu ¼ 2e=3 and
Qd ¼ −e=3, e being the proton electric charge. We con-
sider the particular case in which one has a homogenous
stationary magnetic field B⃗ orientated along the 3, or z,
axis. Then, choosing the Landau gauge, we have Aμ ¼
Bx1δμ2.
Since we are interested in studying meson properties, it is

convenient to bosonize the fermionic theory, introducing
scalar, pseudoscalar, and vector fields σ, π⃗ðxÞ, and ρ⃗μðxÞ
and integrating out the fermion fields. The bosonized
Euclidean action can be written as

Sbos ¼ − ln detDþ 1

4gs

Z
d4x½σðxÞσðxÞ þ π⃗ðxÞ · π⃗ðxÞ�

þ 1

4gv

Z
d4xρ⃗μðxÞ · ρ⃗μðxÞ; ð3Þ

with
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Dx;x0 ¼ δð4Þðx − x0Þ½−i=Dþm0 þ σðxÞ þ iγ5τ⃗ · π⃗ðxÞ
þ γμτ⃗ · ρ⃗μðxÞ�; ð4Þ

where a direct product to an identity matrix in color space is
understood.
We proceed by expanding the bosonized action in

powers of the fluctuations of the bosonic fields around
the corresponding mean field (MF) values. We assume that
the field σðxÞ has a nontrivial translational invariant MF
value σ̄, while the vacuum expectation values of other
bosonic fields are zero. Thus, the MF action per unit
volume is given by

SMF
bos

Vð4Þ ¼
σ̄2

4gs
−

Nc

Vð4Þ
X
f¼u;d

Z
d4xd4x0trD ln ðSMF;f

x;x0 Þ−1; ð5Þ

where trD stands for the trace in Dirac space and SMF;f
x;x0 ¼

ðDMF;f
x;x0 Þ−1 is the MF quark propagator in the presence of the

magnetic field. As is well known, the explicit form of the
propagators can be written in different ways [2,3]. For
convenience, we take the form in which SMF;f

x;x0 is given by a
product of a phase factor and a translational invariant
function, namely,

SMF;f
x;x0 ¼ eiΦfðx;x0ÞS̃fðx − x0Þ; ð6Þ

where Φfðx; x0Þ ¼ QfBðx1 þ x01Þðx2 − x02Þ=2 is the so-
called Schwinger phase and S̃fðx − x0Þ can be written as

S̃fðx − x0Þ ¼
Z

d4p
ð2πÞ4 e

ipðx−x0ÞS̃fp: ð7Þ

Now, S̃fp can be expressed in the Schwinger form [2,3]

S̃fp ¼
Z

∞

0

dτ exp

�
−τ

�
M2 þ p2

k þ p2⊥
tanhðτBfÞ

τBf
− iϵ

��

×

�
ðM − pk · γkÞ½1þ isfγ1γ2 tanhðτBfÞ�

−
p⊥ · γ⊥

cosh2ðτBfÞ
�
; ð8Þ

where we have used the following definitions. The
perpendicular and parallel gamma matrices are collected
in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ, and, similarly,
we have defined p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ.
Note that we are working in Euclidean space, where
fγμ; γνg ¼ −2δμν. Other definitions in Eq. (8) are sf ¼
signðQfBÞ and Bf ¼ jQfBj. The limit ϵ → 0 is implicitly
understood.
The integral in Eq. (8) is divergent and has to be properly

regularized. As stated in the Introduction, we use here the

MFIR scheme: for a given unregularized quantity that
depends explicitly on B, the corresponding (divergent)
B → 0 limit is subtracted, and then it is added in a
regularized form. Thus, the quantities can be separated
into a (finite) “B ¼ 0” part and a “magnetic” piece. Notice
that, in general, the “B ¼ 0” part still depends implicitly on
B (e.g., through the values of the dressed quark massesM);
hence, it should not be confused with the value of the
studied quantity at vanishing external field. To deal with the
divergent “B ¼ 0” terms, we use here a 3D cutoff regu-
larization scheme. In the case of the quark-antiquark
condensates ϕf ≡ hψ̄fψfi, f ¼ u, d, we obtain

ϕreg
f ¼ ϕ0;reg þ ϕmag

f ; ð9Þ

where

ϕ0;reg ¼ −NcMI1; ϕmag
f ¼ −NcMImag

1f : ð10Þ

The expression of I1 for the 3D cutoff regularization is
given by Eq. (A3) of Appendix A, while the B-dependent
function Imag

1f reads [13,60]

Imag
1f ¼ Bf

2π2

�
lnΓðxfÞ −

�
xf −

1

2

�
ln xf þ xf −

ln 2π
2

�
;

ð11Þ

where xf ¼ M2=ð2BfÞ. The corresponding gap equation,
obtained from ∂SMF

bos=∂σ̄ ¼ 0, can be written as

M ¼ mc − 2gs½ϕreg
u þ ϕreg

d �: ð12Þ

B. Charged meson sector

As expected from charge conservation, it is easy to see that
the contributions to the bosonic action that are quadratic in
the fluctuations of charged and neutral mesons decouple
from each other. We consider here the charged meson sector
in the presence of the external magnetic field. A detailed
analysis of the neutral sector can be found in Ref. [58]. For
definiteness, we explicitly analyze the case of positively
charged mesons, since the results for meson masses will not
depend on the charge sign. The corresponding contribution
to the quadratic action can be written as

Squad;þbos ¼ 1

2

X
M;M0

Z
d4xd4x0δMðxÞ†GMM0 ðx; x0ÞδM0ðx0Þ;

ð13Þ

where M, M0 are either πþ or ρþμ , and

GMM0 ðx; x0Þ ¼ 1

2gM
δMM0δð4Þðx − x0Þ þ JMM0 ðx; x0Þ; ð14Þ
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where δMM0 is an obvious generalization of the Kronecker δ,
and the constants gM are given by gπþ ¼ gs and gρþμ ¼ gv.
The polarization functions JMM0 ðx; x0Þ read

JMM0 ðx; x0Þ ¼ ei½Φuðx;x0ÞþΦdðx0;xÞ�
Z

d4q
ð2πÞ4 e

iqðx−x0ÞJ̃MM0 ðqÞ;

ð15Þ

where

J̃MM0 ðqÞ ¼ 2Nc

Z
d4p
ð2πÞ4 trD½S̃

u
pþΓM0 S̃d

p−ΓM�; ð16Þ

with Γπþ ¼ iγ5, Γρþμ ¼ γμ and p� ¼ p� q=2.
Contrary to the neutral meson case, here the Schwinger

phases do not cancel, due to their different quark flavors. In
fact, one has

Φuðx; x0Þ þΦdðx0; xÞ ¼ eBðx1 þ x01Þðx2 − x02Þ=2
≡Φþðx; x0Þ; ð17Þ

where we have used Qu −Qd ¼ Qπþ ¼ Qρþ ¼ e. As a
consequence, the polarization functions in Eq. (15) are not
translational invariant, and they do not become diagonal
when transformed to the momentum basis. Instead of using
the standard plane-wave decomposition, to diagonalize the
polarization functions, it is necessary to expand the meson
fields in terms of a set of functions Fðx; q̄Þ, associated to the
solutions of the corresponding equations of motion in the
presence of a constant magnetic field B. For the charged
pion field, we have

δπþðxÞ ¼ 1

2π

X
k

Z
dq2dq3dq4

ð2πÞ3 Fðx; q̄Þδπþðq̄Þ; ð18Þ

where we have defined q̄ ¼ ðk; q2; q3; q4Þ. Here, the index
k is an integer that labels the so-called Landau modes
associated to the presence of the magnetic field. The
functions Fðx; q̄Þ are given by

Fðx; q̄Þ ¼ Nkeiðq2x2þq3x3þq4x4ÞDkðrÞ; ð19Þ

where DkðxÞ are the cylindrical parabolic functions with
the convention DkðxÞ ¼ 0 for k < 0 (this implies that for
charged pions k ¼ 0; 1; 2;…). We have used the defini-
tionsNk ¼ ð4πBeÞ1=4=

ffiffiffiffi
k!

p
and r ¼ ffiffiffiffiffiffiffiffi

2Be
p

x1 − s
ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2,

where Be ¼ jQπþBj ¼ jeBj, s ¼ signðQπþBÞ ¼ signðBÞ,
Qπþ ¼ Qu −Qd ¼ e. It is not difficult to show that the
functions in Eq. (19) are solutions of Klein-Gordon
equation corresponding to a pseudoscalar meson of mass
mπ in the presence of constant magnetic field when the
corresponding on-shell condition ð2kþ 1ÞBe þ q23 þ q24 þ
m2

π ¼ 0 is fulfilled.

In the case of the charged ρ mesons, we introduce a new
set of functions Rμνðx; q̄Þ, expanding the vector fields as

δρþμ ðxÞ ¼
1

2π

X
k

Z
dq2dq3dq4

ð2πÞ3 Rμνðx; q̄Þδρþν ðq̄Þ: ð20Þ

The new functions are given by

Rμνðx; q̄Þ ¼
X1
l¼−1

Rlðx; q̄ÞΔðlÞ
μν ; ð21Þ

where

Rlðx; q̄Þ ¼ Nk−sleiðq2x2þq3x3þq4x4ÞDk−slðrÞ: ð22Þ

Note that in order to have nonvanishing functions Rlðx; q̄Þ
the condition k − sl ≥ 0 has to be satisfied. Given the
possible values of l (0;�1) and s (�1), it follows that for
charged rho mesons one has k ¼ −1; 0; 1;…. There is
some freedom in the election of ΔðlÞ matrices, which is
compensated by the choice of the meson polarization
vectors. The explicit form of the matrices used here is
given in Appendix B, together with the corresponding
polarization vectors ϵνðq̄; aÞ, in terms of which one can
write the fields δρþν ðq̄Þ. In that Appendix, it is also shown
that the functions in Eq. (21) are solutions of the Proca
equation corresponding to a vector meson of massmρ in the
presence of constant magnetic field when the on-shell
condition ð2kþ 1ÞBe þ q23 þ q24 þm2

ρ ¼ 0 is fulfilled.
For convenience, in what follows, we introduce the

shorthand notation

XZ
q̄

≡ 1

2π

X∞
k¼kmin

Z
dq2dq3dq4

ð2πÞ3 ; ð23Þ

where it is understood that kmin ¼ −1 (0) for rho (pion)
meson fields. Hence, in the previously introduced basis, we
have

Squad;þbos ¼ 1

2

X
MM0

XZ
q̄;q̄0

δMðq̄Þ†GMM0 ðq̄; q̄0ÞδM0ðq̄0Þ; ð24Þ

with

GMM0 ðq̄; q̄0Þ ¼ 1

2gM
δMM0 δ̂q̄q̄0 þ JMM0 ðq̄; q̄0Þ; ð25Þ

where we have defined

δ̂q̄q̄0 ≡ ð2πÞ4δkk0δðq2 − q02Þδðq3 − q03Þδðq4 − q04Þ: ð26Þ

In this basis, the polarization functions are given by
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J πþπþðq̄; q̄0Þ ¼
Z

d4v
ð2πÞ4 J̃ πþπþðvÞ

Z
d4xd4x0eivðx−x0ÞeiΦþðx;x0Þ½Fðx; q̄Þ��Fðx0; q̄0Þ;

J ρþν ρþμ ðq̄; q̄0Þ ¼
Z

d4v
ð2πÞ4 J̃ ρþν ρþμ ðvÞ

Z
d4xd4x0eivðx−x0ÞeiΦþðx;x0Þ½Rβνðx; q̄Þ��Rαμðx0; q̄0Þ;

J πþρþμ ðq̄; q̄0Þ ¼
Z

d4v
ð2πÞ4 J̃ πþρþμ ðvÞ

Z
d4xd4x0eivðx−x0ÞeiΦþðx;x0Þ½Fðx; q̄Þ��Rαμðx0; q̄0Þ;

J ρþμ πþðq̄; q̄0Þ ¼
Z

d4v
ð2πÞ4 J̃ πþρþμ ðvÞ

Z
d4xd4x0eivðx−x0ÞeiΦþðx;x0Þ½Rαμðx; q̄Þ��Fðx0; q̄0Þ: ð27Þ

In previous works [37,40], it has been shown that J πþπþðq̄; q̄0Þ is diagonal in q̄-space. Following similar procedures, it is
possible to show, after some lengthy calculations, that this also holds for the other polarization functions in Eqs. (27).
Namely, one can write

J πþπþðq̄; q̄0Þ ¼ δ̂q̄q̄0Jπþπþðq̄Þ; J ρþν ρþμ ðq̄; q̄0Þ ¼ δ̂q̄q̄0Jρþν ρþμ ðq̄Þ;
J πþρþμ ðq̄; q̄0Þ ¼ δ̂q̄q̄0Jπþρþμ ðq̄Þ; J ρþμ πþðq̄; q̄0Þ ¼ δ̂q̄q̄0Jρþμ πþðq̄Þ: ð28Þ

Moreover, we also obtain Jρþμ πþðq̄Þ ∝ ð0; 0; q4;−q3Þ and,
as expected, ½Jρþμ πþðq̄Þ�� ¼ Jπþρþμ ðq̄Þ. The importance of the
presence of nonzero Schwinger phases Φþðx; x0Þ can be
clearly seen from Eqs. (27). If one sets Φþðx; x0Þ to zero,
it is possible to replace the functions F and R by usual
4-momentum plane waves, getting diagonal polarization
functions JMM0 ðq; q0Þ ∝ δð4Þðq − q0Þ.
We are interested in studying the meson masses, i.e., the

energies of the lowest-lying meson states. These correspond
to the Landau modes k ¼ −1 and k ¼ 0. From Eqs. (28), it
can be immediately seen that for the mode k ¼ −1 only the
polarization function J ρþν ρþμ is nonzero; thus, this mode
corresponds to the lowest-energy charged rho meson, which
does not get mixed with the pion sector. In turn, for the
Landau mode k ¼ 0, one gets the lowest-energy charged
pion, which gets coupled to the k ¼ 0 rho meson. In what
follows, we analyze these two modes in detail.

1. k = − 1 charged ρ meson

For k ¼ −1, only Jρþν ρþμ ðq̄Þ is relevant. Moreover, as
discussed in Appendix B, in this case, there is only one
possible polarization vector available for the ρþ field. For
B > 0 (i.e., s ¼ 1), this vector is given by ϵμðq̄ð−1Þ; 1Þ ¼
ð1; 0; 0; 0Þ, while forB < 0 (s ¼ −1), one has ϵμðq̄ð−1Þ; 1Þ ¼
ð0; 1; 0; 0Þ, with the notation q̄ðkÞ ¼ ðk; q2; q3; q4Þ. Thus, to
get rid of Lorentz indices, we can calculate the function
Jρþρþð−1;Π2Þ, defined by

Jρþρþð−1;Π2Þ ¼ ½ϵνðq̄ð−1Þ; 1Þ��Jρþν ρþμ ðq̄ð−1ÞÞϵμðq̄ð−1Þ; 1Þ
ð29Þ

where Π2 is the square of the canonical momentum [see
Eq. (B14)]. For the k ¼ −1 mode of a charged rho meson,

one has Π2 ¼ q23 þ q24 − Be. The function Jρþρþð−1;Π2Þ is
ultraviolet divergent and has to be regularized. As in the
previous section,we consider theMFIR scheme, inwhichwe
subtract the corresponding expression in theB → 0 limit and
then we add it in a regularized form. In this way, we get the
regularized expression

Jregρþρþð−1;Π2Þ ¼ J0;regρ ðΠ2Þ þ Jmag
ρþρþð−1;Π2Þ: ð30Þ

The function J0;regρ ðq2Þ, regularized through a 3D cutoff, is
given in Eq. (A1). Notice that it has an implicit dependence
on the magnetic field, through the value of the constituent
quark mass M. On the other hand, the “magnetic” piece is
found to be given by

Jmag
ρþρþð−1;Π2Þ¼−

Nc

4π2

Z
∞

0

dz
Z

1

−1
dve−z½M2þð1−v2ÞΠ2=4�

×

�ð1þ tuÞð1þ tdÞ
αþ

×

�
M2þ1

z
−
1−v2

4
ðΠ2þBeÞ

�
e−zð1−v2ÞBe=4

−
1

z

�
M2þ1

z
−
1−v2

4
Π2

��
; ð31Þ

wherewe have used the definitions tu ¼ tanh ½ð1 − vÞzBu=2�,
td¼ tanh ½ð1þvÞzBd=2�, and αþ¼ tu=Buþ td=BdþBetutd=
ðBuBdÞ. Notice that, Jρþρþð−1;Π2Þ being a function of Π2,
our result is explicitly invariant under boosts in the direction of
the magnetic field.
The mass of the k ¼ −1 charged rho meson can be found

as a solution of the equation
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1

2gv
þ Jregρþρþð−1;−m2

ρþÞ ¼ 0; ð32Þ

while the associated energy will be given by Eρþ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ − Be

q
.

By looking at the expression of the function J0;regρ ðq2Þ
[see Eqs. (A1) and (A5)], one could expect that the J ρþν ρþμ
polarization function gets an imaginary part when mρþ >
2M or, equivalently, when E2

ρþ > 4M2 − Be. In fact, in the
absence of the external magnetic field, the value mρ ¼ 2M
represents a threshold for the appearance of an absorptive
part in the ρ meson propagator. This well-known feature of
the NJL model is associated to the possible decay of the
meson into a quark-antiquark pair and arises from the lack
of confinement in this effective approach. For nonzero B,
however, the actual threshold has to occur when the
energy of k ¼ −1 meson state satisfies Eρþ > 2M, i.e.,

for mρþ > mð−1Þ
th , with mð−1Þ

th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ Be

p
. What hap-

pens in the interval 2M < mρþ < mð−1Þ
th is that the afore-

mentioned imaginary part cancels out with another
imaginary contribution arising from the last term in the
curly brackets in Eq. (31), after a proper analytic extension
(notice that this term makes the integral divergent for
Π2 < −4M2). Details of this calculation are given in
Appendix C.
It is important to mention that, taking into account the ρþ

polarization vector, it is possible to see that the spin of the
ρþ in the k ¼ −1 state satisfies Sz ¼ s. In this way, the
vector meson spin is shown to be aligned with the magnetic
field, as expected for a positively charged meson in its
lowest Landau mode.

2. k = 0 sector

Let us consider now the k ¼ 0 Landau mode. In this
case, there are two transverse independent polarization
vectors ϵμðq̄ð0Þ;lÞ, l ¼ 1, 2, whose expressions are given
in Eq. (B17). Taking into account the general form
Jρþμ πþðq̄Þ ∝ ð0; 0; q4;−q3Þ, it is seen that in this case

½ϵμðq̄ð0Þ; 1Þ��Jρþμ πþðq̄ð0ÞÞ ¼ 0. Thus, the charged pions only
mix with one of the two possible charged rho meson
polarization states. As expected, it can be shown that this
state corresponds to the spin projection Sz ¼ 0. We define
now

Jρþπþð0;Π2Þ ¼ ½ϵμðq̄ð0Þ; 2Þ��Jρþμ πþðq̄ð0ÞÞ;
Jρþρþð0;Π2Þ ¼ ½ϵνðq̄ð0Þ; 2Þ��Jρþν ρþμ ðq̄ð0ÞÞϵμðq̄ð0Þ; 2Þ: ð33Þ

Note that for k ¼ 0 one has Π2 ¼ q23 þ q24 þ Be, both for
πþ and ρþ states. Evaluating the integrals in Eq. (27), the
explicit expression of the mixing piece Jρþπþð0;Π2Þ is
found to be given by

Jρþπþð0;Π2Þ ¼ −i
MNc

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2 − Be

q Z
∞

0

dz

×
Z

1

−1
dv

tu − td
αþ

e−z½M2þð1−v2ÞðΠ2−BeÞ=4�:

ð34Þ

It is not difficult to see that, as expected, Jρþπþð0;Π2Þ
vanishes at B ¼ 0. Moreover, the integrals are finite, and
thus no regularization is needed. On the other hand, both
Jρþρþð0;Π2Þ and Jπþπþð0;Π2Þ turn out to be divergent.
Therefore, as in the k ¼ −1 case, we use the MFIR scheme
to get the corresponding regularized quantities, which can
be written as

Jregπþπþð0;Π2Þ ¼ J0;regπ ðΠ2Þ þ Jmag
πþπþð0;Π2Þ;

Jregρþρþð0;Π2Þ ¼ J0;regρ ðΠ2Þ þ Jmag
ρþρþð0;Π2Þ: ð35Þ

The expressions for J0;regπ ðΠ2Þ and J0;regρ ðΠ2Þ are given in
Appendix A. In the case of the charged pion, the expression
of the magnetic piece Jmag

πþπþð0;Π2Þ has been previously
obtained in Refs. [37,40]. For the reader’s convenience, we
also quote it here. One has

Jmag
πþπþð0;Π2Þ ¼ −

Nc

4π2

Z
∞

0

dz
Z

1

−1
dv

��
1 − tutd
αþ

�
M2 þ 1

z
−
1 − v2

4
ðΠ2 − BeÞ

�
þ ð1 − t2uÞð1 − t2dÞ

α2þ

�
e−z½M2þð1−v2ÞðΠ2−BeÞ=4�

−
1

z

�
M2 þ 2

z
−
1 − v2

4
Π2

�
e−z½M2þð1−v2ÞΠ2=4�

�
: ð36Þ

On the other hand, for the quadratic ρþ term, we find

Jmag
ρþρþð0;Π2Þ ¼ −

Nc

4π2

Z
∞

0

dz
Z

1

−1
dv

��
1 − tutd
αþ

�
M2 −

1 − v2

4
ðΠ2 − BeÞ

�
þ ð1 − t2uÞð1 − t2dÞ

α2þ

�
e−z½M2þð1−v2ÞðΠ2−BeÞ=4�

−
1

z

�
M2 þ 1

z
−
1 − v2

4
Π2

�
e−z½M2þð1−v2ÞΠ2=4�

�
: ð37Þ
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Once again, the polarization functions depend on Π2; therefore, they are invariant under boosts in the direction of the
magnetic field.
From the above expressions, the pole masses of the physical mesons π̃þ and ρ̃þ for the k ¼ 0 mode can be obtained as

solutions of the equation

det

�
1=ð2gsÞ þ Jregπþπþð0;−m2Þ Jρþπþð0;−m2Þ

Jρþπþð0;−m2Þ� 1=ð2gvÞ þ Jregρþρþð0;−m2Þ
�

¼ 0; ð38Þ

while the associated meson energies are E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Be

p
.

As in the previous case, it is important to determine which
is the threshold for the appearance of absorptive parts. As in
the case of Jregρþρþð−1;−m2Þ, the B ¼ 0 terms J0;regπþπþð0;−m2Þ
and J0;regρþρþð0;−m2Þ get an imaginary part when m > 2M
[see Eqs. (A1) and (A5)]. Once again, these imaginary parts
get canceled by imaginary contributions arising from the
last terms in the integrands of Eqs. (36) and (37), after
analytic continuation. On the other hand, by looking at the
exponentials in Eqs. (34), (36), and (37), one might naively
expect to have a threshold at E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Be

p
¼ 2M, above

which convergence would be lost. From the physical point
of view, however, this cannot be the case. To see this, let us
consider a noninteracting ud̄ pair in the presence of a
magnetic field B⃗ ¼ Bẑ, with B > 0. The lowest-energy
state with spin projection Sz ¼ 0 will correspond to the
configuration uðSz ¼ þ 1

2
Þd̄ðSz ¼ − 1

2
Þ, i.e., the u quark

lying in its lowest Landau level and the d quark in its
first excited Landau level. Recalling that the energy of a
spin-1=2 fermion in the presence of the magnetic field
quantizes as E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2kQB

p
, k ¼ 0; 1;…, the lowest

possible energy for the noninteracting ūd system will be

given by Eu þ Ed ¼ Mu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

d þ 2Be=3
q

(note that the

alternative spin assignment, i.e., uðSz ¼ − 1
2
Þd̄ðSz ¼ þ 1

2
Þ,

corresponds to a state with higher energy). In fact, what
happens in our case is that the factors ðtu − tdÞ and
ð1 − tutdÞ in the integrals contribute with an additional
exponential behavior that pushes the actual threshold up to

E > M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Be=3

p
, or, equivalently, m > mð0Þ

th , with

mð0Þ
th ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Be=3

p
Þ2 − Be

q
, in agreement with

the physical expectation. It is worth remembering that M
grows with B [58], preventing an imaginary value of the

threshold mass mð0Þ
th .

Once the masses are determined, the composition of the
physical meson states jπ̃þi and jρ̃þi is given by the
corresponding eigenvectors that diagonalize the matrix in
Eq. (38) for m ¼ mπþ and m ¼ mρþ . Thus, the mass
eigenstates can be written in terms of coefficients cMM0 as

jπ̃þi ¼ cπ̃
þ

πþjπþi þ cπ̃
þ

ρþ jρþi;
jρ̃þi ¼ cρ̃

þ
πþjπþi þ cρ̃

þ
ρþjρþi: ð39Þ

III. NUMERICAL RESULTS

In what follows, we quote the numerical results for the
quantities discussed in the previous section. We choose
here the same set of model parameters as in Ref. [58], viz.,
mc ¼ 5.833 MeV, Λ ¼ 587.9 MeV, and gsΛ2 ¼ 2.44.
For vanishing external field, this parametrization leads to
an effective quark mass M ¼ 400 MeV and a quark-
antiquark condensate ϕ0;reg ¼ ð−241 MeVÞ3; in addition,
one obtains the empirical values of the pion mass and
decay constant in vacuum, namely, mπ ¼ 138 MeV and
fπ ¼ 92.4 MeV. Regarding the vector couplings, we take
gv ¼ 2.651=Λ2, which leads to mρ ¼ 770 MeV at B ¼ 0.
The behavior of quark masses and quark-antiquark con-
densates as functions of B can be found in Ref. [58].
As mentioned in the Introduction, while local NJL-like

models lead to magnetic catalysis at zero temperature, they
fail to reproduce the so-called inverse magnetic catalysis
effect observed from lattice QCD calculations for finite
temperature systems. One simple way of dealing with this
problem is to allow the model coupling constants to depend
on the magnetic field. With this motivation, we also explore
the possibility of considering magnetic field dependent
four-fermion couplings. For definiteness, in the case of the
B dependence of the coupling gs, we adopt here the form
proposed in Ref. [31], viz.,

gsðBÞ ¼ gsF ðBÞ; ð40Þ

where

F ðBÞ ¼ κ1 þ ð1 − κ1Þe−κ2ðeBÞ2 ; ð41Þ

with κ1 ¼ 0.321, κ2 ¼ 1.31 GeV−2. With this assumption,
it is found that the effective quark masses are less affected
by the presence of the magnetic field than in the case of a
constant gs; in fact, they show a nonmonotonous behavior
for increasing B, resembling the results found in
Refs. [42,68]. On the other hand, the zero-temperature
magnetic catalysis effect, characterized by the growth of
quark-antiquark condensates with the magnetic field, is
similar for both a constant coupling and for a B dependent
gs as in Eqs. (40) and (41) [31]. In the case of the vector
coupling constant gv, for consistency, we also allow
for some dependence on B. Because of the common
gluonic origin of gs and gv, we assume that both couplings
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get affected in the same way by the magnetic field, and
hence we take gvðBÞ ¼ gvF ðBÞ.

A. k= − 1 charged ρ meson

In Fig. 1, we show the energy of the ρþ meson, Eρþ , as a
function of the magnetic field, for the Landau mode k ¼ −1
and vanishing component of the ρþ momentum in the
direction of B⃗. The values are normalized to the energy at
B ¼ 0, i.e., to the ρ meson rest mass mρþð0Þ ¼ Eρþð0Þ. As
has been extensively discussed in the literature, if one takes
the charged rho meson as a pointlike particle, the energy

behaves as EρþðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ − eB
q

, where mρþ is a constant

mass. This leads to a strong decrease with the magnetic
field (dot-dashed line in Fig. 1) that reaches EρþðBÞ ¼ 0 at
eB ∼ 0.6 GeV2, triggering the appearance of a charged
vector meson condensate.
As shown in Fig. 1, it is found that our results do not

support the existence of this condensate. The full line in the
figure corresponds to the normalized energy for the case in
which the four-fermion coupling constants gs and gv are
kept fixed. We see that, although for low values of eB the
ρþ energy shows a decreasing behavior, at eB ∼
0.2–0.3 GeV2 the curve reaches a minimum, and for larger
values of the magnetic field, the energy steadily increases.
In the case in which the four-fermion couplings are taken to
be dependent on B (red dashed line), the situation appears
to be qualitatively similar, although the minimum is found
at a larger value eB ∼ 0.9 GeV2. Therefore, in both

situations, the model does not predict the presence of ρþ
condensation within the considered range of values of eB.
This behavior is in general consistent with the results
obtained through LQCD calculations; for comparison, in
Fig. 1, we include LQCD data taken from Refs. [20,23,24],
indicated by triangles, squares, and stars, respectively.
It is worth mentioning that our results differ substantially

from those obtained in other works in the framework of
two-flavor NJL-like models [22,25], which do find ρþ

meson condensation for eB ∼ 0.2 to 0.6 GeV2. In those
works, the Schwinger phases are neglected, and it is
assumed that charged pions and vector mesons lie in zero
3-momentum states. Here, we use, instead, an expansion of
meson fields in terms of the solutions of the corresponding
equations of motion for nonzero B [see Eqs. (18)–(22)],
taking properly into account the presence of Schwinger
phases in quark propagators. Our numerical analysis shows
that this has a dramatic incidence in the numerical results,
implying a qualitative change in the behavior of the ρþ
mass for the k ¼ −1 Landau mode.

B. k= 0 sector

In this subsection, we present and discuss the results
associated with the k ¼ 0 sector. As in Sec. II. B, we will
concentrate on the subsystem that contains the lowest-
energy pion state, i.e., the one formed by πþ and ρþ states
with polarization ϵνðq̄ð0Þ; 2Þ [see Eq. (B17)], corresponding
to a spin projection Sz ¼ 0. As stated, the mass eigenstates
denoted by π̃þ and ρ̃þ are obtained as combinations of the
states πþ and ρþ in Eq. (3). Here, π̃þ and ρ̃þ are expected to
be the states with lower and higher energies, respectively.
The energies of the mass eigenstates as functions of

the external magnetic field, normalized to the values of the
corresponding masses at B ¼ 0, are shown in Fig. 2. In the
left panel, we display the results for the π̃þ state; the full
black line corresponds to the case in which the four-
fermion couplings are kept fixed, while the red dashed line
indicates the relative π̃þ energy when gs and gv depend on
B in the form given by Eq. (41). As a reference, the
behavior of EπþðBÞ=mπþð0Þ for a pointlike pion is also
shown (black dot-dashed line). From the figure, it can be
seen that our results for the π̃þ state are almost independent
on whether the four-fermion couplings are taken to be
constant or not. Within the considered range of values of
eB, in both cases, the energy shows a monotonous
increasing behavior that goes slightly above the one
obtained for the pointlike particle approximation. Our
results for the ρ̃þ energy are given in the right panel of
Fig. 2, in which the same line convention is used. We see
that in this case the values are somewhat more sensitive on
whether the four-fermion couplings are taken to be constant
or not. In both cases, the energy shows an increasing
behavior, which is found to be steeper than the one obtained
in the pointlike particle approximation. We also include in
the graph the corresponding thresholds for the decay of the

FIG. 1. Energy of the ρþ meson as a function of eB for the
lowest Landau mode k ¼ −1 and vanishing component of the
momentum in the direction of B⃗. Values are normalized to the ρþ
mass at zero external field. Solid and dashed lines correspond to
fixed and B-dependent coupling constants, respectively, while the
dot-dashed line corresponds to a pointlike ρþ. For comparison,
lattice QCD data quoted in Refs. [20,23,24] are also included;
they are indicated by triangles, squares, and stars, respectively.
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ρ̃þ into a ud̄ pair (thin short-dotted lines). If the couplings
gs and gv are kept constant, we see that the ρ̃þ energy lies
below the threshold for the range plotted in the figure. On
the other hand, in the case of B-dependent couplings, the
corresponding threshold is reached at eB ≃ 0.32 GeV2,
Eρþ ≃ 1.34mρþð0Þ. For larger values of the external field,
the quark loop in the associated polarization function
includes an absorptive piece corresponding to an unphys-
ical decay of the ρ̃þ meson into a quark-antiquark pair. As
discussed in the previous section, although in this region
one can still obtain results for the ρ̃þ energy by means of an
analytic extension of the polarization function (short-dotted
red curve in the right panel of Fig. 2), these predictions
have to be taken as merely indicative.
The composition of the mass eigenstates can be analyzed

by looking at the coefficients cMM0 introduced in Eq. (39).
The corresponding results for some representative values of
the magnetic field are listed in Table I. They correspond to
the case in which the four-fermion couplings are kept

constant and are similar to those obtained in the case of
B-dependent gs and gv. We note that, while the energies do
not depend on whether B is positive or negative, the
corresponding eingenvectors do; the relative signs in
Table I correspond to the choice B > 0. As expected, for
low magnetic fields (e.g., eB ¼ 0.05 GeV2), the eigen-
states π̃þ and ρ̃þ are almost pure πþ and ρþ, respectively,
while the mixing gets increased as eB grows. In the case of
the π̃þ state, we find that the ρþ component reaches a
fraction of about jcπ̃þρþ j2 ¼ 0.2 (i.e., about a 20%) at

eB ¼ 1 GeV2. For the ρ̃þ state, the admixture grows faster
with eB, both πþ and ρþ components having approx-
imately equal weight for eB ¼ 0.5 GeV2 (i.e., close to the
threshold for quark-antiquark production; see the short-
dotted black curve in the right panel of Fig. 2).
Let us now analyze the impact of the pseudoscalar-vector

mixing on the energies of the π̃þ and ρ̃þ states. In Fig. 3, we
show the dependence of these energies on the magnetic
field, considering both the case in which the mixing is taken
into account (full black lines) and the situation in which the
off-diagonal polarization function Jρþπþ in Eq. (34) is set to
zero (dashed green lines). The values correspond to the case
in which the four-fermion couplings are kept constant;
similar results are found for B-dependent couplings. It is
seen that, as expected, the mixing leads to a “repulsion”
between the π̃þ and ρ̃þ states: the energy of π̃þ is reduced,
while that of the ρ̃þ becomes enhanced. The repulsion gets
larger as eB increases, reaching an effect of about 20% for
the π̃þ energy at eB ¼ 1 GeV2.
Next, in Fig. 4, we compare our results for π̃þ energies

with those obtained in lattice QCD analyses. The curves
show the values of squared Eπþ energies with respect to
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FIG. 2. Energy of the π̃þ (left) and ρ̃þ (right) mass eigenstates as functions of eB, for the Landau mode k ¼ 0 and vanishing
components of the momenta in the direction of B⃗. Values are normalized to the meson masses at zero external field. Solid and dashed
lines correspond to fixed and B-dependent coupling constants, respectively, while dot-dashed lines correspond to the cases in which the
mesons are assumed to be pointlike. In the right panel, the dotted lines indicate the thresholds for the decay of the ρ̃þ meson into a ud̄
pair. In the case of B-dependent couplings, the estimated energy beyond this threshold is shown by the red short-dashed line.

TABLE I. Composition of the k ¼ 0, Sz ¼ 0 charged meson
mass eigenstates for some selected values of eB. Relative signs
correspond to the choice B > 0.

State eBðGeV2Þ cπ̃
þ

πþ
cπ̃

þ
ρþ

π̃þ 0.05 0.999 0.013
0.5 0.960 0.281
1.0 0.892 0.453

State eB ðGeV2Þ cρ̃
þ

πþ cρ̃
þ

ρþ

ρ̃þ 0.05 −0.156 0.988
0.5 −0.702 0.713
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B ¼ 0 squared masses, considering both our numerical
calculations with (full black line) and without (dashed
green line) pseudoscalar-vector meson mixing. As in Fig. 3,
the plots correspond to the case in which gs and gv do not
depend on B. Open blue squares correspond to lattice QCD
results from Ref. [23], obtained using quenched Wilson
fermions and mπðB ¼ 0Þ ¼ 395 MeV, while full brown

circles correspond to the simulations reported in Ref. [54],
which were performed using a highly improved staggered
quark action with mπðB ¼ 0Þ ¼ 220 MeV. We observe
that the incorporation of the πþ − ρþ mixing improves
the agreement between NJL model and LQCD results.
However, it is seen that the effect is not strong enough to
account for the nonmonotonous behavior shown by the data
from Ref. [54] for large values of the magnetic field.
Regarding the ρ̃þ state, lattice results show some variation
depending on the lattice spacing and the simulation method
(see, e.g., Refs. [23,24,53]). In any case, it is found that in
general the ρ̃þ energy shows an increasing behavior with
the magnetic field, in qualitative agreement with our results
in the right panel of Fig. 2. The results are found to be
similar for the case of B-dependent coupling constants.
Finally, to see how the phase factor affects the π̃þ mass,

it is interesting to compare our results with those quoted in
Ref. [36], in which Schwinger phases were not taken into
account. For a proper comparison we restrict—as done in
that work—to the case in which πþ − ρþ mixing effects
are not included. The results in Ref. [36] show that the
mass of π̃þ has a faster increase with the magnetic field
than in our approach. For example, at eB ¼ 1 GeV2, they
get EπðBÞ=mπð0Þ ≈ 15, to be compared with our value
EπðBÞ=mπð0Þ ≈ 9. Notice that this steeper behavior implies
a larger departure from LQCD results.

IV. SUMMARY AND CONCLUSIONS

In this work, we have studied the mass spectrum of πþ
and ρþ mesons in the presence of an external uniform
magnetic field B⃗. This has been done in the framework of a
two-flavor NJL-like model that includes scalar, pseudo-
scalar, and vector four-fermion couplings. Because of the
presence of Schwinger phases, which induce the break-
down of translational invariance in quark propagators, it is
seen that charged meson polarization functions do not
become diagonal in the momentum basis. Here, we have
performed the calculation of πþ and ρþ polarization
functions using an expansion of the meson fields in terms
of the solutions of the equations of motion in the presence
of the magnetic field. To account for the ultraviolet
divergences that usually arise in NJL-like models, we have
considered a magnetic field independent regularization,
which has been shown to reduce the dependence of the
results on the model parameters. Concerning the effective
coupling constants of the model, we have considered both
the case in which these parameters are fixed and the one in
which they depend on the external magnetic field.
In the case of the ρþ meson, our numerical calcula-

tions show that its lowest-energy state, which corresponds
to a Landau level k ¼ −1, lies above ∼500 MeV for
values of eB up to 1 GeV2, both for the cases of fixed
and B-dependent couplings. In this way, our results—
which improve upon previous two-flavor NJL model
calculations that neglect Schwinger phases and use a
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FIG. 3. Energies of the π̃þ and ρ̃þ mass eigenstates as functions
of eB, for the Landau mode k ¼ 0 and vanishing components of
the momenta in the direction of B⃗. Solid and dashed lines
correspond to the calculations with and without the inclusion of
the ρþ − πþ mixing terms, respectively.
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FIG. 4. Squared energy of the π̃þ mass eigenstate for the
Landau mode k ¼ 0 and vanishing component of the momentum
in the direction of B⃗. Values are given with respect to the squared
mass for vanishing external field. Solid and dashed lines
correspond to the calculations with and without the inclusion
of the ρþ − πþ mixing terms, respectively. For comparison,
lattice QCD data from Ref. [23] (open blue squares) and Ref. [54]
(full brown circles) are also shown.
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plane-wave approximation for charged meson wave func-
tions—are not compatible with the existence of a charged
vector meson condensate induced by the magnetic field. It
is found that the ρþ state has a lower energy in the case of
B-dependent couplings, which leads to a better agreement
with the results from lattice QCD calculations.
Concerning the πþ meson, it is seen that its lowest-

energy state, which corresponds to the Landau level k ¼ 0,
gets mixed with the corresponding ρþ state for nonzero B.
Our numerical results, both for the cases of constant and
B-dependent couplings, show that the inclusion of nonzero
Schwinger phases and mixing effects soften the increase of
the energy Eπ̃þ as a function of the magnetic field, leading
to energy values that lie slightly above those obtained for a
pointlike particle. This softening effect is found to be
favored by a comparison with lattice QCD results.
For simplicity, in the present work, we have not taken

into account axial-vector interactions. We expect to address
their effect in a future publication.
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APPENDIX A: POLARIZATION FUNCTIONS
AT B= 0

In this Appendix, we provide the expressions of the
regularized polarization functions J0;regπ ðq2Þ and J0;regρ ðq2Þ,

obtained in the limit B ¼ 0 [71]. Notice that the mixing
polarization functions Jρþμ πþðq̄Þ and Jπþρþμ ðq̄Þ are zero in
this limit. One has

J0;regπ ðq2Þ ¼ −2Nc½Ireg1 þ q2Ireg2 ðq2Þ�;

J0;regρ ðq2Þ ¼ 4Nc

3
½ð2M2 − q2ÞIreg2 ðq2Þ− 2M2Ireg2 ð0Þ�; ðA1Þ

where Ireg1 and Ireg2 ðq2Þ are regularized expressions of the
integrals

I1¼ 4

Z
d4p
ð2πÞ4

1

p2þM2
;

I2ðq2Þ¼−2
Z

d4p
ð2πÞ4

1

½ðpþq=2Þ2þM2�½ðp−q=2Þ2þM2� :

ðA2Þ

Within the 3D-cutoff regularization scheme used in this
work, the first of these integrals is given by [56,71]

Ireg1 ¼ 1

2π2

�
Λ2rΛ þM2 ln

�
M

Λð1þ rΛÞ
��

; ðA3Þ

where we have defined rΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2=Λ2

p
. In the case of

I2ðq2Þ, we note that in order to determine the meson masses
the external momentum q has to be extended to the region
q2 < 0. Hence, we find it convenient to write q2 ¼ −m2,
where m is a positive real number. Then, within the
3D-cutoff regularization scheme, the regularized real part
of I2ð−m2Þ can be written as [71]

Re½Ireg2 ð−m2Þ� ¼ −
1

4π2

�
arcsinh

�
Λ
M

�
− Fðm2Þ

�
; ðA4Þ

where

Fðm2Þ ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2=m2 − 1

p
arctan

	
1

rΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2=m2−1

p



if m2 < 4M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=m2

p
arccoth

	
1

rΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2=m2

p



if 4M2 < m2 < 4ðM2 þ Λ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=m2

p
arctanh

	
1

rΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2=m2

p



if m2 > 4ðM2 þ Λ2Þ

:

For the regularized imaginary part, we get

Im½Ireg2 ð−m2Þ� ¼
�
− 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=m2

p
if 4M2 < m2 < 4ðM2 þ Λ2Þ

0 otherwise
: ðA5Þ
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APPENDIX B: VECTOR MESONS IN
AN EXTERNAL MAGNETIC FIELD

In this Appendix, we show that the functions introduced
in Eq. (20) correspond to solutions of the equations of
motion of a charged vector meson in the presence of a
constant magnetic field, provided the associated dispersion
relation

E2 ¼ −q24 ¼ m2 þ ð2kþ 1ÞBQ þ q23 ðB1Þ

is satisfied.
We start from the equation of motion for a spin 1 field

given in Ref. [72]. In Euclidean space, one has

½ðDαDα −m2Þδμν þ 2iQFμν�VνðxÞ ¼ 0; ðB2Þ

which has to be supplemented by the transversality con-
dition

DμVμðxÞ ¼ 0: ðB3Þ

In these equations, Q stands for the electric charge of the
vector field VμðxÞ, the covariant derivative Dα is given by
Dα ¼ ∂α − iQAα, and Fμν ¼ ∂μAν − ∂νAμ. For the par-
ticular case of constant magnetic field along the z axis,
using the Landau gauge, one has Aμ ¼ Bx1δμ2, and
Eq. (B2) reduces to

ðDμν −m2δμνÞVνðxÞ ¼ 0; ðB4Þ

where D is a 4 × 4 matrix given by

D ¼
�
ð∇2

1 þ ð∇2 − isBQx1Þ2 þ∇2
3 þ∇2

4Þ
�
1 0

0 1

�

þ 2sBQ

�
σ2 0

0 0

��
; ðB5Þ

where s ¼ signðQBÞ, BQ ¼ jQBj and σ2 is a Pauli matrix.
Note that each entry in the matrices appearing in this
equation should be understood as a 2 × 2 matrix, with
1 ¼ diagð1; 1Þ.
Next, let us consider a function of the form introduced in

Eq. (20), namely,

VμðxÞ ¼ Rμνðx; q̄Þeνðq̄Þ; ðB6Þ

with q̄ ¼ ðk; q2; q3; q4Þ. As in the main text, the functions
Rμνðx; q̄Þ are defined as

Rμνðx; q̄Þ ¼
X1
l¼−1

Rlðx; q̄ÞΔðlÞ
μν ; ðB7Þ

where

Rlðx; q̄Þ ¼ Nk−sleiðq2x2þq3x3þq4x4ÞDk−slðrÞ: ðB8Þ

Here, DnðxÞ are the cylindrical parabolic functions,
with the convention DnðxÞ ¼ 0 if n < 0, and we have
used the definitions Nn ¼ ð4πBQÞ1=4=

ffiffiffiffiffi
n!

p
and r ¼

s
ffiffiffiffiffiffiffiffiffiffiffi
2=BQ

p ðsBQx1 − q2Þ. The 4 × 4 matrices ΔðlÞ, l ¼ −1,
0, 1 are given by

Δð1Þ ¼ 1ffiffiffi
2

p

0
BBB@

0 1 0 0

0 −i 0 0

0 0 0 0

0 0 0 0

1
CCCA; Δð0Þ ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

1
CCCA;

Δð−1Þ ¼ 1ffiffiffi
2

p

0
BBB@

1 0 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1
CCCA: ðB9Þ

The election of these matrices is not unique; the above form
has been chosen taking into account that the operator in
Eq. (B5) is diagonal in the (3,4) subspace, while it leads to a
mixing between components 1 and 2. Note that, in order to
have nonvanishing solutions, we must have k − sl ≥ 0.
Given the possible values of l (¼ 0;�1) and s (¼ �1), this
implies that k ≥ −1.
Using the explicit form of Rμνðx; q̄Þ, it is not difficult to

prove the relation

DαβRβγðx; q̄Þ ¼ −½ð2kþ 1ÞBQ þ q23 þ q24�Rαγðx; q̄Þ:
ðB10Þ

In this way, it follows that the functions VμðxÞ in Eq. (B6)
are solutions of Eq. (B2), provided Eq. (B1) is satisfied. In
fact, these functions are equivalent to those introduced by
Ritus [73] for the case of spin 1=2 fermions.
To determine the set of vectors eνðq̄Þ that satisfy the

transversality condition in Eq. (B3), it is convenient to
consider the identity

DμRμνðx; q̄Þ ¼ iR0ðx; q̄Þ½Πνðq̄Þ��; ðB11Þ
where

Πνðq̄Þ ¼ ðis ffiffiffiffiffiffiffiffiffiffiffi
BQk−

p
;−is

ffiffiffiffiffiffiffiffiffiffiffiffi
BQkþ

p
; q3; q4Þ; ðB12Þ

with k� ¼ kþ ð1 ∓ sÞ=2. From Eqs. (B6) and (B11), the
transversality condition can be expressed as

½Πνðq̄Þ��eνðq̄Þ ¼ 0: ðB13Þ

Note that Πνðq̄Þ plays here the same role as the
4-momentum in the B ¼ 0 case. In fact, it is easy to see that

Π2 ≡ ½Πνðq̄Þ��Πνðq̄Þ ¼ ð2kþ 1ÞBQ þ q23 þ q24; ðB14Þ
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which implies that the condition in Eq. (B1) leads
to Π2 ¼ −m2.
We denote by ϵνðq̄; aÞ each of the independent normalized

solutions of Eq. (B13). They correspond to the different

possible polarization vectors of the spin-1 field. For k ≥ 1,
one can find three independent solutions. In that case, using
the notation q̄ðkÞ ¼ ðk; q2; q3; q4Þ, and taking for definite-
ness s ¼ þ1, we can choose a basis formed by the vectors

ϵνðq̄ðkÞ; 1Þ ¼
ðq2k; 0; iq3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 1ÞBQ

p
; iq4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 1ÞBQ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2k½ðkþ 1ÞBQ þ q2k�

q ;

ϵνðq̄ðkÞ; 2Þ ¼
ð0; 0; iq4;−iq3Þffiffiffiffiffiffiffiffi

−q2k
q ;

ϵνðq̄ðkÞ; 3Þ ¼
ð−BQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þp

;−½ðkþ 1ÞBQ þ q2k�; iq3
ffiffiffiffiffiffiffiffiffi
kBQ

p
; iq4

ffiffiffiffiffiffiffiffiffi
kBQ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2½ðkþ 1ÞBQ þ q2k�

q ; ðB15Þ

where q2k ¼ q23 þ q24. For s ¼ −1, the corresponding results
can be obtained by exchange of the first two components of
these vectors.
Because of the restrictions imposed by the con-

dition k − sl ≥ 0, the situations for k ¼ −1 and k ¼ 0
have to be considered separately. In the case k ¼ −1, from
Eqs. (B7) and (B8), it is seen that only one independent
solution of the form given by Eq. (B6) can be constructed.
The associated polarization vector is

ϵνðq̄ð−1Þ; 1Þ ¼ ð1; 0; 0; 0Þ ðB16Þ

for s ¼ 1, and ϵνðq̄ð−1Þ; 1Þ ¼ ð0; 1; 0; 0Þ for s ¼ −1. On
the other hand, for k ¼ 0, two independent transverse
solutions can be constructed. In this case, a suitable choice
for the polarization vectors is

ϵνðq̄ð0Þ; 1Þ ¼ ðδ1sq2k; δ−1sq2k; iq3
ffiffiffiffiffiffi
BQ

p
; iq4

ffiffiffiffiffiffi
BQ

p Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2kðq2k þ BQÞ

q
;

ϵνðq̄ð0Þ; 2Þ ¼ ð0; 0; iq4;−iq3Þ=
ffiffiffiffiffiffiffiffi
−q2k

q
: ðB17Þ

Replacing the polarization vectors (B15) in Eq. (B6), and
using the on-shell condition Eq. (B1), one recovers the
known solutions for a vector boson in a constant magnetic
field (see, e.g., Ref. [74]) written in Euclidean space.
Finally, note that for k ≥ 0 an extra “longitudinal”

polarization vector ϵνðq̄ðkÞ; 4Þ can be defined as

ϵνðq̄ðkÞ; 4Þ ¼ Πνðq̄Þ=
ffiffiffiffiffiffiffiffiffi
−Π2

p
: ðB18Þ

In the case k ¼ −1, the relation in Eq. (B3) is always
satisfied. Therefore, no longitudinal polarization can be
constructed.

APPENDIX C: ANALYTIC CONTINUATION
OF POLARIZATION FUNCTIONS

In this Appendix, we discuss how to evaluate the
magnetic contributions to the polarization functions for
energies beyond the threshold of 2M. The integrals to be
analyzed are those given by Eqs. (31), (34), (36), and (37).
Let us start by considering the integral in Eq. (31), which

corresponds to the ρþ polarization function for the k ¼ −1
Landau mode. It is convenient to separate this integral into
ultraviolet and infrared pieces, namely,

Jmag
ρþρþð−1;−m2Þ ¼ Juvρþρþð−1;−m2Þ þ JðBÞirρþρþð−1;−m2Þ þ Jð0Þirρþρþð−m2Þ; ðC1Þ

where

Juvρþρþð−1;−m2Þ ¼ −
Nc

4π2

Z
1

−1
dv

Z
4=m2

0

dze−z½M2−ð1−v2Þm2=4�

×

�ð1þ tuÞð1þ tdÞ
αþ

�
M2 þ 1

z
þ 1 − v2

4
ðm2 − BeÞ

�
e−zð1−v2ÞBe=4 −

1

z

�
M2 þ 1

z
þ 1 − v2

4
m2

��
;

JðBÞirρþρþð−1;−m2Þ ¼ −
Nc

4π2

Z
1

−1
dv

Z
∞

4=m2

dze−z½M2−ð1−v2Þðm2−BeÞ=4� ð1þ tuÞð1þ tdÞ
αþ

�
M2 þ 1

z
þ 1 − v2

4
ðm2 − BeÞ

�
;

Jð0Þirρþρþð−m2Þ ¼ Nc

4π2

Z
1

−1
dv

Z
∞

4=m2

dz
z
e−z½M2−ð1−v2Þm2=4�

�
M2 þ 1

z
þ 1 − v2

4
m2

�
: ðC2Þ
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It is easy to see that the threshold for the appearance of
absorptive parts for Juvρþρþð−1;−m2Þ and JðBÞirρþρþð−1;−m2Þ is
given by mð−1Þ

th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ Be

p
. On the other hand, the

Jð0Þirρþρþð−1;−m2Þ is divergent for m2 ≥ 4M2. To go beyond
this limit, one can perform an analytic continuation. It can
be seen that after integration over z one gets

Jð0Þirρþρþð−m2Þ ¼ Ncm2

8π2

� ffiffiffi
π

p
2

erfð1Þ expðβ2Þ

þ
Z

1

−1
dvð1 − v2ÞE1ðv2 − β2Þ

�
; ðC3Þ

where β2 ¼ 1–4M2=m2, erfðxÞ is the error function, and
E1ðxÞ is the exponential integral, which can be written as

E1ðxÞ ¼ −γ − ln xþ EinðxÞ; ðC4Þ

with EinðxÞ ¼
P∞

k¼1ð−1Þkþ1xk=ðk!kÞ. For m2 larger than
4M2 (i.e., β2 > 0), the logarithm in Eq. (C4) can be
extended as lnðx − iϵÞ ¼ ln jxj − iπ for negative values

of x. This leads to a finite expression for Jð0Þirρþρþð−m2Þ that
includes an imaginary part

Im½Jð0Þirρþρþð−m2Þ� ¼ Ncm2

8π

Z
β

−β
dvð1 − v2Þ

¼ Nc

6π
βðm2 þ 2M2Þ; ðC5Þ

which cancels exactly with the imaginary part arising from
the regularized B ¼ 0 piece of the polarization function
J0;regρ ð−m2Þ; see Eqs. (A1) and (A5). Thus, it is seen that
the threshold m2 ¼ 4M2 is only apparent, the actual
threshold for quark-antiquark pair production in this case

being located at mð−1Þ
th .

The situation is similar in the case of the k ¼ 0 Landau
mode. However, the corresponding quark-antiquark produc-

tion thresholdmð0Þ
th is lower thanmð−1Þ

th ; hence, it is interesting
to obtain the expressions for the analytic continuation of the
polarization functions even beyond this limit. Let us consider
the function Jmag

ρþρþð0;−m2Þ, given by Eq. (37). It is conven-
ient to separate it into four terms, namely,

Jmag
ρþρþð0;−m2Þ ¼ Juvρþρþð0;−m2Þ þ JðB1Þirρþρþ ð0;−m2Þ þ JðB2Þirρþρþ ð0;−m2Þ þ Jð0Þirρþρþð−m2Þ; ðC6Þ

where

Juvρþρþð0;−m2Þ ¼ −
Nc

4π2

Z
1

−1
dv

�Z
4=ðm2þBeÞ

0

dz e−z½M2−ð1−v2Þðm2þBeÞ=4�

×

�ð1 − tutdÞ
αþ

�
M2 þ 1 − v2

4
ðm2 þ BeÞ

�
þ ð1 − t2uÞð1 − t2dÞ

α2þ

�

−
Z

4=m2

0

dz
z
e−z½M2−ð1−v2Þm2=4�

�
M2 þ 1

z
þ 1 − v2

4
m2

��
;

JðB1Þirρþρþ ð0;−m2Þ ¼ −
Nc

4π2

Z
1

−1
dv

Z
∞

4=ðm2þBeÞ
dz e−z½M2−ð1−v2Þðm2þBeÞ=4�

×

��ð1 − tutdÞ
αþ

−
2Be

9
e−zð1þvÞBe=3

��
M2 þ 1 − v2

4
ðm2 þ BeÞ

�
þ ð1 − t2uÞð1 − t2dÞ

α2þ

�
;

JðB2Þirρþρþ ð0;−m2Þ ¼ −
NcBe

18π2

Z
1

−1
dv

Z
∞

4=ðm2þBeÞ
dz e−z½M2−ð1−v2Þðm2þBeÞ=4þð1þvÞBe=3�

�
M2 þ 1 − v2

4
ðm2 þ BeÞ

�
; ðC7Þ

while Jð0Þirρþρþð−m2Þ is the same function analyzed in the
k ¼ −1 case (and the cancellation of its imaginary part
proceeds in the same way as discussed above). After
some analysis, it can be shown that the integrals in

JðB2Þirρþρþ ð0;−m2Þ are convergent for m2<mð0Þ2
th ¼ðM þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2þ2Be=3
p

Þ2−Be, whereas for JðB1Þirρþρþ ð0;−m2Þ, the re-

gion of convergence extends up to mð0Þ02
th ¼ ðM þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 4Be=3
p

Þ2 − Be. In what follows, we discuss

how to perform an analytic extension of JðB2Þirρþρþ ð0;−m2Þ

in order to get a definite result for the polarization
function between these two thresholds. After integration over
z, one gets

JðB2Þirρþρþ ð0;−m2Þ ¼ −
NcBe

18π2

Z
1

−1
dv

4r20 þ 1 − v2

ðvþ δÞ2 þ λ2
e−ðvþδÞ2−λ2 ;

ðC8Þ

where we have introduced the definitions
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r0 ¼
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ Be

p ; rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Be=3
m2 þ Be

s
; δ ¼ r2d − r20

ðC9Þ

and

λ2 ¼ ½ðrd þ r0Þ2 − 1�½1 − ðrd − r0Þ2�: ðC10Þ

The expression in Eq. (C8) can be written as

JðB2Þirρþρþ ð0;−m2Þ

¼ NcBe

18π2

� ffiffiffi
π

p
2

e−λ
2 ½erfð1þ δÞ þ erfð1 − δÞ�

þ δ½E1ð4r2dÞ − E1ð4r20Þ� þ 2ð1 − δþ λ2Þ

×

�Z
1

−1
dv

1 − e−ðvþδÞ2−λ2

ðvþ δÞ2 þ λ2
þ Fðm2 þ BeÞ

��
; ðC11Þ

where

Fðm2 þ BeÞ ¼
Z

1

−1
dv

1

ðvþ δÞ2 þ λ2
: ðC12Þ

For m < mð0Þ
th , one has λ2 > 0, and the integral in Eq. (C12)

can be done explicitly, leading to

Fðm2 þ BeÞm<mð0Þ
th

¼ 1

λ

�
arctan

�
λ

1þ δ

�
þ arctan

�
λ

1þ δ

�
− π

�
: ðC13Þ

On the other hand, for m beyond the thresholdmð0Þ
th , one has

λ2 < 0. Defining λ̄2 ¼ −λ2, the function above can be
analytically extended to

Fðm2 þ BeÞm>mð0Þ
th

¼ 1

λ̄

�
arctanh

�
λ̄

1þ δ

�
þ arctanh

�
λ̄

1þ δ

�
− iπ

�
; ðC14Þ

implying the existence of an absorptive part in the polarization
function. At the threshold, one has r0 þ rd ¼ 1; thus, λ2 ¼ 0,

and JðB2Þirρþρþ ð0;−m2Þ is divergent.
A similar procedure can be carried out in the case of the

magnetic piece of the polarization function Jregπþπþð0;−m2Þ,
for m < mð0Þ0

th . The corresponding expressions are found to
be given by

Jmag
πþπþð0;−m2Þ ¼ Juvπþπþð0;−m2Þ þ JðB1Þirπþπþ ð0;−m2Þ þ JðB2Þirπþπþ ð0;−m2Þ þ Jð0Þirπþπþð−m2Þ; ðC15Þ

where

Juvπþπþð0;−m2Þ ¼ −
Nc

4π2

Z
1

−1
dv

�Z
4=ðm2þBeÞ

0

dze−z½M2−ð1−v2Þðm2þBeÞ=4�

×

�ð1− tutdÞ
αþ

�
M2 þ 1

z
þ 1− v2

4
ðm2 þBeÞ

�
þ ð1− t2uÞð1− t2dÞ

α2þ

�

−
Z

4=m2

0

dz
z
e−z½M2−ð1−v2Þm2=4�

�
M2 þ 2

z
þ 1− v2

4
m2

��
;

JðB1Þirπþπþ ð0;−m2Þ ¼ −
Nc

4π2

Z
1

−1
dv

Z
∞

4=ðm2þBeÞ
dze−z½M2−ð1−v2Þðm2þBeÞ=4�

×

��ð1− tutdÞ
αþ

−
2Be

9
e−zð1þvÞBe=3

��
M2 þ 1

z
þ 1− v2

4
ðm2 þBeÞ

�
þ ð1− t2uÞð1− t2dÞ

α2þ

�
;

JðB2Þirπþπþ ð0;−m2Þ ¼ NcBe

18π2

�
2γ − 4þ

ffiffiffi
π

p
2

e−λ
2 ½erfð1þ δÞ þ erfð1− δÞ� þ 2 lnð4r0rdÞ

þ
Z

1þδ

−1þδ
dv

�
2ð1− δþ λ2Þ1− e−ðv2þλ2Þ

v2 þ λ2
−Einðv2 þ λ2Þ

�

þ δ½Einð4r2dÞ−Einð4r20Þ� þ 2ð1− δÞFðm2 þBeÞ
�
;

Jð0Þirπþπþð−m2Þ ¼ Ncm2

16π2

�Z
1

−1
dvð2þ β2 − 3v2Þ½−γ − ln jv2 − β2j þEinðv2 − β2Þ� þ 2

ffiffiffi
π

p
erfð1Þeβ2 þ i4πβθðβ2Þ

�
: ðC16Þ

As in the case of the polarization function Jregρþρþð0;−m2Þ, for m > 2M, the imaginary part in Jð0Þirπþπþð−m2Þ cancels with the

imaginary part arising from J0;regπ ð−m2Þ, whereas for mð0Þ
th < m < mð0Þ0

th , one gets an absorptive part coming from the
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function Fðm2 þ BeÞ in JðB2Þirπþπþ ð0;−m2Þ [beyond mð0Þ0
th , another absorptive contribution will arise from JðB1Þirπþπþ ð0;−m2Þ].

Finally, for the mixing polarization function Jρþπþð0;−m2Þ (which does not need regularization in the ultraviolet limit),
we obtain

Jmag
ρþπþð0;−m2Þ ¼ Juvρþπþð0;−m2Þ þ JðB1Þirρþπþ ð0;−m2Þ þ JðB2Þirρþπþ ð0;−m2Þ; ðC17Þ

where

Juvρþπþð0;−m2Þ ¼ NcM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Be

p
4π2

Z
1

−1
dv

Z
4=ðm2þBeÞ

0

dz
ðtu − tdÞ

αþ
e−z½M2−ð1−v2Þðm2þBeÞ=4�;

JðB1Þirρþπþ ð0;−m2Þ ¼ NcM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Be

p
4π2

Z
1

−1
dv

Z
∞

4=ðm2þBeÞ
dz e−z½M2−ð1−v2Þðm2þBeÞ=4�

�
tu − td
αþ

−
2Be

9
e−zð1þvÞBe=3

�
;

JðB2Þirρþπþ ð0;−m2Þ ¼ −
2NcMBe

9π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Be

p �Z
1þδ

−1þδ
dv

1 − e−ðv2þλ2Þ

v2 þ λ2
þ Fðm2 þ BeÞ

�
; ðC18Þ

with Fðm2 þ BeÞ given by Eqs. (C12) and (C13).
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