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We discuss several aspects of the stress-energy tensor for a quantum scalar field in an inhomogeneous
background, the latter being modeled by a variable mass. Using a perturbative approach, dimensional
regularization, and adiabatic subtraction, we present all-order formal expressions for the stress-energy
tensor. Importantly, we provide an explicit proof of the principle of virtual work for Casimir forces, taking
advantage of the conservation law for the renormalized stress-energy tensor. We discuss also discontinuity-
induced divergences. For the particular case of planar inhomogeneities, we corroborate the perturbative
results with a WKB-inspired expansion.
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I. INTRODUCTION

Energy densities, stresses, and forces are produced by
vacuum fluctuations of the electromagnetic field when a
body is immersed in a medium. In this context, the
immersion of bodies in homogeneous media was already
considered in the seminal works [1,2], in which the so-
called Lifshitz formula was derived. This formula is able to
describe the force between two flat and parallel interphases
that separate three different homogeneous media.
More recently, there have been efforts to define the

stress-energy (SE) tensor for a quantum field in a gener-
alized Lifshitz configuration, i.e., in a situation in which the
media are characterized by spacetime-dependent electro-
magnetic properties. Taking into account that the renorm-
alization originally proposed by Lifshitz et al. [1] does not
work in such a case, the problem has been considered by
several authors [3–10]. Despite the different methods,
models, and particular subtractions (at the level of either
the Green’s functions or the SE tensor), several questions
are still open.
To discuss some of them, we will consider a toy model

that consists of a quantum scalar field interacting with a
classical field, in such a way that the quantum field acquires
a variable mass. The evaluation of the vacuum expectation

values (VEVs) will be performed using a perturbative
approach in the variable mass. For the renormalization,
we will follow a standard approach, based on dimensional
regularization and adiabatic subtraction.
Observe first that similar theories have been analyzed in

several contexts. In particular, much attention has been
devoted to quantum fields in curved spacetimes [11,12], for
which there is a well-established procedure to obtain the
renormalized SE tensor: infinities are absorbed into the bare
constants of the theory. It is fairly obvious in this context
that the renormalization of the SE tensor’s VEV cannot be
performed as suggested in Refs. [1,2], i.e., by subtracting
local quantities that depend only on the value of the
background fields at a given point; it must also involve
derivatives of the background field. After absorbing the
divergences into the bare constants of the theory, the
renormalized SE tensor will be expected to be defined
up to local terms, which are determined by the finite part of
the counterterms; being local, they will not be relevant in
the discussion of Casimir interactions between different
bodies.
Notice that some general aspects of the renormalization

procedure that we employ have been described in detail in
Ref. [13]. However, the calculations were performed to
lowest order in the variable mass. To this order, it is
possible to describe only the energy density and stresses,
but not Casimir forces. Here, we extend those results to
arbitrary order. The case of a scalar field with variable mass
depending on a single coordinate has also been considered
in Ref. [6], in which the authors implement a Pauli-Villars
renormalization along with a WKB subtraction. A similar
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approach, albeit with the scope of analyzing the limit of
Dirichlet boundary conditions for thin surfaces, was fol-
lowed in Refs. [14–16].
One important aspect that we will discuss is that, if the

background field models the presence of several bodies, the
Casimir force can be then computed as customarily by
taking the derivative of the system’s vacuum energy with
respect to the position of one of the bodies or, alternatively,
integrating the component of the SE tensor which is normal
to the surface of that body. We will explicitly prove that
both approaches are equivalent, a result known as the
principle of virtual work (PVW). In this respect, Ref. [8]
contains a discussion of the PVW for a planar configura-
tion. Here, we go beyond planar geometries; moreover, we
provide an explicit connection with the PVW and the
semiclassical conservation law of the SE tensor.
Previous works reported a “pressure anomaly,” which

may jeopardize the validity of the PVW [17]. It was later
recognized that this anomaly is produced by a particular
point-splitting regularization [4]. Instead, our prescription
using dimensional regularization along with adiabatic
subtraction guarantees the fulfillment of the conservation
law and avoids the presence of anomalies. In a recent work
[10], it has been pointed out that quantum effects could
induce a violation of the classical relation between the
divergence of the electromagnetic stress and the gradients
of the permeability and permittivity of the inhomogeneous
media, inducing a “van der Waals anomaly.” We have not
found the analog of this anomaly in our model.
The last question that we will tackle is the fact that

discontinuous backgrounds generate surface divergences in
the VEV of the renormalized SE tensor. For the case of a
perfectly conducting interphase, the presence of these
divergences was pointed out a long time ago [18]. A
discussion of Dirichlet and Neumann boundary conditions
can be found in almost every textbook; see, for example,
Refs. [19,20] and references therein; more general boun-
dary conditions have been studied in Refs. [21–24]. In our
case, we do not impose any kind of boundary conditions;
the surface divergences appear just as a consequence of the
discontinuities in the background. For this reason, we will
call them discontinuity-induced divergences. We will
characterize this kind of divergences in a planar inhomo-
geneous model and discuss its irrelevance in the calculation
of Casimir forces. This will be confirmed by nonperturba-
tive calculations, based on a WKB-type approximation
discussed in Refs. [3,7] for the case of the electromag-
netic field.
The paper is organized as follows. In Sec. II, we

introduce our model, which consists of a quantum scalar
field ϕ in the presence of a background field σ that provides
an inhomogeneous mass term for the quantum field. In
Sec. III, we discuss the renormalization of the VEVs hϕ2i
and hTðϕÞ

μν i, which is performed using standard techniques
of quantum fields under the influence of external

conditions. We also discuss the validity of the conservation
law of the renormalized SE tensor at the semiclassical level.
Section IV describes a perturbative approach for computing
the above-mentioned mean values, with particular emphasis
in time-independent situations (i.e., when the background
field is static). In Sec. V, we prove the validity of the PVW.
The conservation law for the SE tensor turns out to be
crucial in this context. Several examples are discussed then
in Sec, VI, including the surface divergences that appear in
the renormalized mean values at the points where the
background field is discontinuous. Afterward, in Sec. VII,
we reanalyze those surface divergences in the case of planar
inhomogeneities within an adiabatic approach. Section VIII
contains the main conclusions of our work. Finally, the
Appendixes A, B, C, and D describe some further details of
the calculations.
We use natural units ℏ ¼ c ¼ 1 and metric signature

ðþ − − � � �Þ in a spacetime of dimension D. We define
g ¼ − det gμν, and spatial (D − 1)-vectors are written in
bold (x).

II. MODEL

We will consider a quantum field ϕ interacting with a
background classical field σ in the same fashion as in
Ref. [13]. The field σ provides a variable mass for ϕ, so
the action for both fields on a curved background is given
by [11,12]

S ¼ 1

2

Z
dDx

ffiffiffi
g

p �
ϕ;μϕ

;μ −
�
m2

1 þ ξ1Rþ λ1
2
σ2
�
ϕ2

þ σ;μσ
;μ − ðm2

2 þ ξ2RÞσ2 −
λ2
12

σ4
�
: ð1Þ

This theory can be considered as a toy model for the
electromagnetic field in the presence of an inhomogeneous
medium. Of course, to mimic the electric permittivity or
the magnetic permeability, one could consider alternative
models in which the coupling to the background field is
through terms that involve spatial or time derivatives of ϕ.
However, the action in Eq. (1) will be enough for our
purposes.
Even if we are interested in a four-dimensional space-

time, in Eq. (1), we have introduced a dimensional
regularization. Moreover, the inclusion of a self-interacting
term for the background field, i.e., the one proportional to
λ2, will be crucial for a successful renormalization, as will
also be the inclusion of a coupling to the curvature in
curved spaces (terms proportional to ξ1;2). This will be
discussed in detail in Sec. III.
Performing the variation of (1) with respect to both

fields, one can obtain the classical field equations, which
read
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�
□þm2

1 þ ξ1Rþ λ1
2
σ2
�
ϕ ¼ 0; ð2Þ

�
□þm2

2 þ ξ2Rþ λ1
2
ϕ2

�
σ þ λ2

6
σ3 ¼ 0: ð3Þ

Additionally, we can compute the classical SE tensor.
Since we have written the action on a curved spacetime, we
can compute it as customarily done through

Tμν ≔
2ffiffiffi
g

p δS
δgμν

¼ TðσÞ
μν þ TðϕÞ

μν ; ð4Þ

performing a split that will be useful in the following
discussion:

TðσÞ
μν ≔ ð1−2ξ2Þσ;μσ;νþ

�
2ξ2−

1

2

�
ημνσ;ρσ

;ρ

−2ξ2σσ;μνþ2ξ2ημνσ□σþημν
2

�
m2

2þ
λ2
12

σ2
�
σ2; ð5Þ

TðϕÞ
μν ≔ ð1 − 2ξ1Þϕ;μϕ;ν þ

�
2ξ1 −

1

2

�
ημνϕ;ρϕ

;ρ − 2ξ1ϕϕ;μν

þ 2ξ1ημνϕ□ϕþ ημν
2

�
m2

1 þ
λ1
2
σ2
�
ϕ2: ð6Þ

After performing the variation, we have set gμν ¼ ημν, since
we will not be interested in discussing the interaction with a
curved spacetime; we will work in flat spacetime through-
out the rest of the paper.
Two remarks are in order. First of all, TðϕÞ

μν corresponds
to the SE tensor of a free field with variable mass
M2 ¼ m2

1 þ λ1
2
σ2, in agreement with the picture that we

have described before. Second, the full SE tensor Tμν is of
course conserved classically, while one can easily check
that1

∂μTðϕÞ
μν ¼ λ1

4
∂νσ

2ϕ2: ð7Þ

We now consider the semiclassical version of the theory,
in which the field ϕ is of quantum nature while σ is treated
classically. Then, the classical expression (2) is promoted to
the Heisenberg equation associated to the quantum operator
ϕ. On the other side, the evolution equation for the
background field is obtained by taking the VEV of the
classical Eq. (3),

�
□þm2

2 þ
λ1
2
hϕ2i

�
σ þ λ2

6
σ3 ¼ 0: ð8Þ

Additionally, the SE tensor of the full semiclassical
system is

hTμνi ¼ TðσÞ
μν þ hTðϕÞ

μν i; ð9Þ

given that TðϕÞ
μν was defined so that it contains all the terms

involving the quantum field ϕ. Thus, the main objects to

analyze the vacuum fluctuations are hϕ2i and hTðϕÞ
μν i, the

latter being relevant to consider Casimir forces and self-
energies. Both of them are divergent quantities; as we will
see in the following section, the classical action for the field
σ is needed to absorb the divergences into the bare
constants of the theory during the renormalization process,
after which we obtain a finite and unique expression for the
SE tensor (up to finite local terms). Additionally, we will
show in Sec. III A that, using the usual prescription, Eq. (7)
is valid at the quantum level when the classical quantities
are replaced by the corresponding VEVs.

III. RENORMALIZATION AND
CONSERVATION LAW

The theory of quantum fields in curved spacetimes can
be renormalized using a precise covariant procedure
[11,12]. As was shown in Refs. [13,25], the case of a
quantum field with a variable mass can be treated in an
analogous way; we will briefly review it in the following.
As customarily in theories with four spacetime dimen-

sions, we can define the renormalized quantities as

hϕ2iren ≔ hϕ2i − hϕ2iad2;
hTðϕÞ

μν iren ≔ hTðϕÞ
μν i − hTðϕÞ

μν iad4; ð10Þ

where the VEVs hTðϕÞ
μν iad4 and hϕ2iad2 are constructed using

the Schwinger-DeWitt expansion (SDWE) up to fourth and
second adiabatic orders, respectively. Notice that the
counting of the adiabatic order includes not only the
number of derivatives but also the mass dimensions; for
example, a term with j derivatives of σ2 is of adiabatic order
jþ 2 [25]. After the subtraction in Eq. (10), the divergen-
ces in the adiabatic VEVs are to be absorbed into the bare
constants of the theory, so we end up with finite renor-
malized constants and VEVs.
As said above, the adiabatic contributions involve the

computation of the SDWE. For the Feynman propagator
(GF) of a scalar field with mass m, one obtains [26]

GSD
F ðx;x0Þ¼

Z
∞

0

ds

ð4πisÞD=2e
−iσSðx;x0Þ

2s −iðm2−iϵÞsX
j≥0

ðisÞjΩjðx;x0Þ;

ð11Þ

where D is the number of spacetime dimensions and
σSðx; x0Þ is Synge’s world function, that in flat space is
just σSðx; x0Þ ¼ ðx − x0Þ2=2. The functions Ωjðx; x0Þ are

1To simplify the notation, we will adopt the notation
∂νσ

2 ≔ ∂νðσ2Þ.
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defined by a set of recursive equations that follow from
imposing the equation for the propagator, i.e.,

�
□þm2

1 þ
λ

2
σ2ðxÞ − iϵ

�
GFðx; x0Þ ¼ −δ4ðx − x0Þ: ð12Þ

Their general form is well known; denoting with square
brackets the coincidence limit of these functions and their
derivatives, it can be shown that, for the action in Eq. (1) in
flat spacetime, the first functions read2 [27,28]

Ω0ðx;x0Þ ¼ 1; ½Ω1� ¼−
λ1
2
σ2;

½Ω1;μν� ¼−
λ1
6
σ2;μν; ½Ω2� ¼

λ1
12

□σ2þλ21
8
σ4: ð13Þ

This expansion can be modified by including the full
variable mass M2 into the exponent of the SDWE in
Eq. (11) (see Ref. [25] and more recently Refs. [29,30]).
With this modification, wewill have an expansion analog to
expression (11) involving new functions Ω̃jðx; x0Þ; the latter
do not contain powers of M2 but only powers of its
derivatives. Although this expansion could be used in
principle,3 it does not provide additional help in the
following computations and will not be followed here.
Coming back to the computation of the renormalized

quantities, the adiabatic VEVs can be computed by
recasting all the expressions in terms of the imaginary part
of Feynman’s Green’s function, which satisfies

ImðGFðx; x0ÞÞ ¼ −
1

2
hfϕðxÞ;ϕðxÞgi: ð14Þ

A direct computation shows that the explicit expressions
are (see Ref. [25] and footnote 2 in the current paper)

hϕ2i ¼ −Im½GF�; ð15Þ

hTðϕÞ
μν i ¼ −Im

�
−½GF;μν� þ

�
1

2
− ξ1

�
½GF�;μν

þ
�
ξ1 −

1

4

�
ημν□½GF�

�
: ð16Þ

In these expressions, one can replace the SDWE (11) for the
propagator and obtain the adiabatic expansion of the
desired quantities up to the appropriate order.
In particular, the coincidence limit of the two-point

function for a field with variable mass as in Eq. (1) is
therefore given by

hϕ2iad2 ¼
1

ð4πÞD=2

�
m1

μ

�
D−4

×

�
m2

1Γ
�
1 −

D
2

�
−
λ1
2
σ2Γ

�
2 −

D
2

��
; ð17Þ

where μ is an arbitrary scale with dimensions of mass that is
introduced in the renormalization process. Both terms
diverge as D → 4, and their subtraction will be enough
to obtain a finite result in (10). The fact that the divergences
can be absorbed into the bare constants of the theory can be
seen by inserting expression (17) into the semiclassical
equation for σ, i.e., Eq. into (8). Indeed, writing

m2
2 ≕m2

2R þ δm2
2;

λ2 ≕ λ2R þ δλ2; ð18Þ

we obtain the counterterms

δm2
2 ¼ −

λ1m2
1

16π2ðD − 4Þ þ Δm2
1;

δλ2 ¼ −
3λ21

16π2ðD − 4Þ þ Δλ2; ð19Þ

where Δm2
2 and Δλ2 are finite contributions that relate

different renormalization schemes (they vanish in the
minimal subtraction scheme).
We now consider the evaluation of the SE tensor in our

semiclassical theory. The expression for its VEV up to
fourth adiabatic order reads

hTðϕÞ
μν iad4 ¼

1

ð4πÞD=2

�
m1

μ

�
D−4

×

�
−
ημν
2

m4
1Γ
�
−
D
2

�
þ λ1

4
m2

1σ
2ημνΓ

�
1 −

D
2

�

þ Γ
�
2 −

D
2

��
−
λ21
16

ημνσ
4

þ λ1
2

�
ξ1 −

1

6

�
ðσ2;μν − ημν□σ2Þ

��
: ð20Þ

Comparing Eq. (20) with Eq. (5), one can show that the σ-
dependent divergences can be absorbed using the same
counterterms given in Eq. (19) and including a counterterm
for ξ2, the latter needed to absorb the divergence propor-
tional to ðξ1 − 1=6Þ. The term independent of σ2 will just
renormalize the cosmological constant (or a bare constant
in the classical potential for the background field) and will
play no role in our considerations. All these terms depend
on the arbitrary scale μ that has been introduced in the
renormalization process; the arbitrariness is resolved by
using experimental data to fix the involved couplings.
Therefore, we have a precise procedure for defining the

2It should be understood that Ω1;μν ¼ ∂
∂xμ

∂
∂xμ Ω1ðx; x0Þ. Notice

that Ref. [27] works with a Euclidean signature.
3One should appropriately modify the discussion in Sec. III A.

FRANCHINO-VIÑAS, MANTIÑAN, and MAZZITELLI PHYS. REV. D 105, 085023 (2022)

085023-4



renormalized SE tensor for the quantum field ϕ in an
inhomogeneous background σ.
Since in the following sections we will deal with

massless fields, let us recall that then one can simply trade
mD−4

1 → μD−4
2 in Eqs. (20) and (17), setting the other

powers of m1 to zero. The new scale μ2 is arbitrary but
appears only in quotients with μ; for convenience, we can
set it to μ2 ≡ e−1μ.
Before concluding this section, two last remarks are in

order. First, our starting action in Eq. (1) belongs to a theory
on curved spacetime. This choice was motivated in part to
emphasize that the problem of quantum fields in inhomo-
geneous backgrounds can be addressed using well-known
techniques of quantum fields on curved spaces. However,
this point is not crucial from a computational point of view.
An alternative route is to start with a theory in Minkowski
spacetime and compute the SE tensor using Noether’s
theorem; afterward, one may add the terms proportional to
ξ1 and ξ2 in Eqs. (5) and (6) using the fact that Noether’s
theorem does not constrain them. In any case, note that,
while it is not necessary to add the terms proportional to ξ1
in the SE tensor of the quantum field ϕ, the introduction of
the classical terms proportional to ξ2 is essential to renorm-
alize the theory, even if ξ1 ¼ 0.
The second remark is about regularization. Dimensional

regularization in curved spacetimes has been sometimes
criticized because of the arbitrariness in the choice of the
extra dimensions, that could describe an arbitrary mani-
fold.4 This concern is not relevant in the present work
since, as we have already mentioned, the calculations can
be performed entirely in flat spacetime. In spite of this, and
for the sake of completeness, in Sec. VI E, we will show
how to reobtain some of our results using heat kernel
techniques and working in D ¼ 4.

A. Semiclassical conservation law

It is well known that the renormalization procedure may
induce anomalies in the quantum theory, which may be
caused by the regularization and/or the corresponding
subtractions. Typical examples are the nonconservation
of the chiral current for massless fermions in the presence
of background gauge fields [31] and the trace anomaly for
conformal fields in curved spaces, first discovered in
Ref. [32] and lately revisited in relation with Weyl fermions
[33,34]. We will now show that the conservation law in
Eq. (7) remains valid after the quantization of ϕ, if we
replace the classical quantities with the corresponding
renormalized VEVs given by expression (10):

∂μhTðϕÞ
μν iren ¼

λ1
4
∂νσ

2hϕ2iren: ð21Þ

To see this, we rewrite the above equation as

∂μðhTðϕÞ
μν i − hTðϕÞ

μν iad4Þ ¼
λ1
4
∂νσ

2ðhϕ2i − hϕ2iad2Þ; ð22Þ

where all calculations are performed in D dimensions. As
dimensional regularization is covariant, one expects the

regularized mean values hTðϕÞ
μν i and hϕ2i to satisfy the

conservation law. Indeed, from Eqs. (15) and (16), one can
check this explicitly using the expression for the propaga-
tor, which is of course valid in D dimensions. Moreover,

computing the derivative of hTðϕÞ
μν iad4 in Eq. (20), we

straightforwardly obtain

∂μhTðϕÞ
μν iad4 ¼

λ1
4
∂νσ

2hϕ2iad2; ð23Þ

so neither the regularization nor the subtraction breaks the
conservation law at the quantum level for ϕ. Therefore,
Eq. (21) is valid. This will be crucial in the discussion of the
principle of virtual work in Sec. V.

IV. PERTURBATIVE APPROACH

We will now obtain explicit expressions for the
renormalized VEVs hTðϕÞ

μν iren and hϕ2iren, using a pertur-
bative expansion in powers of λ1. We will start studying
Feynman’s propagator, since those VEVs can be obtained
from it as shown in Eqs. (15) and (16). For simplicity,
we will consider the massless case (m2

1 ≡ 0) and replace
λ1 → λ, so using the customary “iϵ” prescription
Feynman’s propagator satisfies

�
□þ λ

2
σ2ðxÞ − iϵ

�
GFðx; x0Þ ¼ −δ4ðx − x0Þ: ð24Þ

Solving this equation perturbatively in λ, we obtain

GFðx; x0Þ ¼ Gð0Þ
F ðx; x0Þ þGð1Þ

F ðx; x0Þ þ � � � ; ð25Þ

defining Gð0Þ
F ðx; x0Þ as the usual free propagator and the

contribution of order λn as

GðnÞ
F ðx; x0Þ ≔ λn

2n

Z
d4x1 � � � d4xnσ2ðx1Þ � � �

× σ2ðxnÞGð0Þ
F ðx; xnÞ � � �Gð0Þ

F ðx1; x0Þ: ð26Þ

This is a notation that we will employ frequently in the
following: the order n contribution in λ of a given quantity
will be denoted by adding a superscript (n). Coming back
to (26), we can recast it by expressing every free propagator
in momentum space:

4In this respect, we share the point of view of many workers in
the field [12]: the regularization should make the expressions
finite in the simplest way and respect as many classical
symmetries as possible. The choice of the extra dimensions
should eventually follow these principles.
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GðnÞ
F ðx; x0Þ ¼ λn

2nð2πÞ4nþ4

Z
d4x1 � � � d4xnd4q1 � � � d4qnσ2ðx1Þ � � � σ2ðxnÞ

× e−iqn·ðxn−xn−1Þ � � � e−iq1·ðx1−x0Þ
Z

dDs
μD−4

e−isðx−x0Þ

s2ðsþ q1Þ2 � � � ðsþ qnÞ2
: ð27Þ

Notice that we have implemented dimensional regularization only in the internal momentum s, introducing as usual an
arbitrary scale μ with dimensions of mass; to shorten the notation, we have omitted the iϵ terms in the propagators. An
immediate consequence of this result is that

hϕ2iðnÞ ¼ −
λn

2nð2πÞ4nþ4
Im

�Z
d4x1 � � � d4xnd4q1 � � � d4qnσ2ðx1Þ � � � σ2ðxnÞe−iqn·ðxn−xn−1Þ � � � e−iq1·ðx1−xÞIðq1;…; qnÞ

�
; ð28Þ

where we have introduced the tensorial integrals5

Iμ1;μ2���ðq1;…; qnÞ

≔
Z

dDs
μD−4

sμ1sμ2 � � �
s2ðsþ q1Þ2ðsþ q2Þ2 � � � ðsþ qnÞ2

: ð29Þ

The computation of these integrals can be done in various
ways, the most famous one being probably the Veltman-
Passarino reductionmethod [35] (see also Refs. [33,36,37]).
An analogous expansion for the ϕ contribution to the SE

tensor can be obtained. Inserting the nth-order expression
for the propagator into Eq. (16) and dropping the ðϕÞ
superscript, one can find

hTμνiðnÞ ¼
λ

4
ημνσ

2ðxÞhϕ2iðn−1Þ − λn

2nð2πÞ4nþ4
Im

�Z
d4x1 � � � d4q1 � � � σ2ðx1Þ � � � σ2ðxnÞ

× e−iqn·ðxn−xn−1Þ � � � e−iq1·ðx1−xÞ
�
ðIρσ þ Iρq1σÞ

�
ηρμησν −

1

2
ηρσημν

�
− 2ξIρq1σðηρμησν − ηρσημνÞ

��
; ð30Þ

where it will be understood that the arguments in the I tensorial integrals, when missing, are all the involved momenta
q1;…; qn.
From now on, we will assume that the background field is time independent. In that case, integrating over all space, we

find an expression for the total vacuum energy, E, that reads

EðnÞ ¼ −
λn

2nð2πÞ3nþ1
Im

�Z
d3x1 � � � d3q2 � � � σ2ðx1Þ � � � σ2ðxnÞ

× e−iqn·ðxn−xn−1Þ � � � e−iq2·ðx2−x1Þ
�
I00 −

1

2
Iρ

ρ

��
qμ
1
¼0

þ λ

4

Z
d3xσ2ðxÞhϕ2iðn−1ÞðxÞ: ð31Þ

This expression can be further simplified. First of all, the
term involving Iρ

ρ cancels with the one proportional to
hϕ2iðn−1Þ. Second, I00 can be recast, integrating by parts in
the zeroth component of the internal momentum s, using
the symmetry of the integrand in the variables qi and
rewriting the result in terms of hϕ2iðn−1Þ. This leads to the
following master formula for the time-independent case:

EðnÞ ¼ λ

4n

Z
d3xσ2ðxÞhϕ2iðn−1ÞðxÞ: ð32Þ

It is important to notice that, with our renormalization
prescription, Eq. (32) remains valid when replacing the
regularized quantities by the renormalized ones.
In the next sections, we will derive explicit expressions

for all the relevant physical quantities at first and second
orders in λ, along with some illustrative examples. Before
doing this, we would like to stress some general properties
of the preceding results.
In Sec. III, we have discussed the divergences’ structure

of the VEVs hϕ2i and hTμνi. The ones that should be
renormalized are at most quadratic in the coupling constant
λ, and therefore we will be able to reproduce them in a
second-order perturbative approach. After subtracting the
appropriate adiabatic expansions, the renormalized VEVs

5The integral I without indices should be understood with a
factor 1 in the integrand’s numerator of (29).
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will be determined up to local terms whose dependence on
σ is that of the counterterms. Since they are local, they are
not relevant in the computation of Casimir forces between
different bodies; in other words, Casimir forces will have
no undeterminacy. However, if one were interested in self-
energies, then one should use experiments to fix the
otherwise free parameter μ.
One subtle point is that there could be additional

divergences. First, they could be generated by disconti-
nuities in the background field σ2 or its derivatives. These
are the scalar counterparts of those arising near a perfect
conductor, which depend on the local geometry of the
surface [18]. In these situations, one should be careful to
give the right interpretation of the conservation equa-
tion (21). We will describe this kind of divergences
in Sec. VI.
We would also like to point out that, due to the fact that

we are using massless propagators, one could encounter
infrared divergences at higher orders in λ. To avoid these
divergences, one could consider massive propagators.
That will be the case if the field ϕ is massive.
Alternatively, for a massless field, one can perform the
perturbative expansion around the average of σ2 over all
space (σ̄2). If the latter is nonvanishing, one can write the
equation for the propagator as

�
□þ λ

2
σ̄2 − iϵþ λ

2
ðσ2ðxÞ − σ̄2Þ

�
GFðx; x0Þ ¼ −δ4ðx − x0Þ

ð33Þ

and perform the expansion with a free propagator of mass
m̄2 ¼ λ

2
σ̄2. This corresponds to a resummation of the

perturbative results, that will show a nonanalytic depend-
ence with m̄2. In both cases, the corresponding perturbative
expressions can be obtained just by replacing in Eqs. (26)–
(32) the free massless propagators by massive ones.
Finally, we would like to point out that the perturbative

approach should be modified when considering a time-
dependent background field. Indeed, the solution to
Eq. (24) is the matrix element

GFðx; x0Þ ¼ i
h0INjTðϕðxÞϕðx0ÞÞj0OUTi

h0INj0OUTi
; ð34Þ

which involves the initial and final vacuum states, not the
mean value h0INjTðϕðxÞϕðx0ÞÞj0INi. The same remark
applies to the other VEVs in this section. This situation
can be amended, following a procedure inspired in the
Schwinger-Keldysh formalism [38], by computing pertur-
batively the generalized Green’s function

GCðx; xÞ ¼ ih0INjTCðϕðxÞϕðx0ÞÞj0INi; ð35Þ

where TC is the temporal ordering along a closed temporal
contour C. This is beyond the scope of the present paper.

V. PRINCIPLE OF VIRTUAL WORK

Before we apply our formulas in Sec. VI to some
particular configurations, we will provide an explicit proof
of the validity of the PVW in this model. To do that, we
consider the situation is illustrated in Fig. 1, in which a body
is immersed in an inhomogeneousmedia. Then,we compare
the variation of the energy under an infinitesimal displace-
ment of the bodyB and the integral of the normal component
of the SE tensor over the surface of the same body.
Let us denote by ΩB the volume occupied by the body in

the initial position. The body B is characterized by a field
σ2BðxÞ, while the surrounding media corresponds to σ2MðxÞ.
Introducing the characteristic function

χΩðxÞ ¼
�
1 x ∈ Ω
0 x ∉ Ω

; ð36Þ

it is clear that after a translation by a vector L the
background field becomes

σ2LðxÞ ¼ σ2Bðx −LÞχΩB
ðx −LÞ þ σ2MðxÞ½1 − χΩB

ðx −LÞ�;
ð37Þ

which is different from σ2ðx −LÞ. In such affirmation, we
are assuming that the effects of one media on the other, if
they exist, can be neglected in the evaluation of response
functions. We are also supposing that the function σ2M is
defined over all space, independently of the presence of the
body B.
We now consider the gradient ∇ of the background field

with respect to x,

∇σ2ðxÞ ¼ ∇½σ2BðxÞχΩB
ðxÞ þ σ2MðxÞð1 − χΩB

ðxÞÞ�: ð38Þ

Computing the gradient of σ2LðxÞ with respect to L at zero
displacement,

FIG. 1. The body B, that initially occupies the volume ΩB, is
virtually displaced by the vector L.
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∂
∂L σ2LðxÞ

				
L¼0

¼ ∂
∂L ½σ2Bðx −LÞχΩB

ðx −LÞ�

− σ2MðxÞ
∂
∂L χΩB

ðx −LÞ
				
L¼0

¼ −∇½σ2Bðx −LÞχΩB
ðx −LÞ�

þ σ2MðxÞ∇χΩB
ðx −LÞjL¼0; ð39Þ

it is immediate to see that ∂
∂L σ2LðxÞjL¼0 is nonvanishing

only in the region ΩB (including the boundary), and in that
region,

∂
∂L σ2LðxÞ

				
L¼0

¼ −∇σ2ðxÞ; x ∈ ΩB: ð40Þ

In the time-independent situation, one can compute the
energy after a virtual displacement of the body by replacing
σ2 with σ2L in Eq. (31). Afterward, taking the derivative of
the energy with respect to L and using the symmetry of the
integrand, we get

−
∂EðnÞ

∂L
				
L¼0

¼1

2

λn

2nð2πÞ3nþ1

×Im

�Z
d3x1 ���d3q2 ���

∂σ2L
∂L ðx1Þσ2Lðx2Þ���

×eiqn·ðxn−xn−1Þ ���eiq2·ðx2−x1ÞIðq2;���Þ
�
q0k¼0;L¼0

:

ð41Þ
As previously done with the energy, we can rewrite this
expression in terms of hϕ2ðxÞiðn−1Þ as follows:

−
∂EðnÞ

∂L
				
L¼0

¼ −
λ

4

Z
d3xhϕ2ðxÞiðn−1Þ ∂σ

2
L

∂L ðxÞ
				
L¼0

: ð42Þ

Recalling from Eq. (40) that ∂σ2L∂L ðxÞjL¼0 is different from
zero only for x ∈ ΩB, we may replace the derivatives with
respect to the displacement by minus the gradient and
obtain

−
∂EðnÞ

∂L
				
L¼0

¼ λ

4

Z
ΩB

d3x∇σ2ðxÞhϕ2ðxÞiðn−1Þ; ð43Þ

where the integral over ΩB includes possible surface-
localized contributions. Comparing this expression with
the conservation law (21) of the SE tensor for a static
configuration,6

∂ihTi
jðxÞiðnÞ ¼

λ

4
∂jσ

2ðxÞhϕ2ðxÞiðn−1Þ; ð44Þ

we have therefore

−
∂EðnÞ

∂Lj

				
L¼0

¼
Z
ΩB

d3x∂ihTi
jðxÞiðnÞ: ð45Þ

If ∂ihTi
jðxÞiðnÞ is regular enough, one can then prove the

PVW by using Gauss’s theorem; calling d2Σi the positive
volume 1-form on ∂ΩB, we obtain

−
∂EðnÞ

∂Lj

				
L¼0

¼
Z
∂ΩB

d2ΣihTi
jðxÞiðnÞ: ð46Þ

The extension of the proof to the renormalized VEVs of the
SE tensor can be done by showing that the subtracted
adiabatic terms satisfy an equation analogous to (46).
Notice that if ∂ihTi

jðxÞiðnÞ has surface-localized contribu-
tions on ∂ΩB then they should be added to the rhs
of Eq. (46).

VI. EXAMPLES

A. First-order perturbation theory

The first-order expressions have been previously
obtained in Ref. [13]. The divergent parts can be straight-
forwardly obtained in our formalism by computing the
involved scalar integral I ; they agree with those predicted
by the adiabatic expansions (17) and (20). Furthermore,
one can obtain an explicit result for the renormalized
quantities,

hϕ2ið1Þren ¼ λπ2

2ð2πÞ8Re
�Z

d4q1eiq1·xσ̃2ðq1Þ log
�
−
q21
μ2

− iϵ

��
;

ð47Þ

hTμνið1Þren ¼−
λ

48ð2πÞ6Re
�Z

d4q1eiq1·xσ̃2ðq1Þðqμ1qν1−q21ημνÞ

×log

�
−
q21
μ2

− iϵ

��

þ λ

144ð2πÞ2 ½∂
μ∂ν−ημν□�σ2ðxÞ; ð48Þ

where we have made explicit the “þiϵ” prescription and we
have defined a Fourier transform in Minkowski space as

σ̃2ðqÞ ≔
Z

d4x1e−iq·x1σ2ðx1Þ: ð49Þ

Although one could be tempted to cancel the last term
in the rhs of Eq. (48) by performing a redefinition of the
renormalization scale μ, that would imply the introduction
of an additional term in other quantities, such as expression
(47). Related to this fact, the choice of μ2 made in Sec. III is6Latin indices are used for spatial coordinates.
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such that there are no local terms in the expression for

hϕ2ið1Þren (apart from the μ dependent ones).
The first-order approximation for the SE tensor satisfies

∂μhTμνið1Þren ¼ 0, which is consistent with the conservation

law in Eq. (21) up to order λ, given that hϕ2ið0Þren ¼ 0. It could
be useful to analyze the eventual gravitational effects of the
vacuum fluctuations, when used as a source in the semi-
classical Einstein equations [13]. However, the associated
vacuum energy Eð1Þ vanishes for static backgrounds and

therefore has no relevance in the computation of non-
dynamical Casimir forces.

B. Second-order perturbation theory

The computation at second order in λ is more challeng-
ing. After introducing Feynman parameters, we are able to
isolate the divergences in the I integrals and perform the
corresponding renormalization; afterward, we obtain the
results for the contributions

hϕ2ið2Þren ¼−
λ2

22ð2πÞ12Re
�Z

d4q1d4q2σ̃2ðq1−q2Þσ̃2ðq2Þeiq1·x
Z

1

0

Z
1−s1

0

ds2ds1ðMEþ iϵÞ−1
�
; ð50Þ

hTμνið2Þren ¼ −
λ2

16ð2πÞ10 Re
�Z

1

0

Z
1−s1

0

ds2ds1

Z
d4q1d4q2σ̃2ðq1 − q2Þσ̃2ðq2Þeiq1·x

×

�
ημν

2
log

�
ME

μ2
þ iϵ

�
þ ððs1 − 1Þq1 þ s2q2Þρðs1q1 þ s2q2Þσ

ME þ i0

�
ημρηνσ −

1

2
ημνηρσ

���

þ λ

4
ημνσ2ðxÞhϕ2ið1Þren −

3λ2

28π2
ημνσ4ðxÞ; ð51Þ

where we have defined

ME ≔ s1ð1 − s1Þq21 þ s2ð1 − s2Þq22 − 2s1s2ðq1 · q2Þ: ð52Þ

A direct computation is arduous, and collinear diver-
gences are always threatening; for a planar geometry,
keeping the iϵ prescription, one can introduce the basic
form factors

F0ðq1;q2Þ

≔q1

�
q1 log

�
q21

ðq1−q2Þ2
�
þq2 log

�ðq1−q2Þ2
q22

��
; ð53Þ

F1ðq1;q2Þ≔ q41 log

�
q21

ðq1−q2Þ2
�
þq1q32 log

�ðq1−q2Þ2
q22

�
;

ð54Þ

F2ðq1;q2Þ≔ q41 log

�
q21

ðq1−q2Þ2
�
þq21q

2
2 log

�ðq1−q2Þ2
q22

�
;

ð55Þ

F3ðq1; q2Þ ≔ ðq21 − q2q1 − iϵ1Þðq1q2 þ iϵ2Þ; ð56Þ

in which ϵ1;2 are prescription parameters for the Feynman
propagator. Using them, we may write a closed expression
valid for a planar background field that varies only in the z
direction,

hϕ2ðzÞið2Þren

¼−
λ2

24ð2πÞ4Re
�Z

dq1dq2e
−iq1zσ̃2ðq1−q2Þσ̃2ðq2Þ

F0

F3

�
;

ð57Þ

hTμνðzÞið2Þren ¼ λημν

8
σ2ðzÞhϕ2ið1Þren −

λ2

3 · 26ð2πÞ2 η
μνσ4ðzÞ − λ2

3 · 25ð2πÞ2
�
ημ3η

ν
3 þ

1

2
ημν

�
σ4ðzÞ

−
λ2

16ð2πÞ4 Re
�Z

dq1dq2
e−iq1z

F3

σ̃2ðq1 − q2Þσ̃2ðq2Þ
��

ημ3η
ν
3 þ

1

2
ημν

��
−
1

3
F1 þ

1

2
F2

�
þ ημν

12
F1

��
; ð58Þ

in which we are omitting the variables ðq1; q2Þ in
the form factors Fi. A direct computation shows the
conservation law (21) is satisfied at second perturbative
order.

If one considers time-independent backgrounds, the
expressions become more tractable than in the general
case. In particular, the total energy is represented by the
simple formula
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Eð2Þ
ren ¼ λ2

26ð2πÞ5 Re
�Z

d3q1σ̃
2ðq1Þσ̃2ð−q1Þ log

�
q2
1

μ2

��
;

ð59Þ

where the Fourier transform evaluated at spatial coordinates
implies omitting time variables, i.e.,

σ̃2ðqÞ ≔
Z

d3x1eiq·x1σ2ðx1Þ: ð60Þ

C. Discontinuity-induced divergences
of hϕ2iren for a barrier

As explained in Sec. IV, even after the appropriate
renormalization procedure has been carried out, both
hϕ2iren and hTμνiren display divergences at the points where
the background field σ is discontinuous. Employing the
perturbative formalism that was developed in the preceding
sections, we can unravel the precise structure of these
divergences. We will call them “discontinuity-induced
divergences” or “surface divergences,” as a way to dis-
tinguish them from the divergences that require renormal-
ization, which will be called bulk divergences.
First of all, we will consider a barrier of height Δσ

depending on only just one spatial coordinate

σ2bðzÞ ≔ Δσ2ðΘðz − aÞ − Θðz − bÞÞ; ð61Þ

where ΘðzÞ is the Heaviside function, and we will refer to
a and b as the surface of the barrier. The Fourier transform
of σ2b

σ̃2bðqÞ ¼ Δσ2
iðeiaq − eibqÞ

q
: ð62Þ

From this expression, one can already appreciate why

divergences will occur in hϕ2ið1Þren for such a background:
the convergence for large momenta is only conditionally
guaranteed by the oscillatory exponentials. In other
words, at those points where the exponents cancel, mild
divergences should be present. Indeed, this can be con-
firmed by replacing σb in expression (47), as done in
Ref. [13],

hϕ2
bið1Þren ¼ λΔσ2

25π2
f−signðz − aÞ½γ þ logðμjz − ajÞ�

þ signðz − bÞ½γ þ logðμjz − bjÞ�g; ð63Þ

where γ is the Euler-Mascheroni constant. Even if this
expression is divergent at the surface of the barrier, it is
local, in the sense that it only depends on the information
of the local jump, and integrable, so that one is able to
define its mean value over any desired region in space.

One important thing to notice is that, if σ2 or its
derivatives have a finite number of discontinuities,7 the

only types of divergences hϕ2ið1Þren are those in Eq. (63).
Indeed, if the discontinuities appear only in the derivatives
of σ2, then the Fourier transform will contain additional
powers of the momentum that will guarantee a noncondi-
tional convergence.
Analogously, if one considers the second- or higher-

perturbative orders of hϕ2iren, a dimensional argument
shows that for large momenta the integrand should behave
as a power that provides convergence of the integral,
cf. Eq. (28).
At this point, the educated reader may be worried about

the IR and collinear divergences that we have mentioned in
Sec. IV. Theywill appear in higher-order computations since
we are dealing with massless fields; an appropriate regulator
should thus be used, or at least the iϵ prescription from the
Wick rotation should be kept (see a related discussion for the
SE tensor in Appendix A). They will also appear in our first-
order contribution only if the σ2 profile decays too slowly at
infinity, as is the case of a step function.

D. Divergences in the stress-energy tensor for a barrier

1. First-order computation for a barrier

Consider now the first-order expression (48) for hTμνiren,
focusing for the time being on the nonlocal contribution. If
we naively replace the background field with σ2b, then we
end up with a formally divergent expression, to which a
meaning should be ascribed:

hTμν
b ið1Þren ¼ λΔσ2

48ð2πÞ3 ðη
μν þ δμ3δ

ν
3Þ

× Im
�Z

dq1e−iq1zðeiaq1 − eibq1Þq1 log
�
q21
μ2

��
:

ð64Þ

In Appendix A, we show that this expression is well defined
in the sense of distributions, which is the natural language of
quantum field theory (see, for example, Ref. [17] or [39] for
a recent discussion in astrophysics). In this section, we will
follow a physical approach, introducing an exponential
cutoff c > 0 in the Fourier transform,

hTμν
b ið1Þren¼ λΔσ2

48ð2πÞ3 ðη
μνþδμ3δ

ν
3Þ

×Im

�Z
dq1e−iq1z−cjq1jðeiaq1 −eibq1Þq1 log

�
q21
μ2

��
;

ð65Þ

7Additional divergences may occur in cases where the back-
ground field starts oscillating unconstrainedly.
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which is tantamount to saying that we have smoothed the
discontinuity in the background field. A straightforward
computation gives

hTμν
b ið1Þren ¼−

λΔσ2

48ð2πÞ3 ðη
μνþδμ3δ

ν
3Þ

×Im

�
logðμ2Þþ2½logðia− izþcÞþ γ−1�

ð−aþ icþ zÞ2

−
logðμ2Þþ2½logð−iaþ izþcÞþ γ−1�

ðaþ ic− zÞ2

þ logðμ2Þþ2½logð−ibþ izþcÞþ γ−1�
ðbþ ic− zÞ2

−
logðμ2Þþ2½logðib− izþcÞþ γ−1�

ð−bþ icþ zÞ2
�
: ð66Þ

Notice first of all that, due to the tensorial structure, the

hT33
b ið1Þren vanishes; the only components that survive are the

diagonal terms in the other directions. Second, Eq. (66)
means that, as we approach the barrier profile by taking

c → 0þ, hTμν
b ið1Þren should display a bump that resembles a

divergence at the surface of the barrier (z0 may be either a or
b in the following formula):

hTμν
b ið1ÞrenðzÞ ∼z→z0signðz − z0Þðz − z0Þ−2ðημν þ δμ3δ

ν
3Þ: ð67Þ

2. Second-order computation for a barrier

The second-order contribution to the SE tensor shares
some similarities with the first-order computation of
hϕ2iren. Indeed, a power-counting argument in (51) shows
that the integrals involved in the computation are condi-
tionally convergent in the UV as long as we are not
evaluating the expressions at the surface of the barrier;
at those points, the oscillatory behavior may disappear, and
a mild divergence should then occur.
As a particular example, we may analyze the divergent

terms for the barrier in Eq. (61). It should be expected that
divergences will arise unless some fortuitous cancellations
take place, since already the first term, i.e., the one
involving hϕ2ið1Þren, is divergent at the surface of the barrier.
We leave the lengthy computations to Appendix B, simply
stating the result:

hTb
μνið2Þrenjz→a

¼−
λ2

3 ·24ð2πÞ2 ðΔσ
2Þ2 logðjz−ajÞðημνþδμ3δ

ν
3Þþ �� � :

ð68Þ
As was the case described in Sec. VI D 1 for the first-order

contributions, the tensorial structure implies that hT33
b ið2Þren is

finite, while the remaining diagonal components of the SE
tensor will display a divergence. In this case, it is an

integrable logarithmic one, and it is of local nature,
depending only on the discontinuity of the background
field at the corresponding surface.

E. Comparison with a heat kernel approach

One technique that is widely employed in the compu-
tation of vacuum energies is the heat kernel. As shown in
Sec. III, the divergent contributions to the Green’s function
(and to the effective action) can be related to the first terms
of the heat kernel in the SDWE (or small proper-time
expansion). Thus, one may wonder whether they can be
employed to rederive the precedent perturbative results.
To begin, notice that in our perturbative discussion we

have given explicit results for the finite contributions up to
second order in powers of the potential. This is not
equivalent to the set of first coefficients in the SDWE but
to a resummation of all the coefficients in the heat kernel up
to second order in the potential, independently of the number
of derivatives involved. Nevertheless, there exists a partial
resummation of heat kernel coefficients, the so-called
curvature expansion [40,41], that will allow a comparison.
Consider thus a smooth Riemannian manifold with

metric gμν; let us call ∇μ its compatible covariant derivative
and define □ ≔ gμν∇μ∇ν. The curvature expansion of the
heat kernel’s diagonal of a Laplacian-type operator is given
by [41]

e−ð−□þQþm2Þðx; x; tÞ

¼ 1

ð4πtÞD=2 e
−tm2

�
1 − tγð1Þðt□ÞQþ t2

2
Qγð1Þðt□ÞQ

þOðR;∇ðQQÞ; Q3Þ
�
; ð69Þ

whereQ in our case is a smooth function of the coordinates
and the coefficient γð1Þð·Þ is defined as

γð1ÞðxÞ ≔
Z

1

0

dξeð1−ξ2Þx=4: ð70Þ

Notice that OðR;∇ðQQÞÞ means that the expansion (69)
does not include terms that are total derivatives and would
vanish upon integration in x; given that we work in
Minkowski space, we are also neglecting powers of the
curvature R.
Recall now that the Euclidean coincident point propa-

gator can be obtained by integration over the proper time.
In this scenario, the divergences of the propagator arise
because of the small proper-time behavior of the heat
kernel; setting D ¼ 4, we subtract the leading terms up to8

t0 and obtain

8Alternatively, to regularize the expression one may introduce
a power tp in Eq. (71) to consider the zeta function regularization,
i.e., the complex power of the studied operator. This choice will
not affect the conclusions of this section.
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hϕ2ðxÞiren ¼
Z

∞

0

dt

�
e−ð−□þQþm2Þðx;x; tÞ− e−tm

2

ð4πtÞ2 ð1− tQÞ
�

¼ logð− □

m2Þ−2

16π2
QþQ

logð−m2

□
Þ

16π2□
Q

þOð∇ðQQÞ;Q3;m2Þ: ð71Þ

A comparison with the expressions that we have obtained
in our perturbative expansion is now straightforward. First
of all, we should Fourier transform to momentum space, so
that under the momentum integral we replace □ → q2,

Q → λ
2
σ2ðqÞ and m2 → e−2μ2, since the latter is the chosen

scale of reference (cf. the discussion in Sec. III). This is
enough to see the agreement at the linear level in Q, viz.,
with (47).
At quadratic order in Q, hϕ2ðxÞi does not have ultra-

violet divergences, and therefore we expect that all methods
will produce the same finite results. The comparison is,
however, instructive. A subtle point is that expression (71)
neglects all the terms that are total derivatives. To under-
stand this, let us consider an Euclidean massive version of
our results in Eq. (28),

hϕ2ðxÞið2Þm ≔
λ2

22ð2πÞ8
Z

d4q1d4q2σ̃2ðq1Þσ̃2ðq2Þeiqþ·xImð−qþ;−q2Þ; qþ ≔ q1 þ q2; ð72Þ

where the new scalar integral Im involves massive propagators:

Imð−qþ;−q2Þ ≔
Z

dDq
ð2πÞD

1

ðq2 þm2Þððqþ qþÞ2 þm2Þððqþ q2Þ2 þm2Þ : ð73Þ

Neglecting total derivatives in Eq. (72) simply means to set
qþ ≡ 0 in Eq. (73). A direct computation gives then

Imð0;−q2Þ ¼
1

16π2
logðq22m2Þ
q22

þOðm2Þ: ð74Þ

Finally, replacing this result in expression (72), one can
confirm the agreement between our perturbative computa-
tion and the resummed heat-kernel expansion for small
masses, up to total derivatives.

VII. ADIABATIC APPROACH AND PLANAR
INHOMOGENEITIES

Up to this point, we have shown how to to compute
physical quantities in a perturbative expansion in powers of
σ2. It is instructive to compare them with the results
obtained in other approximations, performing thus a
cross-check. In this section, we will employ an adiabatic-
or WKB-type approach, in which instead of expanding in
powers of σ2 one performs an expansion in the number of
derivatives acting on the background field. Our main goal is
to confirm the results of the precedent section regarding the
divergences for discontinuous backgrounds.
It will prove useful to introduce a special notation. We

will focus on planar inhomogeneities which depend on only
one spatial coordinate, which without loss of generality we
choose to be x3 (or simply z for formulas involving only
one coordinate). The spacetime coordinates perpendicular
to this preferred direction will be denoted as xk, while its
spatial subset will be written as xk. As we will see, in order

to be able to perform an adiabatic expansion, we will need
to work with a Euclidean signature; we will thus first show
how the Euclideanization of our theory proceeds.

A. Stress-energy tensor in terms of the Euclidean
propagator

Since we have shown that all the relevant quantities
can be written in terms of Feynman’s propagator (24), we
begin by studying its alternative Euclidean expression. As a
first step, we can Fourier transform it in the directions
perpendicular to x3:

GFðx;yÞ

¼
Z

dω
ð2πÞ

dD−2kk

ð2πÞD−2 e
−iωðx0−y0Þþikk·ðxk−ykÞGðω;kk;x3;y3Þ:

ð75Þ

Imposing the fact that the background field depends on just
the coordinate x3, the partially Fourier transformed propa-
gator G (usually called the reduced Green’s function)
should satisfy the equation9

�
−ω2 þ kk2 − ð∂3

xÞ2 þ
σ2ðx3Þ

2

�
Gðω; kk; x3; y3Þ

¼ −δðx3; y3Þ: ð76Þ

9We are setting λ ¼ 1 with respect to the previous sections. In
writing ∂3

x, we mean the partial derivative in the third direction of
the coordinate x.
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If we perform a rotation to Euclidean space, i.e.,
ωM → iωE, we obtain that the Euclidean propagator is a
solution of the following differential equation:

�
ω2
Eþkk2− ð∂3

xÞ2þ
σ2ðx3Þ

2

�
GEðωE;kk;x3;y3Þ

¼−δðx3;y3Þ: ð77Þ

To compute the propagator, instead of departing
from (16), we will use an equivalent expression
where a point splitting is kept until the end of the
computation:

hTμνiðxÞ ¼
�
1

2
gμν

�
∂x;α∂α

y −
σ2ðx3Þ

2

�
− ∂μ

x∂ν
y

�

×
Z

dω
ð2πÞ

dD−2kk

ð2πÞD−2 e
−iωðx0−y0Þþikk·ðxk−ykÞ

× ImfGðω; kk; x3; y3Þgjx¼y: ð78Þ

Keeping track of the Euclideanization also in the coor-
dinates, Eq. (78) becomes

hTμνiðix0E;xÞ ¼
Z

dωE

ð2πÞ
dD−2kk

ð2πÞD−2

×

�
1

2
gμν

�
ω2
E þ kk2 þ ∂3

x∂3
y þ

σ2ðx3Þ
2

�

þ ∂ 0μ
xE∂ 0ν

yE

�
GEðωE; kk; x3; y3Þjx¼y ð79Þ

in terms of the formal vectors

∂ 0μ
xE ≔ ðωE; ikk; ∂3

xÞ;
∂ 0μ

yE ≔ ð−ωE;−ikk; ∂3
yÞ: ð80Þ

We can further simplify this expression, taking
into account that GE must be invariant in the (D − 1)-
dimensional space ðωE; kkÞ; performing the corresponding
angular integration, we find the desired expression,

hTμνiðix0E;xÞ ¼
SD−2

2π2

Z
dkkðkkÞD−2

�
1

2
gμν

��
1 −

HD−2

SD−2

�
kk2 þ ∂3

x∂3
y þ

σ2ðx3Þ
2

�

þ δμ3δ
ν
3

�
∂3
x∂3

y −
HD−2

SD−2
kk2

��
GEðωE; kk; x3; y3Þjx¼y; ð81Þ

in terms of the (n − 1)-sphere’s hyperarea,

Sn−1 ≔
2πn=2

Γðn
2
Þ ; ð82Þ

and the projection factor

Hn−1 ≔
Z

dΩn−1cos2ðϕ1Þ ¼
πn=2

Γðn
2
þ 1Þ : ð83Þ

B. Adiabatic technique and planar inhomogeneities

Now that we have recast the relevant expressions in
terms of the Euclidean Green’s function, we need to
compute the latter. In general, the homogeneous version
of Eq. (77) will have two linearly independent solutions,
which we call f�,

ð−∂2 þ ω2ðxÞÞf�ðxÞ ¼ 0; ð84Þ

with ω2ðxÞ ≔ ω2
E þ kk2 þ σ2ðx3Þ

2
. One can use them to

construct the corresponding Green’s function as dictated
by the theory of Sturm-Liouville operators,

GEðkk; x3; x03Þ ¼
1

½fþ; f−�
fþðx3>Þf−ðx3<Þ; ð85Þ

where ½f; g� is the Wronskian10 between f and g; addi-
tionally, x3> (x3<) is the greatest (smallest) of the two
numbers x3 and x03.
However, in practice, it is not possible to obtain the

functions f� explicitly. The adiabatic approach is a way to
obtain their expansions in powers of the derivatives of σ2.
In this framework, one begins by proposing the substitution

f�ðx3Þ →
e∓

R
dxWðx3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Wðx3Þ
p ; ð86Þ

where Wðx3Þ is the new unknown function. Then, one can
propose an expansion ofWðx3Þ in the number of derivatives
and obtain its coefficients recursively. In Appendix C, we
show the first coefficients of this expansion.
We will focus on the case of an arbitrary background

field, apart from the fact that it is discontinuous only at two
planes. These two planes will be defined by the equations11

10We are defining the Wronskian as usual, i.e., ½f; g�ðxÞ ≔
fðxÞg0ðxÞ − f0ðxÞgðxÞ.

11As said before, to simplify the notation, we will write z
instead of x3.
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z ¼ a, b. A formalism has been developed in previous
works to deal with this problem [3,8]. In those articles, it
has been shown that f� can be obtained by appropriately
gluing the solutions obtained in each single slab of space
where the background σ2 is continuous. In short, we call

σ2ðzÞ ¼

8>><
>>:

σ21ðzÞ; z < a

σ22ðzÞ; a < z < b

σ23ðzÞ; z > b

; ð87Þ

so that the solutions to the homogeneous equation (84) with
σi as background are called ei;�, i ¼ 1, 2, 3; the global
solutions (with σ as background) are denoted as e�. We
provide more details in Appendix D.

C. Divergences of the two-point function

To simplify the discussion, we will choose the following
convention to fix the constants in the indefinite integrals
involved in the adiabatic expansion, cf. Eq. (86):

e1;�≡e∓
R

z

a
Wσ1

dzffiffiffiffiffiffiffiffiffiffiffi
2Wσ1

p ; e2;�≡e∓
R

z

a
Wσ2

dzffiffiffiffiffiffiffiffiffiffiffi
2Wσ2

p ; e3;�≡e∓
R

z

b
Wσ3

dzffiffiffiffiffiffiffiffiffiffiffi
2Wσ3

p :

ð88Þ

Of course, these arbitrary constants involved in the WKB
expansion will play no role in the Green’s function, given
that they will cancel out when dividing by the appropriate
Wronskians. However, if we consider the convention in
(88), the coefficients A�, B�, C�, and D� defined in
Appendix D simplify, since then the Wronskians
½ei;þ; ei;−�≡ 1; i ¼ 1, 2, 3. In particular, employing (88),
it is immediate to express the Wronskian ½eþ; e−� (which as
in the Sturm-Liouville problems is constant) in terms of
different coefficients:

½eþ; e−� ¼ Cþ ¼ ðB−Aþ − A−BþÞ ¼ D−: ð89Þ

Using this information, we may write the Euclidean
reduced Green’s function in the following form:

GEðkk; zÞ ¼

8>>>>><
>>>>>:

C−
Cþ

e23;þ þ 1
2Wσ3

; z > b

A−Aþ
Cþ

e22;þ þ B−Bþ
Cþ

e22;− þ ðB−AþþA−BþÞ
Cþ

1
2Wσ2

; a < z < b

Dþ
Cþ

e21;− þ 1
2Wσ1

; z < a

: ð90Þ

At this point, the intuition tells us which are the divergent
terms that require renormalization: they will come from the
terms proportional to ðWσiÞ−1 because the remaining terms
are exponentially damped for large parallel momenta
(see the first coefficients of the adiabatic expansion in
Appendix C). However, some fortuitous cancellations of

the exponential factors may take place at the surface of the
barrier as we will see later.
Before analyzing the divergences, it is better to extract

from the Wronskians the polynomial dependence in Wσi ;
operationally calling this action “polynomial,” we intro-
duce then the definition

gs1s2i;j ≔ polynomialð½ei;s1 ;ej;s2 �Þ ¼
2WσjðzÞWσiðzÞð−s2WσjðzÞþ s1WσiðzÞÞþ ½WσjðzÞ;WσiðzÞ�

4WσiðzÞ3=2WσjðzÞ3=2
: ð91Þ

In this way, the coefficients are simplified to

Aþ → gþ−
3;2 ðbÞe

R
b

a
Wσ2 ; Bþ → −gþþ

3;2 ðbÞe−
R

b

a
Wσ2 ;

A− → −g−−2;1ðaÞ; B− → gþ−
2;1 ðaÞ;

Cþ → gþ−
2;1 ðaÞgþ−

3;2 ðbÞe
R

b

a
Wσ2 þ g−−1;2ðaÞgþþ

3;2 ðbÞe−
R

b

a
Wσ2 ;

C− → −g−−2;1ðaÞgþ−
2;3 ðbÞe−

R
b

a
Wσ2 − g−−3;2ðbÞgþ−

2;1 ðaÞe
R

b

a
Wσ2 ;

Dþ → −gþþ
2;1 ðaÞgþ−

3;2 ðbÞe
R

b

a
Wσ2 − gþþ

3;2 ðbÞgþ−
1;2 ðaÞe−

R
b

a
Wσ2 ;

D− → g−−2;1ðaÞgþþ
2;3 ðbÞe−

R
b

a
Wσ2 þ gþ−

2;1 ðaÞgþ−
3;2 ðbÞe

R
b

a
Wσ2 : ð92Þ
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1. Renormalization

Now, let us study the divergences that must be renor-
malized; we will call them bulk divergences. Employing
the coefficients written in Eq. (92), in the region a < z < b,
one notices that

ðB−AþþA−BþÞ
Cþ

1

2Wσ2

¼ gþ−
2;1 ðaÞgþ−

3;2 ðbÞe
R

b

a
Wσ2 þg−−2;1ðaÞgþþ

3;2 ðbÞe−
R

b

a
Wσ2

gþ−
2;1 ðaÞgþ−

3;2 ðbÞe
R

b

a
Wσ2 þg−−1;2ðaÞgþþ

3;2 ðbÞe−
R

b

a
Wσ2

1

2Wσ2

∼
1

2Wσ2

þ�� � ; ð93Þ

up to exponentially decreasing functions for large
momenta. This kind of contribution is already explicit
in the regions where z < a or z > b. An explicit compu-
tation in terms of the coefficients given in Appendix C
gives an expansion in inverse powers of the parallel
momenta,

1

2Wσi

¼ 1

2ðkkÞ−
σiðzÞ2
8ðkkÞ3þ

−2σ0iðzÞ2−2σiðzÞσ00i ðzÞþ3σiðzÞ4
32ðkkÞ5

þ�� � : ð94Þ

This is enough to compute the bulk divergent terms of the
two-point function; indeed, upon integration over the kk-
momentum variables, we obtain

hϕ2ðzÞiWKB ¼
Z

dD−1kk

ð2πÞD−1
1

2Wσi

¼ 1

D − 4

σ2ðzÞ
16π2

þ finite terms: ð95Þ

Adirect computation shows that this coincides with both the
SDWE adiabatic result in Eq. (17) and the perturbative one.

2. Discontinuity-induced divergences

For simplicity, we will consider just the region where
z > b; the remaining ones can beworkedout in an analogous
way. The contribution for large parallel momentum reads

C−

Cþ
e23;þ ¼ −

g−−2;1ðaÞgþ−
2;3 ðbÞe−2

R
b

a
Wσ2 þ g−−3;2ðbÞgþ−

2;1 ðaÞ
gþ−
2;1 ðaÞgþ−

3;2 ðbÞ þ g−−1;2ðaÞgþþ
3;2 ðbÞe−2

R
b

a
Wσ2

e−2
R

z

b
Wσ3

2Wσ3

¼
�
σ3ðbÞ2 − σ2ðbÞ2

16ðkkÞ3 þ σ2ðbÞσ02ðbÞ − σ3ðbÞσ03ðbÞ
16ðkkÞ4 þ 1

32ðkkÞ5 ½σ2ðbÞ
2σ3ðzÞ2 − σ3ðbÞ2σ3ðzÞ2 − σ02ðbÞ2 þ σ03ðbÞ2

− σ2ðbÞσ002ðbÞ þ σ3ðbÞσ003ðbÞ þ σ2ðbÞ4 − σ3ðbÞ4� þ � � �
�
e−2

R
z

b
Wσ3 þ � � � : ð96Þ

The situation is now patent: the exponential decay is
guaranteed for any z ≠ b; however, when z → bþ, the
exponent vanishes and gives rise to divergences if the
inverse powers of kk of the expression in (96) are not
large enough. Of course, in D ¼ 4, the discontinuity-
induced divergences of hϕ2iren involve only the ðkkÞ−3
contribution; we have written also the higher-order
contributions that will be relevant in the analysis of the
SE tensor.
At this point, a direct computation shows the exact form

of the divergence,

Z
kk≥1

dD−1kk

ð2πÞD−1

�
σ3ðbÞ2 − σ2ðbÞ2

16ðkkÞ3
�
e−2ðz−bÞkk

¼ −
Δσ2ðbÞ
32π2

ðlogðz − bÞ þ γÞ þOðz − bÞ; ð97Þ

where Δσ2ðyÞ denotes the jump of the background field
at y, i.e.,

Δσ2ðyÞ ¼ σ2ðyþÞ − σ2ðy−Þ: ð98Þ
Computing the remaining contributions, one obtains a

result that coincides with the one obtained in Eq. (63).
Notice, however, that in this section our conclusion is not
restricted to a given power in σ2. Then, one can conclude
that the only discontinuity-induced divergences present in
hϕ2iren are all linear in σ2.

D. Divergences of the stress-energy tensor

Taking into account Eq. (81), the divergences’ struc-
ture of the SE tensor can be analyzed in a manner
analogous to that for hϕ2i. The only difference is that
we additionally need an expansion for the product of
derivatives12 e0þðzÞe0−ðzÞ. The computation is straightfor-
ward, albeit lengthy; this can be appreciated already from
its structure:

12There are additional terms involving ultralocal factors that
vanish in dimensional regularization.
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1

½eþ;e−�
e0þe0−¼

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

C−
Cþ

ðW0
σ3
ðzÞþ2Wσ3

ðzÞ2Þ2
8Wσ3

ðzÞ3 e−2
R

z

b
Wσ3

dz

þW0
σ3
ðzÞ2−4Wσ3

ðzÞ4
8Wσ3

ðzÞ3 ; z >b

A−Aþ
Cþ

ðW0
σ2
ðzÞþ2Wσ2

ðzÞ2Þ2
8Wσ2

ðzÞ3 e−2
R

z

a
Wσ2

ðzÞdz

−B−Bþ
Cþ

ðW0
σ2
ðzÞ−2Wσ2

ðzÞ2Þ2
8Wσ2

ðzÞ3 e2
R

z

a
Wσ2

ðzÞdz

þðAþB−þA−BþÞ
Cþ

W0
σ2
ðzÞ2−4Wσ2

ðzÞ4
8Wσ2

ðzÞ3 ; a< z<b

W0
σ1
ðzÞ2−4Wσ1

ðzÞ4
8Wσ1

ðzÞ3

þDþ
Cþ

ðW0
σ1
ðzÞ−2Wσ1

ðzÞ2Þ2
8Wσ1

ðzÞ3 e2
R

z

a
Wσ1

ðzÞdz; z <a

: ð99Þ

1. Renormalization

Equation (81) contains several factors that are not
exponentially suppressed for large parallel momentum.
The large-kk expansion of many of them has already been
derived in Sec. VII C 1. The only new contribution of this
type, inherited from expression (99), can be expanded as

W0
σiðzÞ2−4WσiðzÞ4

8WσiðzÞ3
¼−

ðkkÞ
2

−
σiðzÞ2
8ðkkÞ

þ−4σ0iðzÞ2−4σiðzÞσ00i ðzÞþσiðzÞ4
64ðkkÞ3

þ�� � : ð100Þ

Summing all the contributions, in dimensional regulariza-
tion, we obtain

hTμνiWKB ¼ðημνþδμ3δ
ν
3Þ

D−4

1

3 ·25ð2πÞ2 ð4ðσ
2Þ00 þ3σ4Þ

þ finite terms; ð101Þ

which agrees with our perturbative computation, as well as
with the adiabatic approach in the SDWE framework,
cf. Eq. (20).

2. Discontinuity-induced divergences

Boundary divergences arise as in the case of hϕ2i, i.e.,
some exponentially decreasing factors that guarantee the
convergence of the integrals for large momenta may dis-
appear at the surface of the barrier. As an example, consider
the following term from expression (99), for z > b:

C−

Cþ

ðWσ3
0 ðzÞ þ 2Wσ3ðzÞ2Þ2

8Wσ3ðzÞ3
e−2

R
z

b
Wσ3

dz

¼
�
σ3ðbÞ2 − σ2ðbÞ2

16ðkkÞ þ σ2ðbÞσ02ðbÞ − σ3ðbÞσ03ðbÞ
16ðkkÞ2 þ 1

32ðkkÞ3 ½−σ2ðbÞ
2σ3ðzÞ2 þ σ3ðbÞ2σ3ðzÞ2 − σ02ðbÞ2

þ σ03ðbÞ2 − σ2ðbÞσ002ðbÞ þ σ3ðbÞσ003ðbÞ þ σ2ðbÞ4 − σ3ðbÞ4 þ � � ��
�
e−2

R
z

b
Wσ3

dz þ � � � : ð102Þ

Although the exponent provides the necessary fast decay
for large kk, it happens only if z ≠ b. Replacing in Eq. (81)
both the contributions analogous to (102) and the results of
Sec. VII C 2, we finally obtain

hTμνiWKB
z→z0 ¼ ðημν þ δμ3δ

ν
3Þ

3 · 24ð2πÞ2 Hðz; z0Þ; ð103Þ

where z0 ¼ a, b and we have defined the scalar function

Hðx; yÞ ≔ signðx − yÞ
�
Δσ2ðyÞ
ðx − yÞ2 −

Δððσ2Þ0ÞðyÞ
ðx − yÞ

�

þ logðjy − xjÞ½−½Δðσ2ÞðyÞ�2
− signðx − yÞΔððσ2Þ00ÞðyÞ�: ð104Þ
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In particular, if we restrict ourselves to the case of a barrier,
then we reobtain the results (67) and (68). The importance
of the expansion (103) resides in the following two facts: in
the worst case, divergences are of second order in powers of
σ2, so all of them can be studied by our perturbative
expressions in Sec. VI, and they are of local nature,
confirming that they will play no role in the computation
of Casimir forces.

VIII. CONCLUSIONS

We have employed a perturbative method, together with
dimensional regularization and adiabatic renormalization,
to prove master formulas for a scalar model in the realm of
generalized Lifshitz configurations.
First of all, we have provided a general (perturbative)

proof of the validity of the principle of virtual work,
showing that in the time-independent situation one can
indeed compute the Casimir force exerted on one body in
two different ways: either by considering the change in the
energy of the system after a virtual displacement of the
body or by computing the stresses acting on the latter,
cf. Eq. (46). The derivation is valid for arbitrary geometries
and to all orders in the perturbation.
A fundamental pillar that allowed the proof was the

conservation law that the energy-stress tensor satisfies not
only at the classical level but also at the level of renor-
malized VEVs in the semiclassical theory (quantum for the
ϕ field and classical for the background one), as is
guaranteed by Eq. (21). This is a highly nontrivial point,
since in general the regularization and the renormalization
process may break classical laws at any point, introducing
the so-called quantum anomalies.
We have also provided master expressions for the nth

perturbative order VEVs of the two-point function and the
energy-stress tensor. In particular, we have shown that in
the static case only hϕiðn−1Þ is required in order to compute
the total energy of the system at order n. Given that the
complexity of the calculations increases with the order of
the perturbation and is greater for hTμνi than for hϕ2i, we
believe that such a formula will be extremely useful for
evaluating the vacuum energy in concrete examples.
Additionally, we have written explicit formulas for all
the relevant VEVs at first and second perturbative orders,
having computed the relevant form factors for planar
configurations.
With the help of those master formulas, we have

analyzed in detail the divergences that appear both in
hϕ2i and hTμνi as a consequence of discontinuities in a
planar background field, extending the results in
Refs. [3,7]. Our computations show that their functional
dependence on the background field is at most quadratic,
while they are local. These considerations have been
confirmed by an alternative WKB-type approach, proving
that they are not relevant in the computation of Casimir

forces. For the mathematically oriented reader, we have
also dedicated a section regarding their formal interpreta-
tion in terms of distribution.
It is important to mention that, contrary to the situation

when other renormalization prescriptions are employed as
in Ref. [17], we do not obtain a so-called pressure anomaly.
Moreover, we do not find the analog of the van der Waals
anomaly discussed in Ref. [10], which in our scalar model
would consist in a violation of the semiclassical conserva-
tion equation for the energy-stress tensor.
In spite of the obtained results, there are still many open

questions. The first one is related to the intrinsic character
of the background field in a given body and its surround-
ings and how they are affected by a displacement of the
body. Another interesting issue is whether our results
regarding the surface divergencies can be extended to
nonplanar geometries, either by considering the perturba-
tive or the WKB-type approach. These lines are currently
being studied.
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APPENDIX A: FIRST-ORDER STRESS-ENERGY
TENSOR AS A DISTRIBUTION

We have seen in Sec. VI D that, when we consider the
first-order SE tensor for a barrier, we obtain a formally
divergent expression. However, that expression is well
defined as a distribution. As explained in Ref. [42] (see
also Ref. [43] for an introductory course), we can interpret
Eq. (64) as the Fourier transform of a distribution,

Z
dq1e−iq1xðeiaq1 −eibq1Þq1 log

�
q21þ iϵ
μ2

�

¼ 2F ½αðq1Þ�ða−xÞ−2F ½αðq1Þ�ðb−xÞ; ðA1Þ

where

αðqÞ ≔ q log

�jqj
μ

�
: ðA2Þ

To be more explicit, we may recast this expression in the
notation of Ref. [42] as

αðqÞ ¼ qþ logðqþÞ − q− logðq−Þ − q logðμÞ; ðA3Þ

defining the distributions
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xλ� ¼ Θð�xÞjxjλ: ðA4Þ

Employing several identities that can be found in Ref. [42],
we end up with

F Shilov½αðxÞ� ¼ −iπð−2ðlogðμÞ þ γ − 1Þδ0ðxÞ
þ x̂−2 − 2x−2− Þ; ðA5Þ

where both x−2 and x−2− are themselves distributions that are
defined by their actions on test functions ϕ:

ðx−2;ϕÞ ¼
Z

∞

0

dx x−2½ϕðxÞ þ ϕð−xÞ − 2ϕð0Þ�; ðA6Þ

ðx−2− ;ϕÞ ¼
Z

∞

0

dx x−2½ϕð−xÞ − ϕð0Þ þ xϕ0ð0ÞΘð1 − xÞ�:

ðA7Þ

The SE tensor can be readily obtained combining the
previous equations:

hTμνið1Þren ¼ λðδ3μδ3ν þ ημνÞ
48ð2πÞ2 f2ð−1þ γ þ logðμÞÞ

× ðδ0ða − zÞ − δ0ðb − zÞÞ
− ðz − aÞ−2 þ 2ðz − aÞ−−2
þ ðz − bÞ−2 − 2ðz − bÞ−2− g: ðA8Þ

If one is interested just in mean values of hTμνið1Þren over a
finite region, then using (A8), one obtains a finite number.

APPENDIX B: SECOND-ORDER
CONTRIBUTIONS IN hTμνiren FOR A BARRIER

AND DISTRIBUTIONS

In general, Eq. (57) involves regularized quadratic forms
as given by the definition of F3 in (56). The mathematical
theory has been extensively studied in Ref. [42]; in this
Appendix, we will follow a physicist approach, performing
a change of variables that converts the quadratic forms into
linear ones. We can define the transformation

ðp1; p2Þ ≔ ðq1q2; q1ðq1 − q2ÞÞ; ðB1Þ

as well as its inverse, defining the functions h�ð·; ·Þ:

ðq1; q2Þ ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1 þ p2

p
;

p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 þ p2

p
�

≕ h�ðp1; p2Þ: ðB2Þ

Taking into account the map of the domains, we get

H ≔
Z

∞

−∞
dq1dq2

fðq1; q2Þ
½q1ðq1 − q2Þ − iϵ1�ðq1q2 þ iϵ2Þ

¼
Z

∞

−∞

Z
∞

−p1

dp2dp1

fðp1; p2Þ
½p2 − iϵ1�ðp1 þ iϵ2Þ

ðB3Þ

for an arbitrary well-behaved function fð·; ·Þ, if we use the
additional definition

f̄ðp1; p2Þ ≔
1

2ðp1 þ p2Þ
½fðhþðp1; p2ÞÞ þ fðh−ðp1; p2ÞÞ�:

ðB4Þ

Using the Sokhotski-Plemelj theorem to rewrite the ðpi �
iϵÞð−1Þ factors, we may further simplify this expression. In
particular, if the contributions corresponding to integrals of
Dirac δ vanish (as is the case for the barrier), then we get

H→HPV;PV¼
Z

∞

0

dp1

p1

Z
p1

0

dp2

p2

ff̄ðp1;p2Þ

− f̄ðp1;−p2Þþ f̄ðp2;p1Þ− f̄ð−p2;p1Þg:
ðB5Þ

For a barrier, it proves convenient to perform the rescalings
p2 → p1p2 and afterward p1 → ð1� p2Þp1, depending on
whether the argument in f̄ is �p2. The integral in p1 can
then be performed, and the remaining integral in p2 is
convergent for x ≠ a, b. The contributions that are diver-
gent at the surface of the barrier can be isolated. To sketch
the kind of computations involved for a barrier, consider the
following example:

Z
dq1dq2σ̃2bðq1 − q2Þσ̃2bðq2Þe−iq1x

F1

F3

				
div

¼ 8

Z
1

0

dp2

p2
2ðp2

2 − 1Þ ½p
4
2ðlog ð1 − p2Þ − 2 logðp2Þ þ log ðp2 þ 1ÞÞ

− 2p3
2ðlog ð1 − p2Þ − log ðp2 þ 1ÞÞ

þ 2p2ðlog ð1 − p2Þ − log ðp2 þ 1ÞÞ − log ð1 − p2Þ − log ðp2 þ 1Þ�

× log

� ja − xjjb − xj
jb − xþ ðx − aÞp2jja − xþ ðx − bÞp2j

�
: ðB6Þ

FRANCHINO-VIÑAS, MANTIÑAN, and MAZZITELLI PHYS. REV. D 105, 085023 (2022)

085023-18



The divergence therefore arises either directly from a
logðjx − yjÞ term or from a term that renders the integrand
singular when x ¼ y. Both of them can be easily handled,
and the sum over all the form factors results in Eq. (68).

APPENDIX C: ADIABATIC COEFFICIENTS

If we try to solve Eq. (84) by using Eq. (86) together with
the ansatz

WðxÞ ¼
X∞
j¼0

WjðxÞ; ðC1Þ

where Wj is a term of adiabatic order j, then we find that
the coefficients with odd j vanish. The first ones for even j
are given by

W0ðxÞ ¼ ωðxÞ;

W2ðxÞ ¼ −
3ω0ðxÞ2
8ωðxÞ3 þ ω00ðxÞ

4ωðxÞ2 ;

W4ðxÞ ¼
ωð4ÞðxÞ
16ωðxÞ4 −

13ω00ðxÞ2
32ωðxÞ5 −

297ω0ðxÞ4
128ωðxÞ7

−
5ωð3ÞðxÞω0ðxÞ

8ωðxÞ5 þ 99ω0ðxÞ2ω00ðxÞ
32ωðxÞ6 : ðC2Þ

APPENDIX D: GREEN’S FUNCTION FOR
PLANAR GEOMETRIES

In this Appendix, we review the results of Ref. [8]. If we
have a discontinuous background field, we can obtain the
solutions to the inhomogeneous Eq. (77) by gluing together
the solutions to the inhomogeneous problem in each slab,
which we call e�;i. As is customary, there will exist two
solutions; we will call them e�, according to whether they
decay fast enough at �∞. If we ask e� and their first
derivatives to be continuous at z ¼ a, b, the expansion
reads as

eþðzÞ ≔
8<
:

e3;þ; z > b

Aþe2;þ þ Bþe2;−; a < z < b

Cþe1;þ þDþe1;−; z < a

; ðD1Þ

e−ðzÞ ≔

8>><
>>:

C−e3;þ þD−e3;−; z > b

A−e2;þ þ B−e2;−; a < z < b

e1;−; z < a

; ðD2Þ

in terms of the coefficients

Aþ ¼ ½e3;þ; e2;−�ðbÞ
½e2;þ; e2;−�ðbÞ

; A− ¼ −
½e2;−; e1;−�ðaÞ
½e2;þ; e2;−�ðaÞ

; Bþ ¼ −
½e3;þ; e2;þ�ðbÞ
½e2;þ; e2;−�ðbÞ

; B− ¼ ½e2;þ; e1;−�ðaÞ
½e2;þ; e2;−�ðaÞ

;

Cþ ¼ Aþ½e2;þ; e1;−�ðaÞ − Bþ½e1;−; e2;−�ðaÞ
½e1;þ; e1;−�ðaÞ

; C− ¼ −
A−½e2;þ; e3;−�ðbÞ þ B−½e2;−; e3;−�ðbÞ

½e3;þ; e3;−�ðbÞ
;

Dþ ¼ Bþ½e1;þ; e2;−�ðaÞ − Aþ½e2;þ; e1;þ�ðaÞ
½e1;þ; e1;−�ðaÞ

; D− ¼ −
B−½e3;þ; e2;−�ðbÞ þ A−½e3;þ; e2;þ�ðbÞ

½e3;þ; e3;−�ðbÞ
ðD3Þ

and the Wronskians ½f; g�ðxÞ ≔ fðxÞg0ðxÞ − f0ðxÞgðxÞ. The main difference with the results in Ref. [8] resides in the fact
that our Wronskians are the usual ones.
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