
Food Chemistry: X 18 (2023) 100744

Available online 7 June 2023
2590-1575/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Measuring trace element fingerprinting for cereal bar authentication based 
on type and principal ingredient 
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A B S T R A C T   

This paper introduces a method for determining the authenticity of commercial cereal bars based on trace 
element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and 
the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later 
measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Mul
tielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. 
LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it 
the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace 
element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free) 
and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication.   

1. Introduction 

Cereal bar is defined as a mass composed of ready-to-eat cereal that 
has been compressed into a bar shape with a binder system consisting of 
a sweetened substance and other ingredients (Sciammaro et al., 2018). 
Currently, the cereal bars have gained acceptance among consumers 
because they are considered healthy sources of energy production and 
constitute a balanced nutritional profile (Henchion et al., 2017). Thus, 
these foods are used as appropriate platform to incorporate essential 
nutrients such as dietary fiber, protein, vitamins, minerals, or in
gredients with functional properties for persons with specific health 
concerns (Marques et al., 2015). 

The increasing demand for cereal bars and other cereal-based 
products over the last years can be attributed to the growing need for 
healthier and more nutritious food options (Boukid et al., 2022). Con
sumers are becoming more conscious of their dietary choices and are 
actively seeking products that offer a balanced nutritional profile. 
Consumers, manufacturers, and health professionals alike are interested 
in obtaining detailed information about the food’s nutritional 

composition, including both essential and non-essential trace elements 
present in them. Cereal-based foods, especially those made from whole 
grains, are considered a rich source of minerals (Pinto et al., 2017). 
These minerals, also known as trace elements, play vital roles in various 
metabolic functions since they are required for maintaining proper 
physiological processes and overall health. Nevertheless, it is crucial to 
consider the possible occurrence of toxic or objectionable elements in 
such foods, given the potential contamination of their raw materials 
(principal ingredients, sweeteners, binders, flavors, and spices, among 
others) either during cultivation or in the preparation stages (FAO/ 
WHO, 2016). 

The quality control of cereal bars is usually measured by using 
chemical and physical assays (Klerks et al., 2022). Considering that 
essential and non-essential elements are present at trace and ultra-trace 
levels in foods, the determination of such elements require of analytical 
techniques capable of achieving extremely low detection limits and 
highly selective aiming to remove matrix effects. In this regard, several 
methods based on flame atomic absorption spectrometry (FAAS), 
inductively coupled plasma optical emission spectrometry (ICP OES), 
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and ICP-mass spectrometry (ICP-MS) have been developed to determine 
the multielemental composition of different foodstuffs focused on 
nutritional and toxicological assessments, as well as authentication ap
proaches (Drivelos & Georgiou, 2012; Laursen et al., 2014; Mazarakioti 
et al., 2022). 

Of the aforementioned techniques, ICP-MS stands out as it is a trusted 
analytical tool that has been extensively used for quantification of 
several trace elements due to its high sensitivity, wide dynamic range, 
low detection limit and simultaneous determination. This technique 
combines the advantages of ICP for element ionization with the mass 
spectrometry sensitivity, allowing it to obtain an element fingerprinting 
describing the information on the sample isotopic composition and the 
concentration of each analyzed element (Clases & Gonzalez de Vega, 
2022). Its applications in foodstuffs encompass the analysis of honey 
(Gohar & Shakeel, 2021), extra-virgin olive oil (Astolfi et al., 2021), eggs 
(Esposito et al., 2016), almonds (von Wuthenau et al., 2022), commer
cial avocado fruit (Muñoz-Redondo et al., 2022), wines (Pérez-Álvarez 
et al., 2019), pepper (Zhang et al., 2019), soybean (Nguyen-Quang et al., 
2021), whisky (Gajek et al., 2022), pork (Kim et al., 2017), cowpea 
beans (Pérez-Rodríguez et al., 2019), truffles (Segelke et al., 2020), and 
gluten-free snacks (Yalçın, 2017), among others. 

Chemometrics plays a key role in resolving some issues related to 
food authentication or traceability. Within this framework, the utiliza
tion of pattern recognition algorithms has gained significant traction for 
the evaluation of multielement data, with the purpose of tackling the 
emerging challenges pertaining to food authenticity and identity certi
fication. These tasks have become increasingly prevalent, driven to 
ensure the quality, safety, and transparency of foodstuffs. By effectively 
extracting concealed information from complex datasets, these methods 
enable enhanced interpretation of results, thereby greatly simplifying 
the evaluation of new sample characteristics through predictive 
modeling (Sarker, 2021). 

Trace element fingerprinting in cereal bar authentication provides a 
significant advantage by establishing a unique and characteristic 
elemental profile for each sample, thereby offering valuable insights into 
the nutritional information of these products. It is interesting to note 
that the elemental profile of any food serves as a natural and stable 
biomarker, allowing to distinguish between genuine and counterfeit or 
adulterated products. Besides, this analytical tool is capable of detecting 
and identifying any variations or discrepancies in the sample elemental 
composition that resulting from different production systems, process 
operations, geographical origins of raw materials, preparation methods, 
or potential adulteration practices, making it a reliable indicator for 
authentication purposes. Likewise, the elemental profiles of cereal bars 
depend mainly on the ingredients used (cereals, fruits, yogurt, choco
late, among others), and the quality and safety of these foods is therefore 
subject to the multi-elemental composition of their ingredients. 

Considering the foregoing, this paper focuses on utilizing trace 
element fingerprinting data modeling to ascertain the authenticity of 
commercial cereal bars based on their type (conventional and gluten- 
free) and principal ingredient (fruit, yogurt, and chocolate). For this 
aim, 120 cereal bar samples were prepared following a microwave- 
assisted acid digestion procedure and the concentrations of elements 
Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V and Zn 
were quantified using ICP-MS, thus obtaining a trace element finger
printing of each sample analyzed. Afterwards, PCA, CART and LDA were 
applied to the input data towards verifying the genuineness of com
mercial cereal bars, which contributed for sample authentication and 
therefore to protect consumers. 

2. Materials and methods 

2.1. Reagents and analytical standards 

Nitric acid 65% (w/v) and hydrogen peroxide 30% (w/v) were 
purchased from Sigma (St. Louis, MO, USA). Nitric acid was additionally 

purified by sub-boiling distillation. A Milli-Q Plus Water purification 
system (Millipore Corp., Molsheim, France) was used to obtain the ul
trapure water (18.2 MΩ cm at 25 ◦C) with which all the standard and 
working solutions were prepared. Calibration solutions were prepared 
by properly dissolving a TraceCERT® CRM multi-element standard so
lution which was acquired from Merck (Darmstadt, Germany). Standard 
solutions of 115In and 80Y were obtained from Agilent (Santa Clara, 
CA). Argon (99.998% purity) was supplied by Praxair (Córdoba, 
Argentina). 

2.2. Cereal bar samples 

A total of 120 cereal bars were purchased from the Argentinean 
markets between July and May 2021–2022. The cereal bars under study 
were categorized based on their type (conventional and gluten-free) and 
main ingredient. The classification for cereal formulation was divided 
into six categories: conventional cereal bars with fruit (Fruit), conven
tional cereal bars with chocolate (Chc), conventional cereal bars with 
yogurt (Yog), gluten-free cereal bars with fruit (Fruit-GF), gluten-free 
cereal bars with chocolate (Chc-GF) and gluten-free cereal bars with 
yogurt (Yog-GF). Additional ingredients such as wheat, oat, rice, corn, 
soybean, sunflower seeds, amaranth seeds, quinoa seeds, flax seeds, 
preservatives, conditioning agents, emulsifiers, stabilizers, and coloring 
or flavoring agents were also included in the formulations but were not 
considered in this work. 

2.3. Sample preparation 

Cereal bar samples were grinded in a cryogenic mill to reduce par
ticle sizes. The set grinding program included two steps: freezing (2 min 
each) and grinding (3 min) and by using two cycles it was possible to 
complete the sample homogenization process. Later, about 500 mg of 
each ground sample was placed directly into a microwave-closed vessel, 
and 2 mL of 30% (w/v) H2O2 and 4 mL of 65% (w/v) HNO3 were added 
it. The digestion procedure was programmed as follows: Stage 1, 
25–200 ◦C for 15 min; Stage 2, 200 ◦C for 15 min; and Stage 3, 
200–110 ◦C for 15 min. Finally, the digested samples were diluted to a 
final volume of 25 mL with ultrapure water and stored until analysis by 
ICP-MS. 

2.4. Apparatus 

A cryogenic mill from Spex 6750 (Metuchen, NJ, USA) was used for 
grinding the cereal bar samples and their acid digestion was performed 
using an Ethos One (Milestone, Chicago, USA) microwave oven. 

The determination of 22 trace elements has been carried out by an 
Agilent 7700 Series (Agilent Technologies, Japan) ICP-MS spectrometer 
powered by a 27.12 MHZ radiofrequency solid-state generator at 1500 
W. The instrument was comprised of a MicroMist glass concentric 
nebulizer combined with a cooled double-pass spray chamber made of 
quartz. ICP torch was a Fassel-type torch which consists of a three- 
cylinder assembly, with injector diameter 2.5 mm. Ni sampler and 
skimmer cones of 1.0 mm and 0.4 mm were used. To suppress poly
atomic interferences originating from sample matrix, octopole reaction 
system with 5 mL min− 1 He as collision gas and kinetic energy 
discrimination mode was used (collision mode). It was equipped with 
off-axis ion lens, a quadrupole mass analyzer, and an electron multiplier 
detector. All instrument parameters were optimized daily while aspi
rating the tuning solution. The selected isotopes for measurement were: 
27Al, 75As, 137Ba, 209Bi, 111,114Cd, 59Co, 53Cr, 63Cu, 57Fe, 71Ga, 7Li, 55Mn, 
95Mo, 62Ni, 206,208Pb, 85Rb, 80Se, 118Sn, 88Sr, 203,205Tl, 51V, and 66Zn. 

2.5. Analytical performance and quality control measurements 

All digested samples and blank solutions were measured by direct 
nebulization. The monitored isotopes for the ICP-MS analysis were 
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chosen according to previous studies. Two internal standards (115In and 
80Y) were added to all digested solutions aiming at accurately quanti
fying the elemental composition of samples and correcting any instru
ment drift during analysis. 

Calibration curves were obtained at five different concentration 
levels in triplicate. Least squares linear regression analysis was used to 
obtain the coefficients of determination (R2). The limits of detection 
(LOD) and quantification (LOQ) were calculated according to the AOAC 
guidelines (Latimer Jr, 2016), i.e., as 3 and 10 times, respectively, the 
standard deviation of measurements of 10 blank solutions, divided by 
the slope of the calibration curve. Analytical quality control measure
ments were verified using recovery and precision assays. Samples were 
fortified with studied elements at 0.01 µg g− 1 and 0.1 µg g− 1 and the 
percentages (%) recovery were determined using matrix-matched stan
dard calibration curves. The variability of the determinations was 
expressed as the relative standard deviation (% RSD). 

2.6. Multivariate data analysis 

The original data based on trace element fingerprints were trans
formed into a matrix format X (120 × 19), in which the rows corre
sponded to the 120 cereal bar samples analyzed by ICP-MS, and the 
columns, to the 19 elemental predictors. Data matrix was first auto
scaled and mean centered to suppress any variability in the different 
concentration scales registered. Next, principal component analysis 
(PCA), classification and regression trees (CART) and linear discrimi
nant analysis (LDA) were applied to the preprocessed data. PCA was 
used to visualize the data natural distribution looking for clustering 
trends among the sample classes. Instead, CART and LDA were used to 
evaluate the discrimination of the cereal bar samples according to their 
type (conventional and gluten-free) and principal ingredient (fruit, 
yogurt, chocolate). To build the classifiers, the sample set was randomly 
split into two subsets (training and test). The training subset was made 
up of 70% of the total samples and served to create classifiers, while test 
subset comprised the remaining 30%, which was used to validate the 
built models. The splitting up into subsets was carried out in a stratified 
manner to maintain the distributions of subsets matching to the original 
set. Modeling performance was evaluated by measuring the correct 
classification rate, which was calculated as the ratio between all correct 
predictions and the total number of examined cases and was expressed 
as a percentage (%). All calculations were carried out using R-project 
software version 3.6.3 (R Core Team, 2020) with partykit package 
(Team, 2020). 

3. Results and discussion 

3.1. Analytical performance parameters of the ICP-MS method 

The multi-element calibration curves were obtained at five different 
concentration levels. The coefficients of determination (R2) fitted were 
greater than or equal to 0.9983, displaying good linearity of ICP-MS 
method in the selected concentration range for each element. Similar 
results were obtained for the calibration curves constructed using 
standard solutions of each element and by spiking the commercial cereal 
bars matrix with the standard solutions (described earlier). Digested 
samples that were beyond the linear range were diluted and reanalyzed. 
The main figures of merit for the method proposed are summarized in 
Table 1. As can be seen, the LOD values ranged from 0.001 to 0.09 µg g− 1 

and those of LOQ were within the range of 0.004–0.31 µg g− 1. Recovery 
assays were performed with known samples spiked aiming to assure 
analytical data reliability. The average recoveries obtained ranged from 
92% to 106%, from which it can be inferred that the no significant loss of 
elements occurs during the microwave digestion step. Regarding the 
method precision, the RSD (%) values corresponding to the intra-day 
and inter-day determinations were in the ranges 2.3–6.1% and 
4.0–9.8%, respectively. These results indicated that the measurements 

by ICP-MS were sufficiently sensitive, precise, and accurate for making 
the determination of trace elements in commercial cereal bar samples. 

Instrumental drifts resulting from possible matrix interferences were 
also redressed by fortifying matrix with internal standards like 115In a 
and 80Y because they are not detected in cereal bar samples. These as
says also followed the digestion procedure used for the real samples and 
the average recovery of the added elements (97% for 115In and 95% for 
80Y) was determined by using matrix-matched standard calibration 
curves. All results agree with the acceptance criteria for the studied 
parameters according to the AOAC regulations (Latimer Jr, 2016), i.e., 
the RSD (%) values were ≤ 15% and the recovery percentages (%) were 
within range 80–110%. The obtained data indicated that the perfor
mance of the ICP-MS method proposed was satisfactory for its purposes. 
Furthermore, it is proved here that the major components of the com
mercial cereal bar samples did not significantly interfere in determining 
of trace elements after performing an appropriate sample digestion, 
evidencing thus the absence of matrix effects. 

3.2. Trace element concentrations 

The concentrations of 22 elements (Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, 
Ga, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, Tl, V and Zn) were determined by 
ICP-MS. Table 2 shows the trace element contents found in cereal bar 
samples. The obtained data are expressed as average values of three 
measurements along with the corresponding standard deviation (SD). 

As seen in Table 2, the trace element composition obtained is quite 
variable among different sample types, which can be attributed to the 
nature of the samples analyzed. According to the data obtained, the 
trace element content showed the following order of abundance: Rb ˃ 
Mn ˃  Fe ˃  Li ˃  Zn ˃  Al ˃  u ˃  Sr ˃  Ba ˃  Mo ˃  Ni ˃  Bi ˃  Ob ˃  Cr ˃  Se ˃  Co ˃  
Cd ˃  Sn for Chc samples, Rb ˃  Mn ˃  Fe ˃  Cu ˃  Li ˃  Al ˃  Zn ˃  Sr ˃  Ba ˃  Ni ˃  
Mo ˃  Bi ˃  Pb ˃  Se ˃  Co ˃  Cd ˃  Cr ˃  V ˃  Sn for Chc-GF samples, Fe ˃  Rb ˃  
Al ˃  Mn Cu ˃  Zn ˃  Li ˃  Sr ˃  Cr ˃  Ba ˃  Ni ˃  Mo ˃  Bi ˃  Se ˃  Co ˃  Pb ˃  Cd ˃  V 
˃ Sn for Fruit samples, Rb ˃  Fe ˃  Mn ˃  Li ˃  Al = Zn ˃  Cu ˃  Sr ˃  Ba ˃  Ni ˃  
Mo ˃  Bi ˃  Pb ˃  Cr ˃  Cd ˃  Co ˃  Se ˃  V ˃  Sn for Fruit-GF samples, Fe ˃  Rb ˃  
Mn ˃  Al ˃  Cu ˃  Zn ˃  Li ˃  Sr ˃  Mo ˃  Ba ˃  Ni ˃  Cr ˃  Bi ˃  Co ˃  Pb ˃  Se ˃  V ˃  
Cd ˃  Sn for Yog samples, and Fe ˃  Rb ˃  Li ˃  Zn ˃  Mn ˃  Cu ˃  Sr ˃  Al ˃  Mo ˃  
Ni ˃ Ba ˃ Bi ˃ Cr ˃ Co ˃ Se ˃ Pb ˃ V ˃ Cd ˃ Sn for Yog-GF samples. 

Table 1 
Figures of merit, precisions, and recoveries obtained for ICP-MS method.  

Element R2 LOD LOQ Precision (RSD %) Recovery 
(%)   

(µg 
g− 1) 

(µg 
g− 1) 

Intra- 
daya 

Inter- 
dayb  

Al  0.9991  0.080  0.270  2.3  4.0 92 
As  0.9987  0.005  0.018  5.2  7.1 101 
Ba  0.9995  0.040  0.140  5.0  6.8 104 
Bi  0.9989  0.001  0.004  5.9  9.7 100 
Cd  0.0094  0.002  0.007  3.4  5.2 98 
Co  0.9993  0.004  0.014  5.8  9.5 101 
Cr  0.9985  0.015  0.052  4.2  8.1 95 
Cu  0.9998  0.020  0.060  5.8  7.4 97 
Fe  0.9993  0.070  0.240  6.1  9.2 102 
Ga  0.9985  0.004  0.012  5.6  9.1 99 
Li  0.9991  0.003  0.010  4.8  8.5 104 
Mn  0.9992  0.060  0.200  2.9  7.1 106 
Mo  0.9983  0.020  0.060  3.8  7.5 99 
Ni  0.9985  0.018  0.054  5.4  9.8 100 
Pb  0.9994  0.004  0.013  5.3  9.5 98 
Rb  0.9987  0.020  0.067  3.8  6.9 96 
Se  0.9996  0.003  0.010  4.5  7.8 95 
Sn  0.9989  0.001  0.004  5.2  9.0 103 
Sr  0.0097  0.010  0.033  6.0  9.3 104 
Tl  0.9995  0.003  0.009  5.1  7.9 102 
V  0.9988  0.008  0.027  4.6  8.2 100 
Zn  0.9983  0.090  0.301  5.7  9.5 98  

a Average of three determinations (n = 3). 
b Average of nine determinations (n = 9). 

M. Pérez-Rodríguez et al.                                                                                                                                                                                                                     



Food Chemistry: X 18 (2023) 100744

4

As expected, the Fruit samples showed the highest concentrations for 
most elements regardless of whether the sample contained gluten or not. 
This suggests that the incorporation of dried fruits to the formulation of 
commercial cereal bars can serve as an important mineral source. 
Essential elements Cr and Cu presented higher concentrations in most 
samples with gluten. The levels of Al, Cr, Cu, Fe, and Sr found agreed 
with those reported for commercial gluten-free amaranth bars produced 
in Argentina (Hidalgo et al., 2015). Most of the gluten-free samples 
showed the highest concentrations of Li. The values obtained for Ni were 
higher than those found in infant foods from France (Chekri et al., 2019) 
and cereal bars and cakes from Spain (Zurita-Ortega et al., 2020). 

Yog samples present highest concentrations of Co, Mn, and Mo. Co 
and Mn levels were higher than those reported for pasta bread, porridge, 
and pasta samples from Brazil (Pedron et al., 2016), while Mo content 
was similar to those determined in meal replacement shakes (Zurita- 
Ortega et al., 2020). Instead, Yog-GF samples showed the highest Zn 
values, which were lower than those found in rice and corn flour samples 
(de Souza et al., 2019). This element is frequently monitored in food 
samples since it is necessary for the functioning of over 300 different 
enzymes in the human body (Sangeetha et al., 2022). 

In Chc samples, Ba, Bi, and Sn concentrations were significantly 

higher than in the other sample types analyzed. Chekri et al. (Chekri 
et al., 2019) reported infant foods with lower Ba contents and higher Sr 
contents than those found in this work. In turn, the Bi concentrations 
were lower than the amount reported for cereal products from Spain 
(González-Weller et al., 2013). 

Regarding toxic trace elements, As, Cd, Pb, and Tl are cause for great 
concern due to the harmful effects they cause to human health when 
ingested or inhaled, so their presence in food must be strictly monitored. 
In this work, As and Tl contents were below the LOD in all the analyzed 
samples, whereas Cd and Pb concentrations ranged from 0.01 to 0.05 µg 
g− 1 and from 0.03 to 0.08 µg g− 1, respectively. The highest average Cd 
concentration was found in Fruit-GF samples (0.055 µg g− 1) followed by 
Chc-GF samples (0.051 µg g− 1). The levels of Pb were the highest in the 
Chc-GF samples followed by Chc samples. Some authors suggest that 
these heavy elements can be incorporated into the cereal through the 
presence of the element in the raw cereals, addition of ingredients like 
honey, cacao, and dehydrated fruits, or contamination during process
ing from friction with equipment or metal utensils (Hernández-Martínez 
& Navarro-Blasco, 2012). The concentrations of Cd and Pb found were 
higher than those reported for common cereal bars (Zurita-Ortega et al., 
2020) and lower than those determined in gluten-free cereal bars (Hi
dalgo et al., 2015). According to European Food Safety Authority (EFSA) 
regulations, the tolerable upper intake for Cd is of 2.5 µg kg− 1 b.w. per 
week (EFSA, 2012a) and for Pb is of 0.63 µg kg− 1 b.w. per day for adults 
(EFSA, 2012b). The levels of Cd and Pb found in all cereal bar samples 
were below the maximum tolerance limits specified by EFSA, indicating 
that the samples analyzed were suitable for human consumption. 

3.3. Authentication of commercial cereal bars 

The authenticity of the commercial cereal bar samples was evaluated 
based on their type (conventional and gluten-free) and main ingredient 
(fruit, yogurt, chocolate) by employing principal component analysis 
(PCA), classification and regression trees (CART), and linear discrimi
nant analysis (LDA) on the trace element fingerprints obtained by ICP- 
MS, which included the concentrations of elements Al, Ba, Bi, Cd, Co, 
Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V and Zn. However, as the 
contents of As, Ga, and Tl in all cereal bar samples were found to be 
below the limits of detection (i.e., 0.005 µg g− 1 for As, 0.003 µg g− 1 for 
Ga, and 0.004 µg g− 1 for Tl), these elements could not be considered for 
sample predictive modeling. 

3.3.1. Exploratory and clustering analysis 
PCA is a multivariate technique widely used to detect variations in 

the original data through linear transformations into a small number of 
principal components (PCs) (Bro & Smilde, 2014). In this work, PCA 
models were developed considering the entire set of samples as an 
exploratory tool to ascertain the distribution and possible grouping of 
the data, as well as to find outliers and/or patterns standing out. Fig. 1 
shows the loadings of the original variables for the first two PCs. PC1 
explained 48.1% of the total variance. This component was positively 
correlated with the values of Li, Zn, Mo, and negatively with Cu, Cr, Sr, 
and Se. In turn, PC2 explained 18.6% of the total variance, so that the 
first two PCs provided the 66.7% explanation of the data variability. Ba 
and Fe contents showed the greatest influence in the direction of PC2. 
The elements Co, Ni, Rb, Cd, Bi, and Sn presented small loadings around 
the coordinate origin, showing little influence on data structure. 

The score plot for the first two PCs is presented in Fig. 2. As can be 
seen, the scores corresponding to the samples were grouped according to 
the main ingredient of their formulations, with a large overlap between 
groups of Chc, Chc-GF, Yog and Yog-GF samples. The scores of Fruit 
samples were clearly separated from the Fruit-GF samples in PC1. Fruit- 
GF samples exhibited positive scores probably due to the high content of 
Li, Mo, and Zn, whereas the Fruit samples showed negative scores, as a 
consequence of the high concentration of Cr, Cu, and Se. PC1 was 
responsible for the separation of Fruit samples and Fruit-GF samples, 

Table 2 
Trace element concentration profiles found in commercial cereal bar samples.  

Element Sampling cereal bars (average ± SD) 

µg g− 1 Chca (n 
= 18) 

Chc-GFb 

(n = 21) 
Fruitc 

(n = 20) 
Fruit- 
GFd (n =
20) 

Yoge (n 
= 20) 

Yog-GFf 

(n = 21) 

Al 3.31 ±
0.98 

4.20 ±
1.51 

8.52 ±
3.64 

7.21 ±
3.76 

5.40 ±
2.83 

2.23 ±
0.52 

Ba 1.20 ±
0.25 

0.91 ±
0.42 

0.53 ±
0.42 

0.60 ±
0.35 

0.51 ±
0.007 

0.30 ±
0.008 

Bi 0.17 ±
0.01 

0.12 ±
0.05 

0.10 ±
0.01 

0.15 ±
0.01 

0.12 ±
0.04 

0.12 ±
0.04 

Cd 0.017 
± 0.011 

0.051 ±
0.013 

0.031 
± 0.019 

0.055 ±
0.015 

0.019 
± 0.013 

0.016 ±
0.012 

Co 0.041 
± 0.007 

0.053 ±
0.019 

0.062 
± 0.007 

0.040 ±
0.006 

0.067 
± 0.011 

0.039 ±
0.011 

Cr 0.064 
± 0.008 

0.037 ±
0.009 

0.537 
± 0.130 

0.063 ±
0.025 

0.282 
± 0.119 

0.044 ±
0.010 

Cu 3.12 ±
1.48 

4.50 ±
1.57 

7.81 ±
1.47 

2.63 ±
1.05 

4.80 ±
1.75 

2.79 ±
1.63 

Fe 9.6 ±
4.6 

6.3 ±
3.7 

21.4 ±
3.1 

10.6 ±
1.9 

15.6 ±
4.0 

18.8 ±
4.4 

Li 4.71 ±
1.82 

4.40 ±
1.86 

4.33 ±
1.28 

8.70 ±
2.06 

3.81 ±
1.83 

8.72 ±
0.81 

Mn 12.1 ±
6.0 

7.9 ±
5.1 

8.1 ±
4.3 

9.8 ± 4.2 12.2 ±
5.1 

5.5 ±
2.5 

Mo 0.40 ±
0.09 

0.19 ±
0.02 

0.203 
± 0.002 

0.43 ±
0.28 

0.520 
± 0.005 

0.44 ±
0.11 

Ni 0.38 ±
0.07 

0.38 ±
0.04 

0.42 ±
0.03 

0.44 ±
0.07 

0.40 ±
0.08 

0.34 ±
0.06 

Pb 0.077 
± 0.044 

0.086 ±
0.064 

0.058 
± 0.041 

0.072 ±
0.033 

0.066 
± 0.037 

0.035 ±
0.026 

Rb 13.3 ±
3.3 

15.6 ±
3.8 

13.4 ±
3.5 

11.6 ±
3.1 

13.2 ±
3.4 

13.6 ±
2.6 

Se 0.049 
± 0.010 

0.062 ±
0.009 

0.068 
± 0.013 

0.029 ±
0.008 

0.056 
± 0.012 

0.038 ±
0.013 

Sn 0.014 
± 0.001 

0.010 ±
0.005 

0.008 
± 0.002 

0.011 ±
0.007 

0.009 
± 0.005 

0.012 ±
0.005 

Sr 2.10 ±
0.75 

2.61 ±
0.41 

2.82 ±
0.48 

1.50 ±
0.34 

1.82 ±
0.40 

2.41 ±
0.86 

V 0.020 
± 0.004 

0.031 ±
0.006 

0.030 
± 0.003 

0.022 ±
0.003 

0.021 
± 0.005 

0.033 ±
0.003 

Zn 3.60 ±
1.19 

2.91 ±
1.36 

5.70 ±
2.31 

7.21 ±
0.70 

4.50 ±
0.93 

8.62 ±
0.81  

a Conventional cereal bars with chocolate. 
b Gluten-free cereal bars with chocolate. 
c Conventional cereal bars with fruit. 
d Gluten-free cereal bars with fruit. 
e Conventional cereal bars with yogurt. 
f Gluten-free cereal bars with yogurt. 
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while in the PC2 the Yog and Yog-GF samples had positive scores, which 
were separated from the Chc samples and Chc-GF samples with negative 
scores. 

Even though the results obtained by PCA showed a tendency of 
grouping among the cereal bars, the systematic separation of samples is 
not clear. Consequently, the utilization of supervised pattern recognition 
tools becomes essential here for developing classification models that 
enable reliable differentiation of cereal bar samples based on their type 
and main ingredient. In this regard, CART and LDA were also used to 
evaluate the element fingerprint data. These methods are known for 
their effectiveness in elucidating the role of predictors in explaining the 
modeling outcome, including possible interactions among them. 

3.3.2. Sample classification 
CART analysis is a nonparametric technique in which the results are 

formed into a tree structure. CART splits the information into subsets, 
called nodes. These nodes are more homogeneous with respect to the 
classes in the initial set. Node splitting continues until terminal nodes, or 
leaves, are obtained. This method is not subject to the assumptions of a 
parametric statistic, which is its biggest advantage. Therefore, CART can 
select among input variables the most important for predicting a given 
outcome without regard for the underlying relationships among vari
ables (Loh, 2014). 

Fig. 3 shows tree obtained from CART modeling. Based on the results 
obtained, the classification of commercial cereal bars was obtained by 
using only four levels of trace elements, i.e., Cd, Cr, Mo, and Zn. The 
content of Cr (>0.11 µg/g) allowed to discriminate Fruit and Yog sam
ples from the others. Also, Fruit samples were characterized by the low 
concentrations of Mo (<0.37 µg/g) in relation to Yog samples. On the 
other side, the samples presenting low contents of Cr (<0.11 µg/g) were 
grouped according to the Zn levels (>6.1 µg/g). In fact, the latter 
allowed to separate the Fruit-GF and Yog-GF samples from Chc and Chc- 
samples. Cd concentration below 0.025 µg/g made possible the differ
entiation between Yog-GF and Fruit samples. In turn, Chc-GF samples 
were characterized by the low levels of Mo (0.21 µg/g) regarding Chc 
samples. It is interesting to highlight that the results obtained by CART 
are consistent with the score distribution observed previously by PCA. 
Lastly, the success rates accomplished for sample classification varying 
from 72 to 85% in test step. Although the prediction rates obtained are 
quite good, a more accurate model is required for cereal bar 
authentication. 

LDA is a supervised pattern recognition method that provides 
discriminant functions (DFs) through linear combinations of the original 
variables. These DFs are used to separate the data into categories by 
minimizing the within-class and between-class ratio from the sum of 
squares (Sharma & Paliwal, 2015). Aiming to improve the classification 
performance and prevent data overfitting, LDA modeling was carried 
out considering all the variables available in the dataset (Al, Ba, Bi, Cd, 
Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn). As an 
outcome, all samples of cereal bars were predicted based on their six 
types (Fruit, Chc, Yog, Fruit-GF, Chc-GF, Yog-GF) by using 10-fold cross- 
validation method with the aim of evaluating the recognition ability of 
this algorithm. Considering the percentage (%) of the objects belonging 
to the training set correctly classified, the success rate achieved was 96% 
because two Chc samples were incorrectly assigned to Chc-GF group and 
one Fruit-GF sample was identified as Yog-GF. Instead, three samples 
were misclassified in the testing step, which resulted in a success rate of 
92%, indicating a satisfactory performance of this model for the classi
fication of cereal bar samples. Thereby, LDA model was able to achieve 
correct classification rate with a proper accuracy and reproducibility as 
the variances between categories were maximized and the variances 
within categories were minimized, allowing to predict the new samples 
according to the studied categories using the elemental fingerprints 
measured. 

The effectiveness of LDA modeling can also be visualized in Fig. 4, 
from which the projection of the samples in the plot defined by the first 
two discriminant functions (DFs) is illustrated. Score distribution reveals 
a remarkable separation of samples into well-defined groups. In 
particular, Chc and Chc-GF samples were associated with negative 
scores on LD1 and positive scores on LD2, while Fruit-GF and Yog-GF 
exhibited negative scores in both LD1 and LD2. Instead, Fruit and Yog 
samples were grouped showing positive scores in LD1. Based on the 
obtained results, it was confirmed that the variations detected in trace 
element concentrations can reliably distinguish cereal bar samples ac
cording to their type and principal ingredient. These findings reaffirm 
the potential of utilizing ICP-MS-based fingerprints as a trustworthy 
approach for authenticating the principal ingredient of commercial 
cereal bars and accurately identifying whether they are conventional or 
gluten-free products. 

Fig. 1. Loading plot of the element predictors in the first two principal com
ponents (PCs). 

Fig. 2. Score plot of the first principal component (PC1) versus the second 
principal component (PC2). Chc: Conventional cereal bars with chocolate; Chc- 
GF: Gluten-free cereal bars with chocolate; Fruit: Conventional cereal bars with 
fruit; Fruit-GF: Gluten-free cereal bars with fruit; Yog: Conventional cereal bars 
with yogurt; Yog-GF: Gluten-free cereal bars with yogurt. 
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Considering an overall perspective, ensuring the safety and authen
ticity of cereal bars requires manufacturers to implement effective 
quality control measures throughout the production process. This in
volves sourcing raw materials from trusted suppliers, conducting regular 
testing for contaminants. It is important to emphasize that health pro
fessionals and regulatory authorities play a crucial role in monitoring 
and enforcing food safety regulations to safeguard consumer health. By 

maintaining a balance between providing essential trace elements and 
minimizing potential contamination, cereal bar manufacturers can meet 
the growing demand for healthier and more nutritious products. 

4. Conclusions 

Trace element fingerprinting obtained by ICP-MS were employed for 
assessing the authenticity of commercial cereal bars. Essential elements 
like Cr, Cu, Fe, Mn, Mo, and Zn were found at concentrations providing 
significant nutritional contributions. Regarding toxic trace elements, Cd 
and Pb, were below the maximum tolerance limits set by EFSA, indi
cating that the analyzed samples are suitable for human consumption 
since they comply with food quality control guidelines related to these 
heavy metals. Pattern recognition tools, including PCA, CART, and LDA, 
was implemented for sample discrimination by analyzing the multi
elemental data. PCA modeling revealed clustering trends among the 
different sample classes and identified the key element predictors 
contributing to accurately distinguish each sample group. The CART 
model achieved correct classification rates ranging from 72% to 85%, 
while the LDA model further improved the accuracy to 92%, so the latter 
was chosen for the reliable prediction of cereal bars. This study 
demonstrated the potential of trace element fingerprints for the simul
taneous classification of cereal bar samples either according to their type 
(conventional and gluten-free) or their main ingredient (fruit, yogurt, 
chocolate). The findings reported here greatly contribute to the certifi
cation process and provide valuable insights into ensuring the authen
ticity of food products. 
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Fig. 3. Classification tree of cereal bar samples according to the element predictors using CART modeling. Chc: Conventional cereal bars with chocolate; Chc-GF: 
Gluten-free cereal bars with chocolate; Fruit: Conventional cereal bars with fruit; Fruit-GF: Gluten-free cereal bars with fruit; Yog: Conventional cereal bars with 
yogurt; Yog-GF: Gluten-free cereal bars with yogurt. 

Fig. 4. Scatter plot of the cereal bar samples on the plane defined by the first 
two discriminant functions obtained by analyzing the trace element finger
prints. Chc: Conventional cereal bars with chocolate; Chc-GF: Gluten-free cereal 
bars with chocolate; Fruit: Conventional cereal bars with fruit; Fruit-GF: Gluten- 
free cereal bars with fruit; Yog: Conventional cereal bars with yogurt; Yog-GF: 
Gluten-free cereal bars with yogurt. 
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de Souza, A. O., Corrêa Pereira, C., Heling, A. I., Quadro Oreste, E., Cadore, S., Schwingel 
Ribeiro, A., & Antunes Vieira, M. (2019). Determination of total concentration and 
bioaccessible fraction of metals in infant cereals by MIP OES. Journal of Food 
Composition and Analysis, 77, 60–65. 

Drivelos, S. A., & Georgiou, C. A. (2012). Multi-element and multi-isotope-ratio analysis 
to determine the geographical origin of foods in the European Union. TrAC - Trends 
in Analytical Chemistry, 40, 38–51. 

EFSA. (2012a). European Food Safety Authority. “Cadmium dietary exposure in the 
European population.”. EFSA Journal, 10(1), 2551. 

EFSA. (2012b). European Food Safety Authority. “Lead dietary exposure in the European 
population.”. EFSA Journal, 10(7), 2831. 

Esposito, M., Cavallo, S., Chiaravalle, E., Miedico, O., Pellicanò, R., Rosato, G., … 
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Pérez-Álvarez, E. P., Garcia, R., Barrulas, P., Dias, C., Cabrita, M. J., & Garde-Cerdán, T. 
(2019). Classification of wines according to several factors by ICP-MS multi-element 
analysis. Food Chemistry, 270, 273–280. 
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M. Pérez-Rodríguez et al.                                                                                                                                                                                                                     


