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Campus León, Universidad de Guanajuato , León 37150, México
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Abstract

Spherically symmetric and static dark matter halos in hydrostatic
equilibrium demand that dark matter should have an effective pressure
that compensates the gravitational force of the mass of the halo. An
effective equation of state can be obtained for each rotational velocity
profile of the stars in galaxies. In this work, we study one of this dark
matter equation of state obtained for the Universal Velocity Profile and
analyze the properties of the self-gravitating structures that emerges
from this equation of state. The resulting configurations explaining the
observed rotational speeds are found to be unstable. We conclude that
either the halo is not in hydrostatic equilibrium, or it is non spherically
symmetric, or it is not static if the Universal Velocity profile should be
valid to fit the rotational velocity curve of the galaxies.

1 Introduction

Current astrophysical observations at cosmological and galactic scales sug-
gest a concordance standard model coined Lambda Cold Dark Matter (Λ-
CDM) [Aghanim, 2018]. It contains three major components: a cosmologi-
cal constant Λ, a cold dark matter component (CDM), and ordinary matter.
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We don’t know much about this invisible component named CDM that acts
gravitationally on baryonic matter, being the observed rotational curves of
spiral galaxies one of the most direct evidence of its existence [Sofue, 2000].
It is not known what it is made of but there is the belief that it is a pressure-
less medium which dominates in the outer regions of spiral galaxies. While
luminous matter dominates in the innermost regions of galaxies, it appears
that the effects of dark matter can also be found in regions where ordinary
matter is present [Persic, 1996]. The pressureless condition of CDM leads
to a background cosmological evolution of its density that varies as a−3,
being a the scale factor of the universe. Latest satellite missions WMAP
and Planck have promoted cosmology to a new precision era where the
hypothesis of pressureless dark matter can be tested [Muller, 2004, Serra,
2011, Calabrese, 2009, Xu, 2013, Yang, 2015, Kopp, 2018]. In particular,
it has been found that a barotropic equation of state for the dark matter,
pDM = ωDM ρ, with ωDM = 0.000707+0.000747

−0.000746 is compatible with the evolu-
tion of the Universe [Xu, 2013, Yang, 2015, Kopp, 2018], hence compatible
with the pressureless CDM hypothesis.

Nevertheless, at galactic scales it is known that Λ-CDM is unable to
provide a complete description of the dark matter halos [Weinberg, 2015,
Perivolaropoulos, 2021]. The core-cusp problem [Flores, 1994, Karukes,
2015], the too big to fail problem [Boylan-Kolchin, 2011] and the missing
satellite problem [Klypin, 1999, Moore, 1999], among others, force us to
carefully reconsider the pressureless dark matter hypothesis. It is known
that self-interacting dark matter could solve some small scale problems of
Λ-CDM [Spergel, 1999]. The strength of self-interaction between dark mat-
ter particles leads to some effective pressure. Moreover, dark matter must
have pressure in order to avoid that intermediate-mass black holes increase
their mass far beyond observations due to dark mater accretion [Pepe, 2011,
Lora-Clavijo, 2014]. This junction, between the actual observational capa-
bility for testing the pressureless hypothesis of dark matter and the current
problems of Λ-CDM to explain some issues at galactic scales, is a strong
motivation to study the possibility that dark matter has some pressure.

Considering the rotational curves of galaxies in Barranco [2013], it was
shown that given a velocity profile vt for test particles in a spherically sym-
metric and static dark matter halo in hydrostatic equilibrium, the gravita-
tional potential Φ is fixed by vt. If the dark matter in the halo is modeled
as a perfect fluid, once the gravitational potential is fixed, then the hydro-
static equilibrium equations automatically determine an effective equation
of state, p(ρ) 6= 0, for dark matter. In this way, several equations of state
(EoS) were obtained in Barranco [2013]. Each EoS corresponds to a differ-
ent velocity profile. The present work explores in more detail one of those
EoS by analyzing the structure of the resulting dark matter halos obtained
as self-gravitating structures of a perfect fluid that models dark matter with
such EoS. In particular, the EoS we are going to explore is the one that is
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obtained using the universal rotational velocity profile studied by Persic and
Salucci in Persic [1996]. In this case, the EoS is given by Barranco [2013]

ρ(p) =
ρ•
6

(

1 + 8
p

p•
−

√

1 + 8
p

p•

)

, (1)

where ρ• and p• are free parameters. For a given set of values for this
two parameters, the resulting dark matter halos show several deficiencies in
order to be astrophysical reasonable dark matter halos, namely:

• The radial density decays as ρ(r) ∼ 1/r2 and extends to infinity.

• The total mass of the resulting dark matter halo grows linearly in r.

• The resulting self-gravitating configurations that produce rotational
curves that fit the observational data are in the branch of unstable
configurations.

The first two shortcomings can be resolved by defining the dark matter halo
radius where the halo density equals the average density of the universe.
The problem of the instability of the halo implies that at least one of our
assumptions is incorrect: either the halo is not in hydrostatic equilibrium,
or it is not spherically symmetric, or it is not static, or dark matter is not a
perfect fluid.

In order to show how these conclusions are attained, the article is orga-
nized as follows: Section 2 reviews the TOV equations and explains the EoS
(equation 1) analyzed in this work. Section 3 details the numerical methods
here employed and shows the resulting self-gravitating structures obtained,
as well as, their main properties. Section 4 is devoted to some discussions
and then Section 5 is for the conclusions regarding the obtained results.

2 Self-gravitating perfect fluid as a dark matter
halo

Dark matter will be treated as a perfect fluid defined by stresses T r
r =

T θ
θ = T φ

φ = p, T t
t = −ρ, being p, ρ the pressure and the density of the

fluid, respectively. The rest of the stresses are zero. Galaxies are composed
of luminous matter encapsulated by a dark matter halo. Observation of
carbon giant stars in the Galactic halo implies that the dark matter halo
of our galaxy is spherically symmetric [Ibata, 2000]. Since our galaxy is
not special, it seems reasonable to assume that most dark matter halos are
spherically symmetric and thus we will assume such symmetry. Since the
amount of luminous matter compared with the amount of dark matter in
Low Surface Brightness (LSB) galaxies is small, thus baryonic matter does
not contribute significantly to the total mass for such galaxies. Therefore,
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the halo for LSB galaxies can be modeled by a self-gravitating sphere of
perfect dark matter fluid in hydrostatic equilibrium. In this section, we
present the equations that will describe such self-gravitating structure: the
Tolman-Oppenheimer-Volkov equations and the dark matter EoS.

2.1 Tolman-Oppenheimer-Volkov equations

First, we recall the well known general relativistic Tolman-Oppenheimer-
Volkov (TOV) equations [Tolman, 1939, Oppenheimer, 1939] (see also Silbar
[2004]), which are the main theoretical tool used in the present work. We
consider a static and spherically symmetric spacetime, whose line element
in Schwarzschild coordinates is

ds2 = −e2Φc2dt2 +
dr2

(1− 2Gm
c2r

)
+ r2(dθ2 + sin2 θ dφ2),

being m and Φ functions of only the radial coordinate r. We think of
m as the gravitational mass inside the sphere of radius r and Φ can be
interpreted as the Newtonian gravitational potential. If the matter content
of the spacetime is a perfect fluid, then the Einstein field equations imply
the TOV system of equations:

dm

dr
= 4πr2ρ, (2)

dp

dr
= −Gmρ

r2

(

1 + p
c2ρ

)(

1 + 4πr3p
mc2

)

1− 2Gm
c2r

. (3)

These equations express the equilibrium at each r, between the internal pres-
sure that the material supports against the attraction of the gravitational
mass within r. These are the hydrostatic equilibrium equations in General
Relativity, where the factor 2Gm

c2r
, that appears in the equation (3), deter-

mines whether the effects of General Relativity should be taken into account
or not. When 2Gm

c2r
≪ 1 we can neglect this term in the TOV system and

we arrive at the corresponding well-known Newtonian limit:

dm

dr
= 4πr2ρ,

dp

dr
= −Gmρ

r2
.

It is convenient for the discussion and numerical integration to use di-
mensionless quantities,

m̄ =
m

M⋆
, r̄ =

r

R⋆
, ρ̄ =

ρ

ρ⋆
, p̄ =

p

p⋆
,

where M⋆ and R⋆ are the characteristic scales for mass and distance of the
system under study. In Barranco [2013], they are taken to be

M⋆ = 1010M⊙, R⋆ = 1 kpc.
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Also, the characteristic density and pressure are

ρ⋆ =
M⋆

4
3πR

3
⋆

, p⋆ = c2ρ⋆,

which give the values

ρ⋆ = 1.66 × 10−22 g

cm3
, p⋆ = 1.49× 10−1 g

cms2
.

In terms of these quantities equations 2-3 take the form

dm̄

dr̄
= 3r̄2ρ̄, (4)

dp̄

dr̄
= −G⋆

m̄ρ̄

r̄2

(

1 +
p̄

ρ̄

)(

1 +
3r̄3p̄

m̄

)

(

1− 2G⋆
m̄

r̄

)−1

, (5)

with

G⋆ =
GM⋆

c2R⋆
= 4.785 × 10−7.

The system of equations 4-5 is formally singular at r̄ = 0, being p̄(r̄ =
0) = p̄0 the only free parameter. To perform the numerical integration of
these equations, we make use of the Taylor expansions for m̄ and p̄:

m̄(r̄) = ρ̄(p̄0)r̄
3 +O(r̄5), (6)

p̄(r̄) = p̄0 +
p̄2
2
r̄2 +O(r̄3), (7)

with
p̄2 = −G⋆ [ρ̄(p̄0) + 3p̄0] [ρ̄(p̄0) + p̄0] .

Then, given an EoS of the form ρ̄ = ρ̄(p̄), the family of solutions is parametrized
by the central pressure p̄0, which is equivalent to get it parametrized by the
central density ρ̄(r̄ = 0) = ρ̄0. In order to close the TOV system an EoS is
needed, to describe the matter content of the spherical halo.

2.2 Velocity profile and phenomenological EoS for dark mat-
ter

The quest to determine the nature of dark matter is perhaps one of the most
challenging problems in modern physics. The particle physics approach
is the most dominant in the literature. It consists in proposing a dark
matter candidate that heals some standard particle model problems as well
as to provide a viable weakly interacting particle that plays the role of dark
matter. Well motivated examples of such dark matter candidates are the
neutralino (the lightest stable neutral supersymmetric particle) or the axion
(a pseudoscalar boson that solves the Strong CP problem).
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Figure 1: Comparison of the EoS obtained using the full general relativistic ap-
proach (dotted line) against the approximate solution obtained in the Newtonian
approximation given by equation 13.

On the other hand, an approach where stellar dynamics and a collection
of reduced hypothesis determine general properties of dark matter, is not
the mainstream. Fluid dark matter models represent an example of such
phenomenological approach. In particular, the rotational velocity profiles of
galaxies can provide important insights about dark matter under this fluid
approach. For instance, in Barranco [2013] several velocity rotational pro-
files of galaxies were considered to construct EoS for dark matter. Actually,
what is shown in Barranco [2013] is that if dark matter behaves as a perfect
fluid, imposing the spacetime to be spherically symmetric and static, and
given a profile of rotational velocities vt(r) of stars in a galaxy, thus, dark
matter halos in hydrostatic equilibrium demand an effective EoS. The argu-
ment is simple enough: for a spherically symmetric and static spacetime, for
test particles in circular motion, there is a relationship between tangential
velocity and the gravitational potential Φ, given by Φ′(r) = v2t (r)/r (see
for instance Rahaman [2011], Nunez [2010], Gong [2020]). Since the grav-
itational potential is fixed once vt(r) is known, equations (2) and (3) can
be combined to give a first order differential equation for p as a function of
ρ. Thus, for every phenomenological velocity vt(r) a phenomenological EoS
p = p(ρ), can always be derived.

A particular profile used in Barranco [2013] was the one presented by
Persic, Salucci and Stel [Persic, 1996]. This rotational velocity profile, called
the PSS profile (Persic, Salucci, Stel) or the Universal Velocity profile, has
the analytical expression:

v2t (r̄)

c2
= β2(r̄) = β2

0

r̄2

(r̄2 + a2)
, (8)

where β0 and a are parameters that need to be observationally determined
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for each galaxy. As explained above, given the velocity profile equation (8),
the gravitational potential Φ can be computed and then it is possible to
obtain the corresponding profiles for mass, density and pressure [Barranco,
2013], which in the Newtonian regime have the analytical expressions1:

m̄ =
β2
0

G⋆

r̄3

(r̄2 + a2)
, (9)

ρ̄ =
β2
0

3G⋆

(r̄2 + 3a2)

(r̄2 + a2)2
, (10)

p̄ =
β4
0

6G⋆

(r̄2 + 2a2)

(r̄2 + a2)2
. (11)

These represent the mass, density and pressure profiles for the dark matter
halo that induces a rotational velocity profile given by equation (8). Observe
that given the radial profiles (10) and (11), for r̄ = 0 we have

ρ̄(r̄ = 0) = ρ̄• =
β2
0

G⋆a2
, p̄(r̄ = 0) = p̄• =

β4
0

3G⋆a2
, (12)

and we can combine equation (10) with (11) to obtain the corresponding
EoS for dark matter with the PSS velocity profile:

p̄(ρ̄) = p̄•

[

3

4

ρ̄

ρ̄•
− 1

16

(

1−
√

1 + 24
ρ̄

ρ̄•

)]

, (13)

where ρ̄• and p̄• are related to β0 and a through equations 12.

This EoS 13 has a barotropic limit for ρ̄ ≪ ρ̄• given by p̄ = 3p̄•
2ρ̄•

ρ̄.2 For
later use, we need to invert the relation 13 to have the density as a function
of the pressure, such that gives us the EoS studied in this work, equation 1.

As we have mentioned, the analytical expression for the EoS obtained
by the PSS velocity profile was derived in the Newtonian approximation.
Nevertheless, the procedure to compute the EoS can be performed within
the framework of General Relativity. In order to do that we refer to the ap-
pendix in Barranco [2013]. Unfortunately, in this case there is no analytical
expression for the mass, density and pressure profiles. Thus, the resulting
EoS, in the full general relativistic approach, can be computed only by nu-
merical methods. Before proceeding to build self-gravitating configurations
solving the TOV system with this particular EoS for the dark matter, it is
important to check if there are important differences in the EoS obtained
numerically in a General Relativity treatment for the PSS rotational veloc-
ity profile and the EoS given by equation (1). This comparison is shown in
Figure 1. We can see that there is no significant differences and thus for the
rest of our work we use equation (1).

1Considering the size of the halos and if dark matter is a particle at galactic scales,
then the Newtonian regime is an excellent approximation.

2There is a typo in this formula in Barranco [2013].
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Table 1: Parameters of the selected galaxies

Label Galaxy β0(10
4) a ρ̄• p̄•

A U5750 3.23 7.75 3.63 × 10−3 1.26 × 10−10

B ESO2060140 4.00 2.16 7.17 × 10−2 3.82 × 10−9

C U11748 7.94 1.07 1.15 2.42 × 10−7

3 Properties and characteristics of dark matter

halos with EoS from the universal velocity pro-
file

In this section we solve the TOV system with the EoS given by equation
1, in order to find the self-gravitating dark matter halos. There are two
free parameters in the dark matter EoS equation 1: ρ̄• and p̄•. It is true
that such EoS was derived with ρ̄(r̄ = 0) = ρ̄• and p̄(r̄ = 0) = p̄•, but
this is a very particular choice of initial conditions for the TOV system. In
general, ρ̄(r̄ = 0) 6= ρ̄• and p̄(r̄ = 0) 6= p̄•, and this is the reason why we use
different symbols for ρ̄• and ρ̄0 and p̄• and p̄0. We consider ρ̄• and p̄• as fixed
quantities and construct the family of halos with varying p̄0. Once (ρ̄•,p̄•)
are fixed, the TOV system is closed and it is possible to find all possible
self-gravitating configurations. As free data we can either choose p̄0 or its
equivalent ρ̄0, since they are related through equation 1. Before we proceed,
we must choose the values (ρ̄•,p̄•) that we explore in this work. In Barranco
[2013], 20 galaxies were fitted, and each galaxy demanded a different value
for (ρ̄•,p̄•). We can consider some of those values as a starting point. We
concentrate in the values obtained for the three galaxies presented in Table
1, as the results that we present later are qualitatively similar and cover the
range of ρ̄• and p̄• that fits a representative number of galaxies studied in
Barranco [2013].

In Fig. 2, the resulting EoS for each pair (ρ̄•,p̄•) are plotted. The inset
plot shows the allowed region in the space (ρ̄•,p̄•) that fits the rotational
velocity data of the mentioned galaxies in Table 1 at 90% of C.L. These three
galaxies cover most of the relevant region that fits most of the 20 galaxies
studied in Barranco [2013]. The resulting dark matter EoS that we explore
are within the allowed region that is not excluded neither by analysis done
using cosmological data [Xu, 2013] nor by studies of accretion of dark matter
by Intermediate Mass Black Holes [Pepe, 2011, Lora-Clavijo, 2014].

3.1 EOS with fixed parameters

In the present work we interpret equation 1 in two ways. First, in this
section, we consider that ρ̄• and p̄• are constants valid for all possible dark
matter halos, therefore there is a unique EoS for dark matter where the only
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Figure 2: By fixing (ρ̄•, p̄•) with the central values of the fit in equation (1) three
different EoS P̄ (ρ̄) are obtained. Those EoS are plotted and compared its behavior
with current exclusion areas obtained by analysing the CMB anisotropies Xu [2013]
and dark matter accretion by Intermediate Mass Black Holes Pepe [2011], Lora-
Clavijo [2014]. Inset plot: Contours at 90% C.L. in the (ρ̄•, p̄•) plane that fits the
rotational curve velocities of the galaxies listed in Table 1.

relevant variables are the density and pressure. Once we have such an EoS,
we integrate the TOV equations, varying the central pressure p̄0, obtaining
a family of dark matter objects.

With compact objects obtained from the EoS through the TOV equa-
tions, an important feature is the M-R (mass-radius) diagram. This diagram
gives an idea of the typical sizes of possible objects and a criterion for sta-
bility of the configurations. For barotropic EoS, and also for the EoS 13,
there is the problem of defining the radius of the object, since the pressure
and density never become zero, and the mass is divergent. Specifically, for a
barotropic EoS the pressure decreases quadratically with r, with the density
decreasing also quadratically, and therefore the mass increasing linearly. As
the pressure never becomes zero there is not a clear way of defining the size
of the object. As we have mentioned earlier, for p̄ ≪ 1 the EoS given by
equation 13 has a barotropic limit, which is consistent with the feature of
flat rotation curve profile of the galaxies for large values of r̄ and can not be
avoided in the present setting. To overcome this problem we consider the
boundary of the halo to be located where the density of dark matter be-
comes the density of dark matter in between galaxies. That is, we consider
the radius at which it is no longer possible to distinguish between the halo
and the dark matter background. For this, we take the value of [Aghanim,
2018]:

ρm = 1.2× 10−6 GeV/cm3,
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Table 2: Maximum mass for the dark matter halos and related parameters.

EoS M [1010M⊙] Mcore [10
10M⊙] R [kpc] Rcore [kpc] ρ̄0 p̄0

A 756 45.1 2851 668 1.86 × 10−7 9.7× 10−15

B 1437 86 3531 828 1.86 × 10−7 1.49 × 10−14

C 11242 672 7009 1644 1.86 × 10−7 5.9× 10−14

which in our dimensionless variables reads as

ρ̄m = 1.3× 10−8.

Therefore, we consider the radius R and mass M of the dark matter object
as the radius and mass where the dark matter density is equal to ρm.

The velocity profile given by equation 8 has been proposed because it
has constant rotational velocities for r̄ ≫ 1 and for cored galaxies. Thus,
it is natural to expect that the resulting density profile from the solution of
the TOV system with EoS given by equation 1 have a core. We consider the
”core” of the object as the radius where the density profile has an inflection
point, and denote such radius as Rcore and the corresponding mass as Mcore.

To perform the numerical integration of equations 4-5 we use the Runge-
Kutta-Felhberg (4,5) algorithm already implemented in SageMath [Sage-
Math]. Due to the system of ODEs being formally singular at r̄ = 0, we
use the Taylor expansions 6-7 to transport the initial conditions to the first
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Figure 3: Left panel: Radial pressure profiles obtained as solutions of the TOV
equations with dark matter EoS labeled as EoS B in Table 1. Each curve corre-
sponds to a different initial value for p̄0. Inset plot shows the equivalent radial
density profile ρ(r) obtained by mapping the pressure profiles via equation 1 for
the particular case where p̄0 = p̄•. The red point corresponds to the point where
the density profile has an inflection point and we define the core radius of the
configuration as the radius where this inflexion point occurs. Right panel: The
rotational velocity profile for different halos (different initial values of P0) within
one family of solutions. It can be observed that from all those configurations only
the configuration where p̄0 = p̄• can fit the observed rotational velocities for the
galaxy ESO2060140.
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Figure 4: Main properties of the dark matter halos obtained with the A,B,C EoS.
From left to right and from up to down: The total mass M as a function of the
radius of the halo R. The total mass M as a function of the central density ρ(0).
The total mass M as a function of the core radius Rcore and finally, the mass of
the core as a function of the core radius. With a red point the configurations that
fit the observed rotational curves of the galaxies enumerated in Table 1 are shown.
In all cases, the red points are in the unstable branch.
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point of the integration grid. We use a non-uniform grid, due to the rela-
tively fast change of variables close to r̄ = 0 with respect to the regions far
away from the center. The k−th point of the integration grid is

r̄k = r̄n

(

k

n

)1.2

, k = 1, . . . , n,

being n the number of points on the grid, and r̄n the upper limit for the
integration. We use n = 105. Examples of the solutions can be seen in
Figure 3. The left panel shows radial pressure profiles obtained as solutions
of the TOV equations with the dark matter EoS labeled as EoS B in Table
1. Each curve corresponds to a different initial value for p̄0. Black solid line
corresponds to the solution with p̄0 = p̄•. The inset plot shows the equiv-
alent radial density profile ρ(r) obtained by mapping the pressure profile
via equation 1 for this particular case where p̄0 = p̄•. The red diamond
corresponds to the point where the density profile has an inflexion point
and we define the core radius of the configuration as the radius where this
inflection point occurs. Besides the radial pressure profile p̄(r̄), the mass
profile m̄(r̄) is obtained as well as solution of the TOV system. Thus the

rotational velocity profile can be directly computed by vt =

√

Gm(r)
r .

The right panel of Fig. 3 shows the rotational velocity profiles for the
different halos that corresponds to the pressure profiles from the left panel.
It should be noted that although the EoS was obtained from the PSS ve-
locity profile, in the family of solutions, the only object that fits this profile
is the one that has exactly the values ρ̄0 = ρ̄• and p̄0 = p̄•. To make this
point explicit, in Figure 3 we have plotted the velocity profiles of five halos
in the same family. We have used a logarithmic scale on the axis of abscissas
to make the differences in the profiles more obvious, remembering that the
only PSS profile is the one with p̄0 = 3.8× 10−9.

In Figure 4, the diagrams for mass vs radius, mass vs central density,
mass vs core radius and core mass vs core radius, respectively, are presented,
using the parameters (ρ̄•, p̄•) shown in Table 1 for the EoS obtained from
the galaxies U5750, ESO2060140 and U11748, now labeled as EoS A,B and
C. We see that for the three pairs of (ρ̄•, p̄•) here considered, the results are
qualitatively the same. The mass has a maximum, indicating the existence
of a stable branch and an unstable branch. Here we use the criteria that
a static object of perfect fluid can only pass from stability to instability
with respect to some particular radial normal mode at a value of the central
density where the mass is an extreme [Weinberg, 1972]. The maximum mass,
and the corresponding radius, core radius and core mass are summarized in
Table 2. It is of interest to note that the value of ρ̄0 for the maximum
mass coincides to the third digit for the three families of galaxies. It seems
to indicate that the deciding factor for the stability is the central density;
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objects with lower central densities being stable, while objects with higher
central densities being unstable. In Figure 4, the halos obtained with the
value p̄0 = p̄•, that are the only ones that fit the corresponding observed
rotational velocities of the galaxies, are depicted with a red dot, and in
all cases they are definitely unstable. Similarly, in Figure 3 the profile for
ρ̄0 ≤ 1.86 × 10−7 correspond to a stable halo object while the others are
unstable.

Figure 4 summarizes the global general properties of dark matter halos
that can be obtained with the EoS derived from the PSS velocity profile.
The core radius is an important one. Note that the core radius for stable
configurations is bigger than 100 Kpc. Thus, the stable configurations are
unable to fit the observed rotational curves, as they demand cores of the
order of a few kiloparsecs. This issue can be seen graphically on the right
panel of Figure 3. Following with the analysis of the core radius of the re-
sulting self-gravitating objects that models our dark matter halos, in Figure
5 we have plotted the core radius as a function of the central density. Here
again, the red dots indicate the values that best fit the rotational curves of
galaxies shown in Table 1. Furthermore, the solid red line shown in Figure
5 corresponds to the observational evidence that the central surface density,
defined as the product of the central density times the core radius, of galaxy
dark matter halos, is nearly constant and independent of galaxy luminos-
ity [Donato, 2009, Gentile, 2009]. Observe that in general, A,B and C EoS
studied in this work do not follow this universal relation of constant surface
density. It is worth noting that the best fit point for the galaxy ESO2060140
lies near the red solid line, this motivates us to explore another possible set
of EoS as equation 1.

3.2 Constant (ρ0Rcore)

Our previous results reveal a fundamental problem when the EoS given
by equation 1 is used to model dark matter halos: the halo that fit the
rotational curve belongs to the unstable branch of possible configurations.
This could be an effect of the particular (and arbitrary) selection of the sets
of parameters (ρ̄•, p̄•) that we have done. In this section, we interpret the
EoS in a different way. We assume that all galaxies follow the PSS rotational
velocity profile, which gives rise to the dark matter EoS 1, but they do not
have the same ρ̄•. Instead of that, following the work Donato [2009], Gentile
[2009], we consider that the product ρ0 Rcore has the constant value

ρ0 Rcore = 141+82
−52 M⊙/pc

2. (14)

The core radius is where the density profile has an inflection point, and from
10,

r̄core =

√

2
√
34− 11

3
a =

√

2
√
34− 11

√

p̄•
G⋆

1

ρ̄0
,
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rotational velocities are of the order of few kiloparsecs, while the core radius of
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Figure 7: M −R, M −Rcore and Mcore−Rcore diagrams for the EoS with constant
p̄0.

which together with 14 implies

p̄0 = p̄• =
G⋆(ρ̄0 r̄core)

2

2
√
34− 11

= 2.5 × 10−9. (15)

Now, we interpret 1 in the following way. The parameter p̄• in 1 is a
constant for all galaxies, having the value 15. The parameter ρ̄• is both
the corresponding parameter in 1 and the central density of the galaxies
ρ̄0, and it is not a constant for different galaxies. Therefore, we have a
family of dark matter objects, parameterized by ρ̄0, each galaxy with an
EoS with its own set of parameters, being p̄• a constant. Although having
a different EoS for each galaxy may seem like the model loses its value,
the interpretation is not that each galaxy possess a different type of dark
matter. Instead of that, we consider that there is another parameter, the
simplest one being the temperature, which has not been considered here. In
this sense, having EoSs with different parameters amount to having galaxies
with different temperature profiles. The interpretation is the same as with
the classical Eddington model for stars made of an ideal gas, where the EoS
is that of an ideal gas, but the temperature profile is supposed to be such
that the pressure contribution from the gas has a constant ratio with respect
to the radiation pressure. In this way, the equations for p and m can be
integrated without explicitly considering the temperature, and each star has
a particular EoS in the form ρ(p).

With this interpretation in mind, there is only one family of solutions
with only one free parameter: the central density ρ̄0. The values of R,
Rcore, M and Mcore have the same meaning as before, but now they can
be obtained analytically as functions of central density ρ̄0, from 9 and 10.
Then, in terms of the dimensionless quantities, we have the mass of the core:

m̄core = m̄(r̄core) =
3(2

√
34− 11)

3

2

2(
√
34− 4)

p̄
3

2

•

G
3

2

⋆ ρ̄
2
0

.

The dark matter halo ends at the point where ρ̄ given in equation 10 is equal
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to ρ̄m, and therefore the radius of the configuration is

r̄m =

√

p̄•
2G⋆ρ̄mρ̄0

√

1− 6
ρ̄m
ρ̄0

+

√

1 + 24
ρ̄m
ρ̄0

,

and the total mass of the halo m̄m is obtained with m̄(r̄ = r̄m), i.e.

m̄m =
3p̄

3

2

•

√
2G

3

2

⋆
√
ρ̄mρ̄

3

2

0

(

1− 6 ρ̄m
ρ̄0

+
√

1 + 24 ρ̄m
ρ̄0

)
3

2

1 +
√

1 + 24 ρ̄m
ρ̄0

. (16)

Equation 16 gives the mass of the halo as a function of the central density.
We have plotted m̄(ρ0) in Figure 6. We see that the mass has a maximum
value, which from equation 16 corresponds to the central density

ρ̄0,crit = (3
√
19− 11)ρ̄m = 2.7× 10−8,

being the maximum mass

Mcrit =
3
√

951029 + 220742
√
19p̄•

12500G
3/2
⋆ ρ̄2m

= 7.3 × 1021M⊙,

and the corresponding object radius

Rcrit =
232 + 61

√
19

625ρ̄m

√

p̄•
2G⋆

= 3.5× 106kpc.

Although, it is possible to obtain analytical expressions for these quanti-
ties in terms of one of the others, for instance m̄m(r̄m), the formulas are not
very enlightening and we prefer to consider them as given parametrically
through ρ̄0. For the configuration with maximum mass, the core radius is

Rcore,crit = 2.2× 106kpc,

being the core mass
Mcore,crit = 2.2× 1021M⊙.

In Figure 7, the relationship between mass, core mass, radius and core
radius, are shown. The maximum mass represents, as before, the configu-
ration that divides stable from unstable configurations. The stable branch
are those objects with

ρ̄0 < ρ̄0,crit, M < Mcrit,

Mcore > Mcore,crit, Rcore > Rcore,crit,

while the unstable branch is the one with

ρ̄0 > ρ̄0,crit, M < Mcrit,
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Table 3: Gravitational energy and related parameters for the last stable configura-
tions.

Galaxy M [1010M⊙] R [kpc]
Gravitational
energy [Mc2]

Density
[gr/cm3]

Surface
gravity

U5750 756 2851 1.27 × 10−7 5.27 × 10−30 1.29× 10−13

ESO2060140 1437 3531 0.002 5.27 × 10−30 1.61× 10−13

U11748 11242 7009 0.080 5.99 × 10−27 3.47× 10−11

Mcore < Mcore,crit, Rcore < Rcore,crit.

In Figure 7, the unstable branch is indicated by the red curve, while the
stable branch by the blue one.

As expected, we can fit some rotational velocities profiles with this set of
configurations. The fit can be done through a χ2 analysis of the rotational
curves measured in some Low Surface Brightness Galaxies [de Blok, 2002]
and the theoretical curve obtained by equation 3.1, with the mass computed
by equation 16. There is only one free parameter, ρ̄0, and thus we minimize

χ2(ρ̄0) =
∑

i
(vi

t
−vt(ρ̄0))2

(δvi
t
)2

in order to find the best fit point. Here vit are the

observed data and δvit are the errors in the data points reported in de Blok
[2002]. The particular case of the rotational velocity data from ESO2060140
is shown as an inset plot in Figure 6. It can be seen that the fit is reasonable
good (χ2

min/d.o.f. = 0.13). The best fit value for this galaxy is ρ̄0 = 8.87
GeV/cm3, and it is plotted in Figure 6 as a red point. Thus, this dark
matter halo lies on the unstable branch. Other galaxies also can be fitted by
fixing p̄•, as it has been explained above. For instance, the galaxies F563-1
and F570 v1, and the best fit points for those galaxies are plotted as blue
points in Figure 6. One more time, those configurations are in the unstable
branch.

4 Discussion

We have integrated the TOV system with the dark matter EoS given by
equation 1. Four cases where analyzed: three family of solutions were ob-
tained for the representative sets of parameters (p̄•, ρ̄•) given in Table 1,
as they cover most of the parameter space that can fit the observed rota-
tional velocities of Low Surface Brightness Galaxies. The fourth family of
solutions was obtained by fixing p̄• in order for the constancy of the surface
brightness in galaxies found in Donato [2009], Gentile [2009] to be always
satisfied. This last family of solutions has as free parameter the central den-
sity. The four families of dark matter halos have similar properties and one
configuration in all cases is of special interest: the configuration with max-
imum mass. The parameters presented in table 2 represent the maximum
mass and corresponding radii for our galaxy halos. The stable configura-
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tions are to the right of the maximum and the unstable ones to the left in
the M −R diagrams. As it is common in various mass-radius relations, for
large values of the central pressure the curves start to curl. The maximum
in the curves divide the stable configurations from the unstable ones. The
halos that fit the rotational curve for the considered galaxies are all on the
unstable branch.

In table 3 we have estimations for the gravitational energy, the density
and the surface gravity of the halos of our set of three galaxies. Clearly,
we found that, due to the gravitational energy being not an appreciable
fraction of the rest energy, the halos are not considered relativistic objects.
Even more, the mean density is low, in the order of the current density of
the Universe of 9.9 × 10−30 gr/cm3, in correspondence to a flat universe.
However, U11748 exhibits a higher density, about 6× 10−27 gr/cm3, so it is
able to expand openly. This happens because the stable configurations need
to have a central density which is only a few times the average density of the
universe. Thus the dark matter halos have radius of the order of thousand of
kiloparsecs, core radius of hundred of kiloparsecs and therefore stable halos
obtained through equation 1 are not good models for realistic halos that fit
the rotational curve of galaxies. Finally, we see that the surface gravity of
the halos is extremely low, of about 10−11−10−13 cm/s2. Then, we conclude,
the halo system is not relativistic and the 2Gm

c2r
factor, that appears in the

TOV equation (3), which determines the effects of General Relativity, is
negligible. This is the reason why the Newtonian approximation produces
the same results as the relativistic one when describing the dark matter
halos in elliptical galaxies.

5 Conclusions

The rotation curves of spiral galaxies determine completely the correspond-
ing Newtonian gravitational potential Φ(r) of the static, spherically sym-
metric spacetime metric. This implies that the gravitational field inside the
halo is weak, of the order of β2, and the temporal term of the metric is not
dependent on the equation of state used to describe the dark matter compo-
nent. Once a phenomenological rotational profile is proposed for a galaxy, if
the dark matter is modeled as a perfect fluid, then the equation of state for
dark matter is determined by the rotational velocity profile. In particular,
if the rotational velocity profile predicts a flat rotation curve for large radii,
as the velocity profile proposed in Persic [1996], then the resulting EoS for
dark matter, given by equation 1, has a barotropic limit for r̄ ≫ 1. The
resulting density profile decays as the inverse square power of the radial
coordinate and in consequence the density and pressure never reach zero at
the boundary of the halo. Moreover, as it was mentioned in section II, the
halo mass is divergent, increasing linearly in r. This fact implies that the
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invisible matter distributed in a spherical halo around spiral galaxies extend
to infinity. Despite this, by defining the radius of the halo as the point
where the halo density matches the average density of the Universe we can
circumvent this problem. More troublesome, once the configurations that fit
the observed rotational velocity curves of Low Surface Brightness Galaxies
are found, they in fact are in the unstable branch of possible configurations.
This shows that although it is possible to find halos that fit the observed
data, those configurations demand central pressures and densities that are
too high regarding hydrostatic equilibrium, and therefore will be unstable
under small radial perturbations. We conclude that if the Universal Velocity
profile should be valid to fit the rotational velocity curve of the galaxies and
dark matter could be modeled as a perfect fluid, then one of our assump-
tions, e.g. hydrostatic equilibrium, spherical symmetry, or staticity of the
spacetime, should not be valid.
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