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Abstract: Lipoteichoic acid (LTA) from Gram-positive bacteria exerts different immune effects depend-
ing on the bacterial source from which it is isolated. Lacticaseibacillus rhamnosus GG LTA (LGG-LTA)
oral administration reduces UVB-induced immunosuppression and skin tumor development in mice.
In the present work, we evaluate the immunomodulatory effect exerted by LGG-LTA in dendritic
cells (DC) and T cells, both in vitro and in the gut-associated lymphoid tissue (GALT). During cell
culture, LTA-stimulated BMDC increased CD86 and MHC-II expression and secreted low levels of
pro and anti-inflammatory cytokines. Moreover, LTA-treated BMDC increased T cell priming capacity,
promoting the secretion of IL-17A. On the other hand, in orally LTA-treated mice, a decrease in mature
DC (lamina propria and Peyer’s patches) was observed. Concomitantly, an increase in IL-12p35 and
IFN-γ transcription was presented (lamina propria and Peyer’s Patches). Finally, an increase in the
number of CD103+ DC was observed in Peyer’s patches. Together, our data demonstrate that LGG-
LTA activates DC and T cells. Moreover, we show that a Th1-biased immune response is triggered
in vivo after oral LTA administration. These effects justify the oral LTA activity previously observed.

Keywords: dendritic cells (DCs); probiotics; TLR-ligands; T cells

1. Introduction

One of the major groups of bacteria with demonstrated probiotic activity is the lactic
acid bacteria group, particularly the (formerly) Lactobacillus species. They are often con-
sumed as foods or dietary supplements and exert their beneficial effects by three main
mechanisms: (i) impairing pathogenic bacteria from colonizing the gastrointestinal tract [1],
(ii) reinforcing the barrier functions of intestinal epithelium [2,3], and (iii) modulating both
the local and systemic immune response by microbe-associated molecular pattern (MAMP)
recognition at the gut-associated lymphoid tissue (GALT) [4].

The cell wall of Lacticaseibacillus, as with all Gram-positive bacteria, is composed
mainly of lipoproteins, peptidoglycan, and lipoteichoic acid (LTA). The latter is considered
analogous to lipopolysaccharide (LPS) in Gram-negative bacteria due to its similar bio-
chemical and physiological properties. Lacticaseibacillus LTA is an amphiphilic molecule
composed of a chain of poly-glycerophosphate with D-Ala substitutions and a hydrophobic
anchor that allows its incorporation in the cell membrane [5]. It is an important ligand for
the innate immune response [6]. Moreover, LTA is highly immunogenic, and its structure is
considerably diverse between bacteria, even at the species level [5]. Thus, depending on the
bacterial source from which it has been isolated, LTA can promote diverse immunomodula-
tory effects. For instance, LTA isolated from Staphylococcus aureus (SaLTA) or Bacillus subtilis,
but not from Lactiplantibacillus plantarum (LpLTA), stimulates the secretion of TNF-α in
murine macrophages in vitro [7]. Moreover, Kim et al. have demonstrated that LpLTA
inhibits SaLTA-induced TNF-α production in THP-1 cells. Moreover, the intraperitoneal
administration of LpLTA impaired LPS-induced endotoxic shock in a mouse model [8].
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Furthermore, LTA from Enterococcus faecalis CECT7121 induces the secretion of IL-6, TNF-α,
and IL-12, but not IL-10 in bone marrow-derived dendritic cells (BMDC) [9].

Regardless of its source, LTA interacts with the heterodimer TLR2/6, the co-receptors
CD14 and CD36, which ultimately leads to the activation of NF-κB and AP-1 transcription
factors through MAPK signaling [10]. Notably, different LTAs isolated from different
(formerly) Lactobacillus species have shown to promote MAPK signaling with variable
intensities. This may be, in part, the cause of the diverse immunomodulatory activity
exerted by LTA [11]. However, LTA has not been thoroughly studied at the cellular level;
even less have been the efforts to understand the relevance of LTA in vivo.

In previous reports, our group has shown that the oral administration of LTA isolated
from the probiotic bacteria Lacticaseibacillus rhamnosus GG (LGG) exerts both prophylac-
tic [12] and therapeutic activity [13] in an Ultraviolet B (UVB)-induced skin cancer mouse
model. Furthermore, oral LTA has shown to impair UVB-induced immunosuppression by
modulating both the innate and the adaptive skin immune system. After UVB exposure,
skin challenges (i.e., oxazolone) recruit less inflammatory monocytes and fail to activate T
cells. Oral LTA treatment reverts those effects, allowing correct recruitment of monocytes to
the inflamed skin and an adequate T cell activation and effector function (for both CD4 and
CD8 T cells). The present study aimed to elucidate some of the mechanisms involved in the
immunomodulatory effects that oral LTA exerts in the GALT, which likely represents the
first immune environment that LTA modifies. To this end, we analyzed in vitro the effects of
LTA on the activation, proinflammatory function, and T cell stimulatory capacity of BMDC.
We also evaluated the in vivo effects of oral-administered LTA in the total population of
DC residents in the lamina propria and the subset of CD103+ DC in the Peyer Patches.

2. Materials and Methods
2.1. Animal Models

Male C57BL/6 (wild type), male B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II transgenic mice)
and female Balb/C mice (The Jackson Laboratories, Bar Harbor, ME, USA) were used at
8–12 weeks of age. They were housed in quarters with a 12 h light–12 h dark cycle and
maintained with water and food ad libitum. Female mice of the Balb/C strain of 8–10 weeks
of age were treated with a single dose or eight doses of 100 µg of LTA (in 100 µL of PBS)
by gastric gavage every other day as previously employed by our group [12,13]. A control
group administered with 100 µL of PBS was included in each experiment. All procedures
were approved by the University of Pittsburgh IACUC and the guidelines established by
the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) and were approved
by the Review Board of Ethics of the Instituto de Estudios de la Inmunidad Humoral.

2.2. Lipoteichoic Acid Purification and Administration

LTA was isolated as previously described [14]. LTA preparation was tested for purity
by Western blot, as described previously by Weill et al. [12]. LTA (or PBS) oral administra-
tion was performed using a feeding needle.

2.3. Bone Marrow-Derived Dendritic Cell Differentiation and Stimulation

BMDC were obtained from C57BL/6 (wild type) as previously described [15]. On
day six, the BMDC were purified by positive immunomagnetic selection with anti-CD11c
Microbeads and MACS Column (Mac, Miltenyi Biotec, Bergisch Gladbach, Germany).

BMDC were seeded in 24-well plates and stimulated with 1, 10, and 50 µg/mL of
purified LTA (duplicates). Stimulation was carried out for 24 h at 37 ◦C in a humidified
atmosphere with 5% pCO2. Control treatment with PBS as baseline stimulation control
and commercial LPS from Escherichia coli 011B4 (Sigma-Aldrich, Burlington, MA, USA) in
concentration 0.2 µg/mL as positive control were included. The cells were recovered for
analysis by flow cytometry, and the cell-free supernatants were preserved with a protease
inhibitor cocktail (Sigma, Burlington, MA, USA) and frozen at −20 ◦C for subsequent
cytokine quantification.
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2.4. Expression of MHC Class-II and CD86 and Cytokine Secretion by LTA-Treated BMDC

BMDC were cultured in the presence or not (control) of LTA (1, 10, and 50 µg/mL), E.
coli LPS (0.2 µg/mL), for 24 h. Subsequently, cells and culture supernatants were collected to
analyze DC maturation phenotype and cytokine secretion, respectively. For FACS analysis
of DC phenotype, cells were incubated with AFluor700 CD86 (GL1), BV421 CD11c (N418)
(BD Bioscience, Franklin Lakes, NJ, USA), PE-Cy7 IA (AF6-120.1, BioLegend, San Diego,
CA, USA) according to manufacturer protocols. Following washing, cells were fixed with
2% paraformaldehyde and stored at 4 ◦C in the dark until FACS analysis.

Quantification of IL-12p70, IL-1β, and IL-10 (EPX01A-26004-901, BMS6002TEN and
88-7105-88, eBioscience, Thermo Fisher Scientific, Waltham, MA, USA), IL-6, and TNF-α
(555240 and 555268 BD Bioscience, Franklin Lakes, NJ, USA) was performed following the
instructions of each manufacturer in BMDC culture supernatant.

2.5. Antigen-Specific T Cell Proliferation

CD4+ OT-II cells, which express a recombinant TCR specific for an OVA peptide, were
isolated from spleens of 8 to 10 weeks old mice and purified by negative selection using an
Untouched Mouse CD4 Cell Kit (Dynabeads, Thermo Fisher, Waltham, MA, USA) according
to the manufacturer’s protocols and labeled with carboxyfluorescein-succinimidyl ester
(CFSE, 1 µM) (Thermo Fisher, Waltham, MA, USA). CD4+ OT II cells (responders) were
then co-cultured (1:1 ratio) with BMDC (stimulators) pretreated or not (negative control)
with LTA (50 µg/mL) or LPS (0.2 µg/mL) (positive control), in triplicates using 96 round-
bottom well plates (Corning Costar, Sigma-Aldrich, Burlington, MA, USA) for 4 days in the
presence or not of a mixture of OVA (1 mg/mL) (Sigma-Aldrich, Burlington, MA, USA)
and OVA323-339 peptide (0.1 mg/mL) as antigen source to induce specific T cell activation.

Following culture, cells were separated and immunostained with APC-CD4 Ab
(RM4-5, BD Bioscience, Franklin Lakes, NJ, USA), labeled with the eFluor780-Fixable
Viability Dye (FVD) (eBioscience, Thermo Fisher, Waltham, MA, USA), and analyzed
by FACS.

Detection of the T cell cytokines (IFN-γ, IL-17A, IL-13, and IL-5) in co-cultures super-
natants was performed by ELISA (555138 and 555236 -IFN-γ and IL-5- BD Bioscience, USA;
M17AF0 and DY413 -IL17A and IL-23- R&D Systems, Minneapolis, MA, USA), according
to manufacturer’s protocols.

2.6. Analysis of Cytokine Transcripts in the GALT

Gene transcription analysis was performed with four groups of 5 BALB/c mice each,
three groups received a single dose of 0.1 mg LTA by gavage, and the remaining was
treated with PBS as control. The animals treated with LTA were euthanized 16, 24, and
48 h after oral administration, whereas the group treated with PBS was euthanized at 24 h.
Subsequently, the entire small intestine (SI) free of Peyer’s patches (PP), PP, and mesenteric
lymph nodes (MLN) were removed. The organs were homogenized using a tissue tearor
(Thomas Scientific, Swedesboro, NJ, USA) in 1 mL of Trizol (Thermo Fisher Scientific,
Waltham, MA, USA). The samples were frozen at −80 ◦C in Trizol for preservation. The
total RNA was extracted from each sample. Next, reverse transcription was performed
to obtain the corresponding cDNA using the M-MLV enzyme (Promega Corporation,
Madison, WI, USA).

Reverse transcription PCR (RT-PCR) was performed using the enzyme Taq polymerase
(InBioHighWay, Tandil, Buenos Aires, Argentina) for semi-quantitative evaluation of tran-
scripts of the following genes: IL-12p35, IFN-γ, IL-10, TNF-α, IL -6, TGF-β, and IL-1β. In
addition, the constitutive expression of GAPDH was used as an amplification control. The
sequences of the primers used are described in Table 1.
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Table 1. Nucleotide sequences of primers used in the RT-PCR.

Gen 5′-3′ Forward Primer Sequence 5′-3′ Reverse Primer Sequence

IL-12p35 TACTAGAGAGACTTCTTCCACAACAAGAG TCTGGTACATCTTCAAGTCCTCATAGA

IFN-γ TGCATCTTGGCTTTGCAGCTCTTC GGGTTGTTGACCTCAAACTTGGCA

IL-10 ATGCTGCCTGCTCTTACTGACTG CCCAAGTAACCCTTAAAGTCCTGC

TNF-α GGCAGGTCTACTTTGGAGTCATTGC ACATTCGAGGCTCCAGTGAATTCGG

IL-6 CGTGGAAATGAGAAAAGAGTTGTGC ATGCTTAGGCATAACGCACTAGGT

TGF-β ACTGGAGTTGTACGGCAGTG GGATCCACTTCCAACCCAGG

IL-1β TGCCACCTTTTGACAGTGATG AAGGTCCACGGGAAAGACAC

GAPDH TGAAGGTCGGTGTGAACGG CGTGAGTGGAGTCATACTGGAA

The PCR products were resolved by electrophoresis on a 2.5% agarose gel stained
with SYBR Safe probe (Invitrogen), visualized using a blue-light LED transilluminator
(Maestrogen, Las Vegas, NV, USA), and photographed with an Olympus digital camera
(QColor 3). The images obtained were analyzed with IMAGE J software. The results, as a
relative expression regarding GAPDH, were expressed as mean ± SD.

2.7. Cell Phenotype in the GALT

Two groups of 7 female Balb/C mice each, administered with eight doses of LTA or
PBS, were euthanized 24 h after the last dose. The SI, PP, and MLN were removed. To
prepare Lamina propria single-cell suspensions, the SI was cut lengthwise and washed in
PBS. Then, SI was cut into small pieces and incubated in 2 mM EDTA in Hank’s buffer or
HBS (Hank’s buffer solution) with 5% FBS for 20 min at 37 ◦C while stirring. The tissue
was then filtered with a nylon strainer, and the procedure was repeated once more. In the
end, the filtered tissue was incubated with 1.5 mg/mL type IV collagenase (Worthington,
USA) and 40 µg/mL DNase I (Worthington, Columbus, OH, USA) in HBS with 5% FBS for
15 min at 37 ◦C while stirring. At the end of the incubation, it was stirred with a vortex
for 20 s. The suspension obtained was filtered through a 70 µm membrane, centrifuged at
300× g for 10 min at 4 ◦C, and resuspended in 1 mL of 5% FBS in HBS. Finally, cells were
labeled with the following directly conjugated Abs PE-CD11c (N418), AFluor647-IA/IE
(M5.114.15.2), FITC-CD86 (GL1) and with biotin-CD40 (1C10) and biotin-CD103 (2E7) the
two latter followed by a secondary PE-Cy7streptavidin, and with (7-aminoactinomycin D
(7AAD) (eBioscience, Thermo Fisher, Waltham, MA, USA).

Single-cell suspensions from the PP were obtained by incubating 15 min with 5 mL of
1.5 mg/mL collagenase type IV and 40 µg/mL DNase I in HBSS with 5% FBS for 15 min at
37 ◦C with stirring. The samples were then filtered using a 70 µm membrane and pressed
with a rubber plunger to disrupt the remaining tissue. Immediately, 5 mL of 2 mM EDTA
in HBS with 5% FBS were added for 10 min at 37 ◦C with stirring. Samples were incubated
for 5 min at room temperature and under stirring. Finally, the samples were filtered with 40
µm filters, centrifuged at 300× g for 10 min at 4 ◦C, and the samples were resuspended in
1 mL of 5% SFB in HBS and stored on ice until labeled with the antibodies mentioned above.
The cellular suspensions of the MLN were obtained by mechanical disruption, pressing
the tissue with a rubber plunger on 70 µm filters first, then being filtered through 40 µm
membranes. The suspensions were centrifuged at 300× g for 10 min at 4 ◦C, resuspended
in 5% FBS in HBS, and kept cold until labeled with the antibodies mentioned above.

The cell suspensions were acquired in a FACSAria II cytometer (BD Bioscience,
Franklin Lakes, NJ, USA). The data were analyzed using FlowJo® v7.6.2 software.
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2.8. Statistical Analysis

GraphPad Prism 5.0 software (GraphPad Software, San Diego, CA, USA) was used
to elaborate graphs; GraphPad InStat 3.06 software (GraphPad Software, San Diego, CA,
USA) was used for statistical analysis.

To compare means between 2 groups, Student’s t-test with one or two tails was used,
provided that the populations had normal distributions and the Mann–Whitney U test
with one or two tails was used for non-normal distributions. In experimental designs with
more than two experimental groups, an ordinary ANOVA test and a Kruskal–Wallis or
Tukey or Dunnett post-test were used to compare groups against a single control group.
Variations that showed a significance of less than 0.05 (* p < 0.05; ** p < 0.01, *** p < 0.001 and
**** p < 0.0001; ns: non-significant differences) were considered significant.

3. Results
3.1. LTA from LGG Promotes the Activation of BMDC

To assess the immunomodulatory effect of LTA in DC in vitro, we analyzed the ac-
tivation phenotype and secretion of pro-inflammatory cytokines by BMDC cultured in
the presence or not of different concentrations of LTA. The concentration of 50 µg/mL of
LTA increased the expression of surface MHC-II (IAb) and CD86 in BMDC to a similar
extent of that observed in BMDC stimulated with 0.2 µg/mL E. coli LPS (positive control)
(Figure 1A). Following that, we analyzed the cytokine secretion profile in LTA-treated
BMDC by ELISA. At the optimal dose of 50 µg/mL, LTA significantly increased the secre-
tion of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and the anti-inflammatory
cytokine IL-10, as expected (Figure 1B). However, the ratio between the anti-inflammatory
cytokine IL-10 and the pro-inflammatory cytokine TNF-α was higher in LTA (50 µg/mL)
than in LPS (47 vs. 1207, respectively), showing a certain degree of bias towards a regula-
tory or anti-inflammatory activity. Even though LTA isolated from other bacterial sources
induced IL-12 secretion by BMDC [9,16,17], LTA from LGG was unable to upregulate
neither IL-12p70 nor IL-12p40 secretion in our working conditions (data not shown). Thus,
these results demonstrate that LTA is capable of activating BMDC by inducing both MHC-II
and CD86 expression as well as cytokine release.

3.2. LTA Treatment Increases T Cell Priming Capacity of BMDC

The ability of LTA to modulate the T cell stimulatory function of BMDC was analyzed
in co-cultures of LTA-treated BMDC and CD4+ OT-II T cells. LTA-treated BMDC induced a
higher proliferation of OT II cells than that observed with control BMDC. LTA produced
this effect in a similar manner to that observed with lower concentrations of E. coli LPS
(Figure 2A).

Then, we compared by ELISA the amounts of IFN-γ (Th1), IL5, and IL-13 (Th2),
and IL-17A (Th17) secreted by responder T cells stimulated with LTA- or LPS-treated
BMDC. LTA and LPS significantly increased IL-17A secretion, but only LPS-treated BMDC
augmented IFNγ, IL-5, and IL13 (Figure 2B). These results indicate that LTA from LGG
increases the BMDC capacity to prime naïve CD4 T cells to a comparable extent to that
induced by LPS-treated BMDC. However, LTA-treated BMDC induce a particular profile
of cytokines secreted by the responder T cells, which is different from that induced by
LPS-treated BMDC.

3.3. Oral LTA Modifies Cytokine Transcription in the GALT

Orally administered LTA is likely sensed by immune cells of the GALT. Therefore, we
analyzed the cytokine transcripts in the SI, PP, and MLN, 16, 24, and 48 h after a single dose
of LTA. We determined IL-12p35, IFN-γ, IL-10, TNF-α, IL-6, TGF-β, and IL-1β transcripts
in the three organs, using GAPDH as the housekeeping gene. The cytokines that showed
statistically significant differences are presented.
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Figure 1. LTA activates BMDC by inducing co-stimulatory molecule expression and cytokines release.
(A) Gating strategy to identify DC for their expression of MHC class II (PECy7-IAb Ab) and CD11c
(FITC-CD11c Ab). (B) Representative histograms corresponding to CD86 and MHC class II surface
expression levels on BMDC after control (PBS), LTA, and LPS treatment. (C) Bar diagrams are
mean fluorescence intensity (MFI) ± SD. (D) Cytokines (IL-6, TNF-α, IL-1β, and IL-10) production
measured by ELISA in cell culture supernatants after 24 h of LTA, LPS, or control treatment. Bar
diagrams are means ± SD. (n = 2/group). ** p < 0.01, *** p < 0.001 vs. PBS (ordinary ANOVA and
Tukey’s multiple comparisons test).

In the SI, TNF-α, IL-1β, and IL-10 transcripts increased 16 h after treatment and
decreased after 48 h. Notably, the increase in IL-1β transcripts persisted during 24 h,
whereas TNF-α and IL-10 increment was lost more rapidly (Figure 3). No differences were
observed in the levels of the other cytokines by LTA treatment (data not shown). High
transcription levels of TNF-α were also observed in the PP after 24 h (Figure 4). In contrast
to in vitro observations using BMDC, high levels of IL-12p35 were detected both in the
PP and in the MLN after 24 h (Figure 5). Moreover, high IFN-γ transcription levels were
detected in the PP as soon as 16 h after treatment and in the MLN 48 h after treatment.
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Figure 2. LTA-treated BMDC show an increased priming capacity and induce T cells to secrete IL-17A
in vitro. (A) Gating strategy to identify FVD- (fixable viability dye) viable CD4+ cells (APC-CD4 Ab).
Representative histograms of CFSE dilution of viable OT-II CD4+ T cells co-cultured for four days
with control (solid), LTA (blue line), and LPS (red line)-treated BMDC. Proliferated cells are indicated
as CFSElow. Bar diagrams are means ± SD. (n = 3/group). * p < 0.05, ** p < 0.01, *** p< 0.001 (ordinary
ANOVA and Kruskal–Wallis post-test). (B) Cytokines (IFN-γ, IL-5, IL-13, and IL-17A) production
measured by ELISA in co-culture supernatants.
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Figure 3. Orally administered LTA modulates cytokine transcription in the GALT. Cytokine mRNA
transcription levels were evaluated in small intestine homogenates after mice were orally adminis-
tered with 100 µg of LTA. Measurements were performed at 16, 24, and 48 h after stimuli. The control
group was treated with PBS, and the measurement was performed at 24 h. (A) TNF-α transcription,
(B) IL-1β transcription and (C) IL-10 transcription. The results are shown relative to GAPDH and
expressed as mean ± SD (n = 5/group). * p < 0.05, ** p < 0.01 (ordinary ANOVA and Dunnett’s
post-test comparing each experimental group against control group).
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Figure 4. Orally administered LTA modulates cytokine transcription in the GALT. Cytokine mRNA
transcription levels were evaluated in Peyer’s patch homogenates after mice were orally administered
with 100 µg of LTA. Measurements were performed at 16, 24, and 48 h after stimuli. The control
group was treated with PBS, and the measurement was performed at 24 h. (A) TNF-α transcription,
(B) IL-12p35 transcription, and (C) IFN-γ transcription. The results are shown relative to GAPDH
and expressed as mean ± SD (n = 5/group). * p < 0.05, ** p < 0.01 (ordinary ANOVA and Dunnett’s
post-test comparing each experimental group against the control group).



Nutrients 2022, 14, 723 10 of 15

Figure 5. Orally administered LTA modulates cytokine transcription in the GALT. Cytokine mRNA
transcription levels were evaluated in mesenteric lymph nodes homogenates after mice were orally
administered with 100 µg of LTA. Measurements were performed at 16, 24, and 48 h after stimuli.
The control group was treated with PBS, and the measurement was performed at 24 h. (A) IL-
12p35 transcription, (B) IFN-γ transcription, and (C) IL-10 transcription. The results are shown
relative to GAPDH and expressed as mean ± SD (n = 5/group). * p < 0.05 (ordinary ANOVA and
Dunnett’s post-test comparing each experimental group against control group).

These results show that oral administration of purified LTA activates the immune
response in the GALT, observed as an inflammatory state.

3.4. LTA Promotes the Reduction in Mature DC in the Lamina Propria, but It Increases the
Population of CD103+ DC in the PP

In order to evaluate the effects of LTA on cell populations and phenotype in the
GALT, we performed a multiple administration approach. Twenty-four hours after the
last oral dose, LTA induced a significant reduction in mature CD11c+ MHC-II (IA/IE)high

DC in the LP compared with control animals (Figure 6A). Notably, LTA-treated animals
showed a trend (p = 0.054) to slightly increase CD86 expression on the remaining mature
DC population in the LP, suggesting that while being activated, they still have not mi-



Nutrients 2022, 14, 723 11 of 15

grated through lymph vessels (Figure 6B). Surprisingly, although total CD11c+ MHC-II
(IA/IE)high cells in the PP were also diminished after LTA treatment (Figure 6C), CD103+

DC increased in this tissue, suggesting that LTA may promote a homeostatic local response
in the GALT (Figure 6D). We could not observe differences in CD11c+ MHC-II (IA/IE)high

DC populations in the MLN (Figure S1).

Figure 6. LTA promotes mature DC reduction in the lamina propria whereas it increases CD103+

DC presence in the Peyer´s patches. Representative dot-plots of pre-gated viable single CD11c+

(PE-CD11c Ab) and MHC class II (Alexa647-IA/IE Ab) with high expression (IA/IEhigh) mature
DC in LTA-treated and control (PBS) mice (A) lamina propria (LP) and (C) Peyers’s patches (PP).
Bar diagram shows mean percentages of mature DC ± SD. (B) Representative overlaid histograms
of CD86 (FITC-CD86 Ab) surface expression on mature DC in the lamina propria of control and
LTA-treated mice. Results are expressed as mean fluorescence intensity ± SD. (D) Representative
overlaid histograms of CD103 (Biotin-Stp-PE-Cy7-CD103 Ab) surface expression on mature DC in
the Peyer’s patches of control and LTA-treated mice. Bar diagram shows mean percentage of CD103+

DC ± SD (n = 7/group). ** p < 0.01 *** p < 0.001 Student’s t-test.

4. Discussion

Several studies have focused on the consumption of fermented foods and their benefits
to human health [18–20]. They include the notion that probiotic microorganisms are pri-
marily responsible for those benefits. However, understanding the mechanisms involved in
the complex network of interactions that are established between probiotics, the microbiota,
and the host, has recently gained noticeable interest. In this regard, LTA has been proposed
as a critical molecule in probiotic-host’s immune system interaction.

The immune system acts through innate and adaptive mechanisms due to molecules
recognition, cytokine secretion, surface molecules transcription, and cell–cell interactions,
among other mechanisms. We aimed to study the role of oral administration of isolated
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LTA from L. rhamnosus GG on immunity, studying some of those mechanisms, focusing on
DC and T cells, and using in vitro and in vivo approaches.

Employing BMDC cultures, we show that LTA induced the maturation of DC by
increasing the expression of MHC-II and the co-stimulatory molecule CD86. In comparison
with LPS, LTA was notably less stimulating since it produced the maturation of the BMDC
at a concentration of 50 µg/mL, whereas LPS induced a similar effect with only 0.2 µg/mL.
As T cell activation depends on the expression of co-stimulatory molecules and the type
and quantity of cytokines released, we evaluated secreted molecules in the culture. LTA
from LGG stimulated the secretion of the pro-inflammatory cytokines IL-6, TNF-α, and
IL-1β in a dose-dependent manner, although it did not induce detectable amounts of IL-
12p70. On the contrary, the anti-inflammatory cytokine IL-10 was secreted in low quantities
only with the highest concentration of LTA. Compared with E. coli LPS, LTA from LGG
showed a milder BMDC-activation capacity. These results are in line with previous reports,
which indicate that LTA isolated from different sources are in all cases less potent than LPS
from E. coli as inflammatory inducers [7,21]. Interestingly, LTA-treated BMDC secreted
a ratio of IL-10/TNF-α much higher than LPS, contributing to the idea of a less potent
inflammatory capacity and a possible regulatory role of LTA from LGG. According to this
observation, it has been recently published that LTA from L. plantarum is crucial modulating
TLR-3-triggered inflammatory response, promoting the decrease in inflammatory cytokines
after poly(I:C) challenge in vivo [22].

Regarding T cell priming, our in vitro experiments showed that LTA-treated BMDC
stimulated the proliferation of CD4+ T cells in the presence of the antigen. The effect was
similar to that produced by LPS. In terms of cytokines secretion, the absence of IFN-γ
in the co-cultures’ supernatant is consistent with the inability of LTA-stimulated BMDC
to secrete IL-12p70, confirming that LTA from LGG does not favor a Th1 profile in vitro.
Moreover, the diminished and non-detectable levels of IL-13 and IL-5, respectively, suggest
that neither a Th2 profile is induced. On the contrary, the increase in IL-17A levels in
the co-culture suggests that a Th17 profile may be induced. This hypothesis correlates
with the secretion of IL-1β and IL-6 by LTA-treated BMDC since they are fundamental
cytokines for the differentiation of T cells into Th17 [23]. It is important to highlight that
the BMDC cultures are composed by heterogeneous DC populations, and they also contain
macrophages precursors that can also respond to bacterial stimuli [24].

To study the effects of LGG LTA on DC and the GALT, we used an oral administration
mice model. In accordance with in vitro results, after a single oral LTA administration, we
detected a pro-inflammatory response characterized by TNF-α and IL-1β transcription
together with the transcription of the anti-inflammatory cytokine IL-10 in the small intestine.
These results at a short time after stimuli administration are consistent with a direct
recognition of the LTA in the gut lumen, possibly due to TLR2 expression in epithelial
cells and/or intraepithelial T lymphocytes [25]. Moreover, the direct recognition of LTA
can also take place in Peyer’s patches. The transcription of pro-inflammatory TNF-α
was also observed in this organ, demonstrating that oral LTA directly activates innate
immunity. It is worth noticing that the inflammatory potency of LTA is less than those
observed for LPS, suggesting that the observed responses do not imply a risk of intense
intestinal inflammation.

Concerning adaptive immunity activation, and despite our in vitro observations, oral
LTA was able to increase both IL-12p35 and IFN-γ transcription in Peyer’s patches and
mesenteric lymph nodes. These results suggest that a Th1 profile may be induced in vivo in
the GALT by oral LTA. The differences between in vitro and in vivo results are probably due
to interactions with other cell types present in the microenvironment that can also modulate
the observed response. Unfortunately, there are no reports of the cytokine expression profile
in the GALT of healthy animals after oral administration of TLR2 agonists. We speculate
that γδ T cells may play a crucial role in LTA local effects since these cells populate the
small intestine and have been implicated in the production of IFN-γ after TLR2 agonists
recognition [26]. Moreover, it has been established that DC pre-incubated with activated
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γδ T cells enhance the production of IFN-γ by alloreactive T cells in a mixed lymphocyte
reaction [27] and that LPS-treated γδ T cells are able to induce IL-12p70 secretion by DC
in vitro [28]. The presence of γδ T cells could explain, at least partially, the early peak of
IFN-γ in Peyer’s parches and the subsequent increase in IL-12 observed in this tissue after
LTA treatment.

To analyze the effects on DC present in the gut, we focused on CD11c+ MHC-II
(IA/IE)high cells as a group of mature DC since these cells are composed by complex and
heterogenic cell populations [29]. After multiple administrations, LTA-treated mice showed
a decrease in the population of mature DC in lamina propria, probably due to the migration
of these cells, as previously shown after oral LPS administration [30]. In agreement with
this hypothesis, remaining mature DC showed a strong tendency to express higher levels
of CD86, indicating a greater degree of activation. Unexpectedly, the percentage of mature
DC in secondary lymphoid organs did not increase; it decreased in the Peyer’s patches and
remained unaffected in the mesenteric lymph nodes. Considering our previous findings
regarding the effects of oral LTA on the skin [13], it can be speculated that these activated
cells are induced to migrate through lymph and blood to distant inflamed tissues. Besides
DC activation, it should be noted that CD103+ DC effectively increased in the Peyer’s
patches. As this DC subpopulation is a critical modulator in the induction of regulatory
T cells in the GALT in the steady-state [31,32], our results suggest that LTA may play
a role in gut homeostasis. However, CD103 is also a marker for conventional/classical
DC type 1 [33], and these cells are known for their ability to prime T cells and activate
anti-tumor immunity [34]. The expansion of these cells observed in Peyer’s patches may
also be related to the anti-tumor effect observed in mouse skin [12].

As we have previously shown, orally administered LTA from LGG affects adaptive
immune responses in distant organs, such as the skin. This effect is related to both a
prophylactic and therapeutic anti-tumoral activity in skin cancer models and UV-induced
immunosuppression [12,13]. This article demonstrates that LGG LTA activates DC promot-
ing a soft inflammatory response with the consequent T cell activation. Even though the
complex interactions that take place in vivo are difficult to reproduce using in vitro models,
we show that a Th1 biased immune response is triggered after oral LTA administration.
This effect justifies the anti-tumoral activity previously observed. It would be of great
interest to further evaluate the mechanisms implicated in the crosstalk between the GALT
and the skin immune system that could explain how orally administered probiotic-derived
molecules impact distant organs.
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