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Magnetic skyrmions are promising spin textures for building next-generation magnetic memories
and spintronic devices. Nevertheless, one of the major challenges in realizing skyrmion-based de-
vices is the stabilization of ordered arrays of these spin textures in different geometries. Here we
numerically study the skyrmion-skyrmion interaction potential that arises due to the dynamics of
itinerant electrons coupled to the magnetic texture in a ferromagnetic background with racetrack
geometry. We consider different topological textures (ferromagnetic (FM) and antiferromagnetic
(AFM)), namely: skyrmions, antiskyrmions and biskyrmions. We show that at low electron filling,
for sufficiently short separation, the skyrmions strongly couple each other yielding a bound-state
bound by electronic dynamics. However, when the filling is increased, the interaction potential
energy presents local minima at specific values of the skyrmion-skyrmion distance. Each of these
local minima corresponds to energetically stable positions of skyrmions which are “protected” by
well-defined energy barriers. By inspecting the local charge density, we find that in the case of AFM
skyrmions, the local antiferromagnetic nature prevents electronic penetration into the core, allowing
the AFM skyrmions to be seen as infinite potential barriers for electrons.

I. INTRODUCTION

From the theoretical proposal in the last century
and the subsequent experimental evidence in chiral
magnets1–7, magnetic skyrmions have garnered enormous
interest due to their potential applications as promising
information carriers in spintronics, including the design
of racetrack memories8–12. The advantages presented by
skyrmions compared to other standard and extensively
studied magnetic textures (magnetic bubbles13) are the
small currents needed for their propagation, their smaller
size (∼ 1 − 100 nm diameter) and their topological na-
ture which provides a significant energy barrier to avoid
skyrmion annihilation10.

Currently, there is a large family of topological
skyrmion-like textures that includes the standard fer-
romagnetic skyrmions (FM) (Fig. 1a), antiferromag-
netic skyrmions (AFM)14–23 (Fig. 1b), antiskyrmions24

(Fig. 1c) and biskyrmions25 (Fig. 1d), among others (for
a recent review, see for example26–28).

In particular, AFM skyrmions have become the sub-
ject of intense focus in the context of antiferromagnetic
spintronics29. The interest in AFM skyrmions arises from
the effect of coupling conduction electrons to the local
magnetic background: the electrons accumulate a Berry
phase as they travel through skyrmions spin configura-
tion, which acts as a local effective magnetic field leading
to topological Hall effect (THE)30–32, spin Hall effect33,34

and the skyrmion Hall effect15,35–37. Moreover, it has
been shown that the spin-orbit coupling can be used to
suppress the skyrmion Hall effect38. Compared with FM
skyrmions, AFM ones can move along the direction of the
driving force without showing the skyrmion Hall effect at
velocities of several hundred meters per second39. There-
fore, they could be ideal information carriers for future

spintronic devices, such as racetrack-type memories and
logic computing devices.

Nevertheless, potential applications concerning
skyrmions or the afore-mentioned analogues demand
the understanding of the inter-skyrmion interactions
and the effect of the space confinement in nano-sized
geometries. In regard to this problem, there are a variety
of methods focusing on the study of the interaction
mediated by magnetic fluctuations. For example, the
Thiele’s approach predicts a short range repulsive force
bewteen skyrmions40. On the other hand, effective
Ginzburg-Landau theory predicts a short range oscil-
lating force41. More recent studies have shown that
magnetic frustration may induce the attractive interac-
tion at short distances42 and inter-skyrmion interaction
is always repulsive and decays exponentially at a large
distance43,44, while when skyrmions are nucleated in
experiments they incidentally appear close to each
other. The analysis of the contribution of the itinerant
electrons on the skyrmion-skyrmion pair interaction has
been previously studied in magnetic monolayers via
the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange
interaction45 and in multilayer systems46,47, but the
pairwise skyrmion-skyrmion interaction is yet to explore,
raising the question of whether this electronic contri-
bution can have drastic consequences in relation to the
geometric/spacial confinement in racetrack geometries.

This paper seeks to address the study of the itiner-
ant electrons-induced skyrmion-skyrmion interaction in a
ferromagnetic background as a function of the skyrmion-
skyrmion distance ∆x [see Fig. 1], and the filling n (i.e.
number of occupied states). Through numerical calcu-
lations, we studied the influence of the skyrmion na-
ture (both skyrmions FM or both AFM) and its top-
logical charge Q: Q = −1 (skyrmion), Q = +1 (anti-
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FIG. 1. (Color online) Schematics of various skyrmions; (a)
ferromagnetic skyrmion, (b) antiferromagnetic skyrmion, (c)
anti-skyrmion, and (d) biskyrmion. Bottom: skyrmions em-
bedded in a collinear ferromagnetic background, separated at
a distance ∆x. between skyrmions centers

skyrmion) and Q = −2 (biskyrmion). The dependence
of the skyrmion energy on the distance ∆x allows us to
determine the stable positions of the skyrmions along
the nanostripe. The special cases of the ferromagnetic
(FM-FM) and antiferromagnetic (AFM-AFM) skyrmion-
skyrmion interaction are discussed revealing a regular
distribution of energy minima at specific values of separa-
tion indicating positional stability. We found that at low
fillings both cases show a very close behavior developing
a very similar pattern of local minima; while at higher
fillings, the AFM case presents a much more regular dis-
tribution of minima that indicates greater positional sta-
bility. In addition, we studied the local electronic charge
distribution which allows us to highlight the fundamen-
tal difference between the FM and AFM cases: while in
the first case, the electronic charge penetrates the core of
the skyrmion as the filling increases, in the second case
the antiferromagnetic nature of the magnetic texture pre-
vents it, and thus the AFM skyrmions may be viewed as
hard disks. We found that in the AFM case, due to this
characteristic the skyrmion-skyrmion problem presents
a close relation with the double-well potential problem,
showing quite similar energy vs ∆x curves. Finally, we
analyzed the effect of considering skyrmions of charge
Q 6= −1.

II. MODEL AND ANSÄTZE

To set the stage, we consider a Kondo lattice model
on square lattice of Lx × Ly sites with mixed boundary
conditions, that is, periodic boundary condition along
x and open boundary condition along the y-axis. The
hopping term and the interaction of itinerant electrons

with a magnetic texture are described by the following
Hamiltonian,

H = −t
∑
〈r,r′〉

ĉ†r,σ ĉr′,σ − JH
∑
r

Sr · sr, (1)

where the operator ĉ†r,σ (ĉr,σ) creates (annihilates) an
electron with spin σ = ±1/2 at site r. The first term
t is the transfer integral between nearest-neighbor sites
of itinerant electrons. The second term describes the
Hund coupling between the spin of itinerant electrons
sr = (1/2)

∑
σσ′ ĉ†r,σ~σσσ′ ĉr,σ′ and localized classical spins

with coupling constant JH , where ~σ is the vector of Pauli
matrices. In the computations, we take the lattice spac-
ing a = 1 and the hopping constant t = 1 as an energy
unit.

Hereafter, let’s focus in the JH/t >> 1 regime, where
the spin of the hopping electron is forced to align parallel
to the local moment and the low-energy physics can be
described by an effective Hamiltonian of spinless fermions
as

Heff = −
∑
〈r,r′〉

teffrr′ d̂
†
rd̂r′ , (2)

where d̂†r (d̂r) is the creation (annihilation) fermion op-

erator and teffrr′ is the effective transfer integral (see ap-
pendix for details).

For the purpose of studying the effective interaction
between consecutive skyrmions on the racetrack geome-
try, we employ artificial skyrmion textures constructed
using the finite size skyrmion ansatz (centered at the ori-
gin r = (x, y) ≡ (0, 0))48:

Ferromagnetic: SFM =

sin(f) cos(φ)
sin(f) sin(φ)

cos(f)

 (3)

Antiferromagnetic: SAFM = (−1)x+ySFM, (4)

where f ≡ f(r) = π(1 − r/R)Θ(R − r), R is the
skyrmion radius, Θ(R − r) is the Heaviside step func-
tion, φ ≡ φ(r) = Q× (arctan(y/x) +χ) with χ being the
helicity and Q the topological charge48,49. With these
ansätze it is possible to build different types of skyrmion
configurations with a spacing ∆x between centers of
two adjacent skyrmions. In the case of AFM skyrmions
(Eq. 4), we have used the most simple picture where the
spin texture can be visualized as a superposition of two
FM skyrmions coupled antiferromagnetically50 (Fig. 1b).
However, it should be mentioned that it is also possible
to combine skyrmions on multiple sublattices14,18–20,23.

After diagonalizing the electronic Hamiltonian in

Eq.̃(2) by an unitary transformation U , we compute the
ground state |GS〉 =

∏n
ν=1 |ν〉, where εν is the energy of

the ν-th electronic eigenstate, i.e. Heff |ν〉 = εν |ν〉.
The ground state energy E(∆x) and the on-site elec-

tron density ρr at zero temperature for fixed separa-
tion ∆x (see top of Fig. 2) at a fixed filling n, are
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given by E(∆x) ≡ 〈GS|Heff |GS〉 =
∑n
ν=1 εν , ρri =

〈GS|d̂†ri d̂ri |GS〉 =
∑n
ν=1 U∗ν,iUν,i + U∗ν,i+NUν,i+N .

III. CALCULATION OF THE INTERACTION
POTENTIAL

In this section, we present results for systems consist-
ing of a pair of skyrmions with radius R in a ferromag-
netic background with size Lx × Ly. Thorough the rest
of this work, the term “skyrmion” is used to identify the
Q = −1 topological texture, which can be either fer-
rromagnetic (FM) or antiferromagnetic (AFM). We have
focused on the case of a skyrmion-pair with the same
topological charge {Q,Q} = {−1,−1} (both FM-FM and
AFM-AFM cases), R = 8 and {Lx, Ly} = {300, 25}.
Furthermore, we have also analyzed the situation of
different topological charges: {Q,Q} = {−1,+1} and
{Q,Q} = {−2,−2}; and larger systems sizes to rule out
significant finite size effects. These results allow us to
predict the interaction potential between skyrmions as-
suming that they are displaced along the nanotrack as
shown in Fig. 1.

A. FM-FM and AFM-AFM skyrmion pair
interactions with Q = −1

Firstly, we have considered the situation of a skyrmion-
pair (FM-FM and AFM-AFM) with topological charge
Q = −1 separated by a distance ∆x. We have deter-
mined the interaction potential E(∆x) as a function of
the horizontal distance between the skyrmions at fixed
filling n. Figures 2 (a-h) depicts the behavior of E(∆x)
as a function of ∆x and for severals values of n. One
can notice that at low fillings, there is a minimum at
∆x = 2×R indicating that the more favorable arrange-
ment corresponds to locating both SKs next to each other
(black arrow in Fig. 2(a)). Therefore, for sufficiently
short separation skyrmions strongly couple each other
yielding a bound-state bound by electronic dynamics.
More remarkable is what happens when n is increased: a
sequence of well-defined local minima appear at specific
values of ∆x (black arrows in Fig. 2(b)). Each of these lo-
cal minima corresponds to energetically stable distances
between skyrmions which are “protected” by well defined
energy barriers (dashed lines (i) and (ii)). This general
scheme of local minima is observed in both cases (FM-
FM and AFM-AFM pairs). Nevertheless, while in the
FM case, for some fillings the interaction is repulsive at
short distances (Fig. 2(d-e)), in the AFM case the global
minimum always occurs in the bound-state configuration
(with skyrmions next to each other). This would indicate
that the bound state of AFM skyrmions would be much
more stable against changes in electronic filling than in
the FM case.

To confirm this picture, we construct a density plot of
the interaction potential with control parameters ∆x and

FIG. 2. (Color online) Top: An example of a skyrmion geom-
etry performed to determine the skyrmion-skyrmion interac-
tion potential. The length ∆x was progressively shortened to
map out the energy increase of the system due to interactions
between the skyrmions. (a)-(g) Skyrmion-skyrmion interac-
tion potential as a function of the distance ∆x for different
fillings: FM-FM (red) and AFM-AFM (blue).

FIG. 3. (Color online) Phase diagram of the interaction po-
tential (E(∆x)− Emin

n )/Emax
n as a function of the skyrmion

separation ∆x and and the filling n for ferromagnetic (left)
and antiferromagnetic (right) skyrmions. On the right, we
highlight two minima at specific values of ∆x and n. Dashed
red lines are a guide to the eye. Arrows indicate a possible
stable (in position) skyrmion configuration.

n, for both cases (FM-FM and AFM-AFM, skyrmions),
shown in Fig. 3. We plot the interaction potential
(E(∆x) − Eminn )/Emaxn (Eminn and Emaxn are the min-
imum and maximum values of E(∆x) that takes a fixed
n) where blue color indicates the lowest value E(∆x) −
Eminn = 0. As it can be seen in Fig. 3 (panels left and
right), both the FM and AFM skyrmions develop well
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defined minima at low fillings. However, when filling n is
increased, in the case of FM skyrmions the local minima
become irregular and diffuse (left), while in the AFM
case the minima remain well defined forming a ribbed
pattern as a function of n for all cases (right). This re-
sult strongly suggests that for AFM skyrmions the inter-
action with electrons generates an array of energetically
stable separations of skyrmions along the track which
are “protected” by well defined energy barriers (“pin-
ning sites”). As a consequence, the positional stability of
AFM skyrmions is expected to be greater than for their
FM counterpart.

FIG. 4. (Color online) Electronic occupation in real space
at different fillings and for ferromagnetic (FM) and antiferro-
magnetic (AFM) skyrmions configurations. For small fillings,
both types of skyrmions induce a similar electronic distribu-
tion (for example for n = 1, 5, 20). However, as filling in-
creases, there appears a non-zero probability that electrons
will penetrate into the FM skyrmions (n = 50, 100).The situ-
ation is completely different in the case of AFM skyrmions
where the local antiferromagnetic character of the texture
generates energy barriers that prevent electronic penetration.

In order to analyze the spatial localization of the elec-
tronic states, we calculate the electronic occupation ρr
with the model described in section II, presenting the re-
sults in Fig. 4. At the top of the figure we show the spin
texture consisting of a skyrmion pair (FM-FM or AFM-
AFM) separated by a distance ∆x. Below, we present
the local electron density distributions at different n fill-
ings for both cases. Quite remarkably, our initial obser-
vation was that for low fillings (as an example we show
n = 1, 5) both cases present very similar distributions,
showing zero electronic penetration within the skyrmion
region.

However, for larger fillings (n = 20, 50 in Fig. 4) in
the FM-FM case a non-zero local electron density can

be seen inside the skyrmion region (r < R). This is in
sharp contrast to the AFM-AFM case, where the charge
density inside the skyrmion vanishes.

From a theoretical point of view, let’s remember that
the Berry phase, i.e. the quantum-mechanical phase
picked up by electrons when their spin follows the orienta-
tion of the local magnetization Sr, can be rewritten as an
effective Aharonov-Bohm phase ar,r′ associated with an
“emergent” local magnetic field Bzr = 1

2Sr ·(∂xSr×∂ySr).
In the case of FM skyrmions we expect this effective
field to have a smooth dependence with the position,
while this would not necessarily be the case for AFM
skyrmions. This can be verified using the ansätze of our
study to calculate the effective fields for both cases, ob-
taining Bz,AFMr = (−1)x+yBz,FMr . For the AFM case,
there is a rapid oscillation of the effective field, which
translates into a strong barrier potential for the electrons
that prevents transmission through them. This picture
is maintained for different separations between skyrmions
as can be seen in Fig. 5 (panel (a)) showing the electronic
distribution for the case of AFM skyrmions for different
values of the distance ∆x.

FIG. 5. (Color online) (a) Electronic occupation in real space
for a filling n = 10 and for different skyrmion (AF) distances
∆x. (b) Comparison of the electronic occupation between
FM-FM, AFM-AFM skyrmion pairs and pairs of ferromag-
netic domains FMD-FMD (with net magnetization opposite
to the external field) of equal size. It can be seen that for large
fillings, electronic states appear located inside the FMD’s.

It should be noted that this behavior is intrinsic to
AFM skyrmions. This can be appreciated much better if
we consider the electronic occupation for FM-FM, AFM-
AFM skyrmions and circular homogeneous ferromagnetic
domains (FMD). In Fig. 5(b) we make the comparison of
the three magnetic textures for large fillings: FM-FM
skyrmions have a non-zero density inside; zero penetra-
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tion into its core is observed in AFM-AFM skyrmions;
while in the case of FMD-FMD localized circular states
are observed inside the ferromagnetic domains.

1. Analogy with the double-well potential problem

The exactly vanishing electronic density inside the
AFM skyrmions leads us to suppose that they can be
treated as impenetrable (circular) barriers for the elec-
trons. Therefore, we may draw a parallel between the
situation of itinerant electrons coupled to two skyrmions
in a racetrack geometry (with skyrmion diameter compa-
rable to the width of the racetrack) with the quantum-
mechanical textbook problem of a non-relativistic parti-
cle confined in an infinite double well, where the AFM
skyrmions play the role of the barriers. Let us recall that
the electronic energies of non-relativistic free electrons of
mass m in a double well (DW) configuration (see Fig. 6)

are given by E
(k,l)
DW (∆x) = {C k

2

∆x2 ,
C l2

(L−∆x)2 }, k, l = 1, ...;

C = 2~2π2/2m. Then the energy of the system at fixed
filling n is

EDW (∆x) =
∑

k,l|k+l=n

E
(k,l)
DW (∆x). (5)

FIG. 6. (Color online) (a) Double potential well problem. In
panels (b)-(e), system energy as a function of the distance ∆x.
We can see that the interaction potential is almost the same
as in the case of a couple of AFM skyrmions with topological
charge {Q,Q} = {+1,+1} in Fig. 2.

In Fig. 6(b-e) we present several curves of the inter-
action potential EDW (∆x)−Emin. One can quickly ap-
preciate the great similarity between the energy curves in
the figures 6(b-e) and the interaction potential E(∆x) in
the case of AFM skyrmions (see Fig. 2). The presence of
a global minimum at ∆x = 2×R and the array of ener-
getically stable positions (separations ∆x) reinforces the
idea that AFM skyrmions can be seen as impenetrable
barriers for the itinerant electrons.

B. FM-FM and AFM-AFM pairs:
skyrmions-antiskyrmion and biskyrmion-biskyrmion

interaction potential

Up to now, we have focused on FM-FM and AFM-
AFM skyrmions with topological charge Q = −1. As a fi-
nal analysis, we study the effect of introducing skyrmions
with different topological charge, i.e. antiskyrmions (Q =
+1) and biskyrmions (Q = −2). In order to show this,
we have explicitly computed the interaction potential
E(∆x) as a function of the horizontal distance between
the FM-FM and AFM-AFM skyrmions for two specific
cases: {Q,Q} = {−1,+1} (skyrmion-antiskyrmion) and
{Q,Q} = {−2,−2} (biskyrmion-biskyrmion). First,
we analyze the interaction potential E(∆x) for FM
skyrmions is displayed in Fig. 7(a). We see that the
cases {Q,Q} = {−1,−1} and {Q,Q} = {−2,−2} exhibit
almost the same behavior. The case {Q,Q} = {−1,+1}
presents slight differences that arise from the opposite
sign of the topological charges, although it conserves the
structure of local minima observed in the other cases.
In the case of AFM skyrmions (Fig. 8(a)) we obtain a
perfect agreement for the three cases studied, suggesting
that in the AFM case the topological charge has a much
smaller effect than in the FM case.

This great similarity between the three cases of topo-
logical charges can be understood from inspection of the
local field felt by electrons: Bzr . In Figs. 7(c) and 8(c)
we present the calculated effective field associated with
the configurations 7(b) and 8(b) respectively. We can see
that, except for the central site, all the distributions of
Bzr present the same structure (and opposite sign in the
case Q = +1). This indicates that the results obtained
in the case of {Q,Q} = {−1,−1} are actually valid for
diferent topological charges.

IV. CONCLUSIONS

In recent years, magnetic skyrmions have emerged as
promising candidates for devices for memory and logic
applications. From the experimental point of view, the
skyrmions often come in close proximity with each other,
opening the natural question about how this can affect
their stability, motion and spacial confinement. In this
regard, we have studied the itinerant electrons-induced
skyrmion-skyrmion interaction in a ferromagnetic race-
track film. We have considered several situations: FM-
FM and AFM-AFM skyrmions with three possible sets
of topological charges: {Q,Q} = {−1,−1} (skyrmion-
skyrmion), {Q,Q} = {−1,+1} (skyrmion-antiskyrmion)
and {Q,Q} = {−2,−2} (biskyrmion-biskyrmion). We
found that, at low fillings, both the FM and AFM
skyrmions develop a well defined array of energetically
stable separations of skyrmions along the track which are
“protected” by well defined energy barriers. However,
when filling n is increased, in the case of FM skyrmions
the local minima become irregular and diffuse, while in
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FIG. 7. (Color online) (a) Interaction potential E(∆x) as a
function of the horizontal distance between the FM skyrmions
with topological charge {Q,Q} = {−1,−1} (red), {Q,Q} =
{−1,+1} (cyan) and {Q,Q} = {−2,−2} (blue); (b) magnetic
texture and (c) the calculated topological charge density.

the AFM case the minima remain well defined forming
a ribbed pattern as a function of n for all cases. These
minima in energy act as effective “pinning sites” along
the racetrack, i.e., preferred positions for the skyrmions
along the track, as long as the size of the skyrmions does
not exceed the mean separation between minima. For
example, typical skyrmions have a diameter of about
6a − 10a which corresponds to about 5nm-100nm51,52

. In our study, we find that the average distance be-
tween skyrmions energy minima goes from ∼ 30a − 40a
(Fig. (2(b))) to ∼ 20a (Fig. (2(f))), making it possible
to observe the pinning effect at low fillings. In addition,
we have investigated the electronic distribution occupa-
tion. We found that at low fillings both cases (FM- and
AFM-skyrmions), the electronic local density states re-
side outside the skyrmion region, showing zero electronic
penetration within the skyrmion region. However, for
larger fillings, in the FM case, a non-zero local electron
density emerges inside skyrmion core. This is in sharp
contrast to the AFM case even for large fillings showing
that the AFM character of the skyrmions has a very large
energy cost on the itinerant electrons inside the skyrmion
region.

We have confirmed that these results are valid even
for other configurations of the topological charge Q 6=

FIG. 8. (Color online) (a) Potential interaction E(∆x)
as a function of the horizontal distance between the AFM
skyrmions with topological charge {Q,Q} = {−1,−1} (red),
{Q,Q} = {−1,+1} (cyan) and {Q,Q} = {−2,−2} (blue);
(b) magnetic texture and (c) the calculated topological charge
density.

−1. In order to show this, we have explicitly com-
puted the interaction potential E(∆x) as a function
of the horizontal distance between the FM and AFM
skyrmions for two specific cases: {Q,Q} = {−1,+1}
and {Q,Q} = {−1,−1}. As a general result, we found
that for FM skyrmions the cases {Q,Q} = {−1,−1} and
{Q,Q} = {−2,−2} exhibit almost the same behavior,
while the case {Q,Q} = {−1,+1} presents slight dif-
ferences that arise from the opposite sign of the topo-
logical charge, although it conserves the structure of lo-
cal minima observed in the other cases. In the case of
AFM skyrmions we observed a perfect agreement for the
three cases studied, suggesting that in the AFM case the
topological charge has a much smaller effect than in the
FM case. Therefore, our results support the idea that
AFM skyrmions are good candidates for electronic de-
vices. Future perspectives of this work include study-
ing different geometries, and different skyrmions combi-
nations such as skyrmion-antiskyrmion, FM skyrmion-
AFM skyrmion, as well as different topological textures
such as merons, which may also be relevant in potential
technological applications.
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Appendix A: Effective Hamiltonian Derivation

We consider a Kondo lattice model on the square lat-
tice where the itinerant electrons are coupled with the
classical magnetic moments by a Hund’s coupling as

H = −t
∑
〈r,r′〉,σ

(ĉ†rσ ĉr′,σ + h.c.)− JH
∑
r

Sr · sr, (A1)

where ĉrσ (ĉ†rσ) is the creation (annihilation) opera-
tor at the site r with spin (σ = ±1/2), t is the hop-
ping amplitud between nearest-neighbor sites, JH is the
Hund’s coupling strength between the electron spin sr =
1
2 ĉ
†
r,µ~σ

µν ĉr,ν and the local magnetic moment Sr. In the
strong Hund coupling limit JH � t, the spin of the itin-
erant electron is fully aligned with magnetic moment Sr.
Therefore, it is trivial to observe that the electronic spec-
trum splits into a low- and high-energy band set32,53.

In order to obtain an effective Hamiltonian describing
the low energy sector we choose the quantization axis in
the site r pointing along the direction of the local mag-
netization, so we introduce the unitary transformation

U between the fermionic operators, ĉ†r = {ĉ†r↑, ĉ
†
r↓} and

f̂†r = {f̂†r↑, f̂
†
r↓}), such that ĉr = Ur·f̂r and U†r ·(Sr·~σ)·Ur =

σz. The general expression of the matrix transformation
is given by

U†r = mr · ~σ =

(
cos θr2 sin θr

2 e
−iφr

sin θr
2 e

iφr − cos θr2

)
,

where vector mr = {sin θr
2 cosφr, sin

θr
2 sinφr, cos θr2 }

is defined from the local magnetic moment Sr =
(cosφr sin θr, sinφr sin θr, cos θr). With all this, the
transformed Hamiltonian reads

H = −t
∑
rr′

f̂†rU†rUr′ f̂r′ − JH
∑
r

f̂†rσ
(z)f̂r, (A2)

where

U†rUr′ =

(
C12 C12

C∗12 C∗11

)
,

and C11 = cos θr2 cos θr′2 + sin θr
2 sin θr′

2 e
−i(φr−φr′ ) and

C12 = cos θr2 sin θr′
2 e
−iφr′ − cos θr′2 sin θr

2 e
−iφr .

In the strong coupling regime JH � t, the low-energy
sector can be described by effective spinless fermions:

{d̂r, d̂†r}. As a result, the effective Hamiltonian of the
system is

Heff = −t
∑
〈rr′〉

cos

(
θrr′

2

)
eiarr′ d̂†rd̂r′ ,

where d̂†r (d̂r) corresponds to the up component of f̂†r (f̂r),
where cos θrr′ = Sr · Sr′ and arr′ the phase accumulated
by the hopping electron,

arr′ = arctan

 − sin (φr − φr′)

cos (φr − φr′) + cot
(
θr
2

)
cot
(
θr′
2

)
.
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