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Poly(vinylidene fluoride)
electrospun nonwovens
morphology: Prediction and
optimization of the size and
number of beads on fibers
through response surface
methodology and machine
learning regressions

Federico Javier Trupp1, Roberto Cibils2 and Silvia Goyanes1

Abstract
Electrospinning is one of the leading techniques for fiber development. Still, one of the
biggest challenges of the technique is to control the nanofiber morphology without many
trial-and-error tests. In this study, it is demonstrated that via design of experiments
(DoE), response surface methodology (RSM) and machine learning regressions (MLR) it is
possible to predict the beads-on-string size, size distribution and bead density in elec-
trospun poly(vinylidene fluoride) (PVDF) mats with a small number of tests. PVDF
concentration, dimethylacetamide/acetone ratio, tip-to-collector voltage and distance
were the parameters considered for the design. The results show good agreement
between the experimental and modeled data. It was found that concentration and solvent
ratio play the main roles in minimizing bead size and number, distance tends to reduce
them, and voltage does not play a significant role. As an evaluation of the potential of the
method, bead-free fibers were obtained through the predicted parameter values.
Comparison of the performance of the two methods is presented for the first time in
electrospinning research. Response surface methodology resulted much faster, but MLR
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achieved a lower error and better generalization abilities. This approach and the
availability of the MLR script used in this work may help other groups implement it in their
research and find information hidden in the data while improving model prediction
performance.

Keywords
electrospinning, poly(vinylidene fluoride), response surface methodology, machine
learning regressions, prediction and optimization, bead formation

Introduction

Electrospinning technique is more than a century old and has been intensely studied for
the last two decades, but it remains a growing area of material and technology research for
its unending possibilities. Furthermore, in the last few years, its use has grown in the
industry as an innovative filter with very desirable attributes.1 One of its outstanding
applications is the development of poly(vinylidene fluoride) (PVDF) electrospun filters
for high-efficiency face masks regarding the covid-19 outbreak.2

Electrospinning consists in the formation of micro-nanofiber nonwovens by electri-
cally charging and ejecting a polymer solution. The solution is pumped through a
spinneret under a high-voltage electric field, and solution jets are shot to the opposite
electrode (collector). On the way to the collector, bending instability takes place and the
jets are extremely stretched, thinned and bent. In this stage, the solvents evaporate, and
thin polymer fibers are deposited over the collector. The interaction between the physical
parameters in this stage is not yet fully predictable by theory. Common applications of
electrospinning technology are air filtration,3,4 water remediation,5–8 drug delivery,9,10

and wound dressing,11 among others.12

Electrospun fibers often have beads which are considered defects or by-products. Bead
formation in electrospun fibers is caused by the instabilities of the polymer solution jet,
where surface tension, viscoelastic forces and electric forces (determined by charge
density, conductivity of the solution, and tip-to-collector voltage and distance) compete
for the contraction or stretching of the solution jet.13 Surface tension leads to droplet
formation and capillary breakup, but for polymer solutions, instead of breaking, filaments
between the droplets are stabilized and a bead-on-string structure is formed. The reason
for this is the elongation and entanglement of the macromolecules of the dissolved
polymer, which form a network that persist as the fiber solidifies.14 Overall, it has become
clear that bead formation is related to the complex interactions between the solution
properties and electrospinning process parameters,15 and for this reason, it is still an
experimental matter to observe carefully.

Although the formation of such beads on fibers is widely spread over electrospinning
research and production,16 is not commonly addressed, and remains an issue of interest as
it is undesirable in many cases, and desirable in others. In air filtration research, the
presence of beads on electrospun fibers has been correlated with lower pressure drop
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while maintaining high filtration efficiency.17 The presence of beads broadens the dis-
tances among the fibers, which lowers the air pressure drop of the membranes.18,19 Evenly
distributed beads in the fibers create a more even pore distribution, which inhibits the
aggregation of dust particles during air filtration.20 On the other hand, bead structure of the
nanofibers contributes to high specific surface area and surface functional groups, which
improves filtration efficiency.21 Overall, the filtration quality factor of beads-on-fiber
electrospunmembranes was found to be higher than that of bead-free fibers.22–24 Presence
of beads on electrospun fibers has also been correlated with improvements in mechanical
properties of the mats,23,25 enhanced hydrophobicity,26 and Na-ion storage advantages.27

In most applications, however, bead-free fibers are more desirable.28

In several works, for the same polymer and solvents choice, dissimilar concentrations
have been reported as optimal to obtain bead-free fibers.29–31 This is reasonable as some
of the variables of the process which are not commonly considered may change from one
work to the other. Molecular weight, inner diameter of tip, temperature and relative
humidity and overall electrospinning chamber geometry are not always reported in
electrospinning studies, although they have been found to affect the morphology of the
obtained fibers.32–35 The variability in these factors results in inconstancy of the optimum
values of typical electrospinning parameters (i.e. solution concentration and solvent ratio,
voltage, tip-collector distance, and flow rate). For these reasons, whenever electro-
spinning research starts, it is common to use the parameters of previous works, and then
change them according to one’s own experimental results. However, the usual protocol for
optimizing electrospinning parameters is to change one variable at a time, which is a
rather expensive and time-consuming methodology.36

In past research, a great number of tests were needed to find the empirical relations
between a set of electrospinning parameters and PVDF nanofibers surface structure.37,38

No single work has studied the morphology of the electrospun PVDF nanofibers by
varying every electrospinning parameter, and therefore, if one or more of the fixed
parameters are changed in a new study, the literature values are not reproduced. This fact,
added to the variability of electrospinning equipment (open surface, multi-needle, dif-
ferent geometries, etc. 39), and the time optimization required in industrial processes, leads
to the necessity of finding a way to achieve the desired electrospun nonwoven mor-
phology without an excessive number of trial-and-error tests.

Response surface methodology (RSM) and machine learning regressions (MLR) are
valuable predictive tools to reduce the number of trials necessary to find the optimal set of
parameters, especially when a high number of variables are at play. Response surface
methodology explores the relationships between factors affecting a process and response
variables obtained from the output of that process. It uses a sequence of designed ex-
periments to obtain a desired (optimal) response. Machine learning regressions are
programs that “learn” and model the relations between features (input variables) and
targets (response variables) from datasets. The empirical models that result from these
algorithms predict the response variables in non-explored data points. The algorithms
adjust themselves to perform better given feedback on their past performance in pre-
dictions about the same dataset. These regressors have been used in several applications
with great performance,40 and they have outperformed RSM in some studies.41
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Electrospinning is a good candidate for these tools because of the large number of
experimental parameters and the difficulty to theoretically predict their effect on the
response variables or targets. Also, to reduce the number of tests necessary to optimize the
output. Response surface methodology was proposed several times to address this issue,
obtaining good results for fiber-size optimization,42–44 pore size and fiber quality,45 bead
number,46,47 bead size,48 and other applications.49 Some works have made use of machine
learning algorithms such as artificial neural networks to minimize electrospinning fiber
diameter50 and some have compared its performance to that of RSM.51,52 Few works have
been found which used MLR predicting power to optimize the electrospinning
process.53–55 Ieracitano et al. have recently used machine learning algorithms to identify
beads on electrospun fibers,56 but to the best of our knowledge, MLR have not been used
to study the bead formation process. Furthermore, no works have been found which
compare MLR and RSM performances for the same experimental design of the elec-
trospinning process.

The objective of this study is to investigate the ability of two different models to predict
the size and number of beads-on-fibers for the important case of PVDF electrospun
nonwovens: the traditional RSM and a promising approach by MLR. PVDF electrospun
micro and nanofibers have been prepared with different sets of parameters, encountering
dissimilar beads. The influence of the polymer concentration, solvent ratio, voltage and
tip-to-collector distance over the bead size and overall bead density, was modeled through
RSM and MLR. The parameters which minimize the targets in each model were in-
vestigated through experimental testing, and both models’ performances were compared.
This work presents a method to achieve the desired mat morphology without an excessive
number of tests, addressing the not yet fully understood relation between electrospinning
parameters and bead formation, which may be useful regarding the massive use of
electrospinning technique. Also, it compares the challenges and performances of a
traditional method (RSM) with a machine learning regressor that has never been used in
electrospinning optimization.

Experimental section

Materials

Polyvinylidene fluoride (PVDF) powder (Mw = 534.000 g mol�1) and N,N-dimethy-
lacetamide (DMAC, ≥99.0%) were purchased from Sigma-Aldrich. Acetone (≥99.5%)
was purchased from Biopack. All reagents were used without further purification. Table 1
shows the viscosity, electric conductivity and surface tension of the solvents.

Table 1. Physical properties of the used solvents.

Solvent Viscosity (cP) Conductivity (10�4 S m�1) Surface tension (10�3 N m�1)

DMAC 1.02 ± 0.01 (20°C) 1860 ± 30 (26.6°C) 36.7 ± 0.1 (20°C)
Acetona 0.32 ± 0.01 (20°C) 0.38 ± 0.03 (25°C) 23.3 ± 0.1 (20°C)
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Preparation of PVDF solution

Poly(vinylidene fluoride) was dissolved in a two-solvent mix of DMAC and acetone by a
magnetic stirrer for 4 h at room temperature in a sealed reservoir. The polymer con-
centration was varied between 15.8 and 20 wt% and DMAC/acetone w/w ratio between
1.2 and 2.9.

Electrospinning

A scheme of the electrospinning device used in this work is shown in Figure 1. The plain
metal collector and the single nozzle were horizontally faced inside a rectangular acrylic
chamber. The PVDF solution was added to a 10 mL syringe with a needle tip (21G,
0.5 mm inner-tip diameter). A high DC voltage power supply was utilized to generate the
electric field between the electrodes, ranging between 8 and 16 kV, and the tip-to-collector
distance was varied from 10 to 35 cm. The solution feed rates were controlled by a syringe
pump, ranging from 0.1 to 1.0 mL h�1 for preliminary tests (see Supporting Information),
and then fixed at 0.2 mL h�1. The samples were obtained by electrospinning over glass
coverslips (18 × 18 mm2) attached to the collector for time intervals between 2 and
15 min. All experiments were carried out at room temperature (24.0 ± 1.5)°C and ambient
relative humidity (50 ± 3)%.

Image analysis

Four images of each electrospun sample were obtained through an Olympus
BX60MF5 Optical Microscope (100x) and then processed through ImageJ software. The
size of each individual bead was obtained. Given the range of bead sizes found in this
work (5–25 μm), optical microscopy was preferred. It allows capturing, in a single picture,

Figure 1. Schematic of the electrospinning setup.
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larger areas than scanning electron microscopy (SEM), which helps in image processing.
It is also faster and cheaper.

Field Emission Scanning ElectronMicroscopy (FE-SEMCarl Zeiss NTS - SUPRA 40)
was used to reveal the micro-nano scale morphologies of optimized electrospun fibers.
Samples were previously sputtered with platinum.

Experimental design

Design of experiments is a valuable tool to reduce the number of experimental tests
needed to find an approximate relation between some input variables (features), and the
response variables (targets). Consequently, it allows predicting response variables of
unexplored data points. In this study, a custom I-optimal split-plot design was im-
plemented via Design-Expert software to investigate the relation between the input
variables: PVDF concentration (c), ratio between solvents (r), voltage (V) and distance (d)
between tip and collector, and the response variables: beads mean equivalent diameter
(BMED), standard deviation (Sdev) and bead density (BD). The bead equivalent diameter
(BED)was calculated as in equation (1) where AB is the area of the bead in the nonwoven-
plane as seen from the microscope image (measured with ImageJ software), and the
BMED is the mean of the BED found in the microscope images of one sample. The Sdev is
the standard deviation of the BED in each sample, which gives an estimation of the
regularity of the bead size throughout the sample.

BED ¼ 2

ffiffiffiffiffiffi
AB

π

r
(1)

The last target is the bead density, calculated as the number of beads per mm2 of
electrospun mat. Given that each mat sample has a slightly different thickness and fiber
density, a normalization calculation was included.

The split-plot was created to take into account the difference between the hard-to-change
factors and the ones that are easy to change. Both PVDF concentration and DMAC/acetone
ratio are hard-to-change parameters because they depend on the solution, and it takes hours
to make a new solution to restart the electrospinning process. On the other hand, the voltage
and tip-to-collector distance may be easily modified during the electrospinning process
within seconds. Therefore, it is of interest to provide the algorithmwith the least amount of c
and r combinations of values necessary. I-optimality was chosen as it has been shown to
outperform other criteria regarding improved predicting.57

Nine tests were taken mapping the parameters space of the two hard-to-change factors,
as shown in Figure 2. The black squares in the graph represent points in the desing space
that achieved PVDF bead-free fibers according to literature, using DMAC/acetone solvent
system. Therefore, the range of values of each feature was considered by analogy with
bibliography and by preliminary tests. The full data (varying voltage and distance)
consisted of 126 points. Table 2 shows the value ranges chosen in this work for the four
parameters. For voltages under 8 kV the electric field was not enough to eject the solution.
For voltages above 16 kV, the jets broke leading to short segments of polymer fiber.
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Response surface methodology

Quadratic, cubic, and quartic basis functions were tested to establish approximation
responses in this study, selecting only the most influential coefficients through backward
elimination (p-value < 0.1) and respecting hierarchy. The choice of polynomial degree
was done through studying the different responses and analysis of variance (ANOVA).
Verification of the response was done experimentally as it is customary for this kind of
model.63

Machine learning regressors

Data were split into training and testing sets (75-25%). This is a common practice, as it
allows testing accuracy of the model in unseen data. Four supervised machine learning
algorithms were utilized: Ridge regressor (RR), support vector regressor (SVR), random
forest (RF), and voting regressor (VR).

Figure 2. Design space of the hard-to-change factors: PVDF concentration and DMAC/acetone
ratio (blue circles). Black squares: parameters that lead to bead-free PVDF fibers according to
literature (1:58; 2:59; 3:60; 4:61; 5:62; 6:30).

Table 2. Limit values of the features in the design space.

Feature Min Max

PVDF concentration (wt%) 15.8 20
Ratio between solvents (w/w) 1.2 2.9
Voltage (kV) 8 16
Tip-collector distance (cm) 10 35
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Ridge regression addresses some of the problems of ordinary least squares by imposing
a penalty on the size of the coefficients, preventing overfitting.64 The implemented al-
gorithm minimized the loss function ERR shown in equation (2), where yi is the response
variable for the ith sample and byi the predicted value. The weight wj is squared, multiplied
by an L2 penalty term (λ) and added to the residual sum of squares. λ is the parameter that
controls the amount of shrinkage, i.e. the reduction in the effects of sampling variation: the
larger the value of λ, the coefficients become more robust to collinearity; if λ is set to
0 then the entire equation becomes like a normal Linear Regression curve.

ERR ¼
XN
i¼1

�
yi � byi�2

þ λ
XD
j¼1

w2
j (2)

In this study, RR is fitted in conjunction with a polynomial regression, considering not
only linear terms of the variables but also higher orders.

Support vector machines create decision boundary lines from hyperplanes to separate
samples in categories and use the kernel trick to map the data into a higher-dimensional
feature space.65 SVR is an extension to regression problems by considering close
samples as similar. The algorithm implemented in this study minimizes equation (3),
where C is a penalty term that trades off residual error against simplicity of the response
surface. f(x) is the solution regression function (equation (4)), where αi is the ith La-
grange multiplier and k(x,x‘) is the kernel function. In this study, radial basis function
(RBF) (i.e. e�γkx�x0k2 ) was used as kernel. RBF introduces the hyper-parameter γ, that
defines how much influence a single training sample has. The larger γ is, the closer other
samples must be to be affected.

min C
Xn

i¼1

jyi � f ðxÞj2 þ 1

2
kwk2 (3)

f ðxÞ ¼
Xn

i

αi kðx,x’Þ (4)

Random forest is a regression model that combines many decision trees, trained
through bagging. Tree-based methods split the feature space into even chunks (branches)
and fit a simple model to each one, while bagging is an ensemble algorithm that improves
the accuracy of machine learning individual estimators. RF predicts by taking the average
of the output from various trees.66 In this study, two RF hyper-parameters were con-
sidered: the number of estimators (n), and the maximum number of branches (depth).
Increasing n improves the precision of the outcome. Increasing the maximum depth
allows better fitting but also may lead to overfitting.

The script was written in python, using Scikit Learn package, which has the in-built
function of cross-validation (CV). This allows splitting the data into different groups
(folds) and training a regressor holding out one group of data sequentially, which acts as a
validation set. The performance of the algorithm is evaluated by some chosen metric in
each of the unseen folds of each split, and then the average metric value is considered.
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This way, the generalization ability of the model is evaluated and optimized during the
training. A scheme of the CV can be seen in Figure 3.

The three algorithms were fitted to the training data (after scaling if necessary) via
GridSearchCV (5-fold cross-validation) to find the hyper-parameters that minimized the
root mean squared error (RMSE) for the validation set. The RMSE is a measure of the
deviation between the predicted and the actual values, as shown in equation (5), where N
is the number of data points. Table 3 shows the hyperparameter values tested in each
algorithm.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
yi � byi�2

N

vuut
(5)

Finally, a weighted voting regressor (VR) was implemented to create an ensemble
meta-model that combined the three previous optimized algorithms. This type of regressor
can be useful for a set of similarly well-performing but conceptually different models, to
balance out their individual weaknesses and avoid systematic errors. The VR was
evaluated in the test set, and the predictions of the model were studied by looking
experimentally into the values of the optimized features.

Figure 3 shows the whole scheme of this work, from the experimental design and tests,
the image analysis and modeling methods, to the final experimental validation.

Figure 3. Schematic diagram of the framework proposed in this study.
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Results and discussion

The BMED, Sdev and BD histograms are shown in Figure 4(a). The three targets follow
normal or slightly positively skewed distributions with respective mean values of (15.7 ±
2.9) μm, (6.0 ± 2.5) μm and (66 ± 43) mm�2 and Pearson’s first skewness coefficient of
0.38, 0.33 and 0.85 respectively. Figure 4(b) shows the correlation matrix for the whole
dataset (correlation between features was omitted). The Pearson coefficient shows that
large BMED values are highly correlated with high Sdev values, therefore, minimizing
bead size will likely reduce their size dispersion as well, resulting in a more regular
morphology. Increasing the distance between tip and collector seems to generally reduce
the values of the three targets, tending to the formation of small and regular beads or
bead-free mats. Polymer concentration and solvent. Ratio also have a noticeable incidence
in the targets. Higher polymer concentrations and DMAC/acetone ratio seem to lead to
mats with a higher number of small beads. A more detailed analysis can be found in
Influence of Electrospinning Parameters on Bead Formation. Examples of four sample
images, their target values and BMED distributions are shown in Figure 4(c).

RSM study

The effect of polymer concentration, solvent ratio, voltage, and tip-to-collector distance in
the determination of the three response variables was analyzed via RSM using Design
Expert software. The experimental data were fitted by quadratic, cubic and quartic models
for each target, and coefficient of determination (R2), adjusted R2, and p-value were
considered in each case to check the adequacy of the constructed model. The best
performing models were quartic for the BMED and Sdev, and cubic for the BD. Figure 5
shows the predicted versus actual values for each response variable, and Table 4 shows the
relevant metrics of each model.

Although high-order polynomials (above quadratic) are not usually used in RSM, they
may provide more accurate predictions than low-order polynomials, as have been shown

Table 3. Hyperparameter values evaluated through cross-validation.

Polynomial degree Lambda (λ)

Polynomial features with ridge
regression

1, 2, 3, 4, 5, 6, 7 10�3, 10�2, 10�1, 1, 10, 102, 103,
104

C Alpha (α)

Support vector machine
regressor with SBR kernel

1, 10, 102, 103, 104, 105,
106

10�4, 10�3, 10�2, 10�1, 1, 10

n estimators Max depth

Random forest 10, 50, 100, 300, 500, 700 2, 3, 4, 5, 7, 10, 15
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Figure 4. (a) Histograms of the target’s distributions. The continuous and the stripped lines
represent the fitted skewed and normal curves respectively. (b) Correlation matrix. (c) Optic
microscope images of four samples with their beads outlined. The histograms show the BED
distribution of each sample.
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Figure 5. Plots of the actual target values versus the predicted by the RSM model. (a) BMED, (b)
Sdev, (c) BD.
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in previous works.67–69 This may be because of the way the parameters affect the physical
magnitudes and the overall complexity of the electrospinning process dynamics. In-
creasing the polynomial degree is generally associated with overfitting due to increasing
degrees of freedom, however, this must be contrasted with other metrics and results.
Analysis of variance (ANOVA) was utilized to test the significance of the model and
factors. The p-value is a probability that measures the evidence against the null hy-
pothesis; in this study, the null hypothesis is that the proposed model does not explain any
of the variation in the response. Lower p-values provide stronger evidence against the null
hypothesis, and therefore they support the hypothesis that the model does in fact explain
the variations in the response. A significance level of 0.05 indicates a 5% risk of con-
cluding that the model explains variation in the response when the model does not. In the
same way, a predictor or factor that has a low p-value (<0.05) is more likely to be a
meaningful addition to the model because changes in the predictor’s value are related to
changes in the response variable. As can be seen in Table 4, p-values show the sig-
nificance of the whole-plot (c, r and their interactions) and the sub-plot (rest of variables
and interactions). The terms in the last column showed the highest statistical significance,
having a p-value lower than 0.01.

The R2 values in the range 0.63–0.74 imply that most of the variance in the response
variables can be explained by the input variables. The remaining can be attributed to
unknown (not considered) variables or inherent variability of the targets. The presence of
some outliers can be seen in Figure 5, which adversely affect the model’s performance.
The small differences between R2 and adjusted R2 imply that included terms are mainly
significant to the model, which further supports a low probability of overfitting.

The most significant terms mainly correlate with the results of the correlation matrix
(Figure 4(b)), where c and r have the highest Pearson coefficients, followed by d. This
empirical model, however, does not pretend to explain an analytical relation between
input and response variable, and therefore the higher-order terms do not necessarily imply
a real physical relation between magnitudes.

This method proved to be a very fast and easy-to-use modeling tool. However, testing
of different model approaches was needed to achieve the best possible model.

MLR study

Each model was optimized via cross-validation, and the hyper-parameters that minimized
RMSE were found for each model (Table 5). Complete GridSearchCV results are shown

Table 4. Summary of RSM models performances.

Target Order R2
Adj.
R2

P-value whole-
plot

P-value sub-
plot

Most significant terms (p-value
< 0.01)

BMED Quartic 0.638 0.592 0.023 0.04 r2, c.r.d2

Sdev Quartic 0.692 0.656 0.029 0.008 r2, d, d3

BD Cubic 0.741 0.704 0.010 <0.0001 d, c.d, c2.d, c.r2, c.d2, b.d2
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in Supplemental Figure S2 in Supporting Information. The degrees of the RR polynomials
for each target were 4, 6 and 3 respectively. Interestingly, the first and third values match
with the degree of the RSM optimized polynomials. The 6-order polynomial of the Sdev
model may be explained by the penalty parameter λ, which allows a higher number of
degrees of freedom without overfitting.

The VR ensemble was computed by combining the three previously optimized al-
gorithms (for each target). Three approaches were considered for weighting the models:
using the inverse of the RMSE as the weight, ranking the models from three to one
according to the RMSE (highest rank to the lowest RMSE), and squaring the rank values.
The last approach was the most successful, achieving the lowest RMSE for the VRmodels
of each target. Table 5 shows that each algorithm performed best in a different target, but
the VR outperformed the others in all three.

The similarity of the RMSE values in train and test sets shown in Table 5 confirms the
excellent generalization of the model, achieved via cross-validation. The fact that in some
cases the RMSE-test is slightly smaller than the RMSE-train, can be explained by the
relatively small number of data points of the test-set (i.e. 32 vs 94): with almost three times
the number of data points, the training set is more exposed to outliers and general
variability of data that is not explained by the model. Furthermore, Figure 6 shows the
predicted versus actual values for the VR model, where the presence of outliers is more
notably in the training set. It is worth noticing that RMSE is a metric that, by construction,
emphasizes the presence of outliers, in contrast with the mean absolute error. The
computed p-value of the VR model was <0.001.

The permutation feature importance is defined to be the decrease in a model score when
a single feature value is randomly shuffled. This way, the relative importance of each
feature in the model was calculated for the VRmodel (Figure 7). The solvent ratio appears
to be the single most relevant parameter for the BMED and Sdev, followed by polymer
concentration. PVDF concentration has the most significant impact in BD, but it is closely
followed by solvent ratio and tip-to-collector distance. This is in agreement with the

Table 5. Summary of MLR models performance in training and testing sets.

BMED Sdev BD

Hyper-
parameters

RMSE
train

RMSE
test

Hyper-
parameter

RMSE
train

RMSE
test

Hyper-
parameters

RMSE
train

RMSE
test

RR Degree = 4 1.78 1.84 Degree = 6 1.68 1.69 Degree = 3 27.9 26.8
λ = 0.1 λ = 0.1 λ = 10

SVR C = 103 1.78 1.83 C = 105 1.65 1.67 C = 10 26.3 25.0
α = 0.1 α = 0.01 α = 10

RF N = 500 1.79 1.85 N = 50 1.62 1.65 N = 300 27.6 27.3
Depth = 3 Depth = 3 Depth = 1

VR — 1.77 1.82 — 1.60 1.64 — 26.3 25.0

14 Journal of Industrial Textiles 0(0)



Figure 6. Plots of the actual target values versus the predicted by the VR model. (a) BMED, (b)
Sdev, (c) BD.
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findings of Desai et al., with the difference that in their study, a single solvent was used
and therefore solvent weight ratio was not an input variable.70 Analogously to the values
found in the correlation matrix (Figure 4(b)), the voltage does not seem to be a relevant
parameter for the models either.

Model comparison

To compare the methods performances, RMSE and coefficient of determination of each
model over the whole dataset are shown in Table 6. Machine learning regressions
represented by the VR model performs better in every case.

Figure 8 shows the 3D surface of the response variables as a function of PVDF
concentration and solvent ratio, by fixing voltage and distance in the values that minimize
each target (Table 7). The surfaces created by both methods follow similar trends, but the
VR surface shows slightly more irregular curves as a result of the model ensemble. In
particular, RF is composed of an assembly of discrete cuts, rather than smooth curves.

The parameters which minimize each target are shown in Table 7. Generally, both
methods lead to similar feature values, but there are a few cases to consider. The BMED-
RSM model has its minimum at the extreme values of c (20 wt%) and r (2.9 w/w), while
the VR model has its minimum away from the borders of the c-r space (18.7 wt%, 2.32 w/
w). Also, the BD models differ considerably in the optimal voltage. The VR model
reaches lower values in all three targets.

Machine learning regressions models are not constraint by polynomials (except for the
RR, that has also a regularization parameter) and so they can explore and adapt to very
complex and multidimensional relations with a smaller number of parameters. This may
explain the better performance of the MLR over the RSM.

Figure 7. Importance of each feature in the VR model for (a) BMED, (b) Sdev, (c) BD.
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Testing the predictions

To experimentally test the predictions of the models, two important cases were studied:
bead-free fibers and minimum-sized beads. For the former, BD = 0 represents a mat with
no beads, while for the latter, BMED must be minimized. Therefore, the BD and BMED

Table 6. RMSE and R2 for each model.

BMED Sdev BD

RMSE R2 RMSE R2 RMSE R2

RSM 2.17 0.638 1.85 0.692 27.9 0.741
VR 1.78 0.724 1.61 0.700 26.0 0.775

Figure 8. 3D Surface plots of the target optimized RSM models (a), (b), (c) and VR models (d), (e),
(f) as a function of polymer concentration and solvent ratio. Voltage and tip-to-collector distance
were fixed in the values that minimized each target.

Table 7. Features values that minimize each target according to the RSM and VR models.

c (wt%) r (w/w) V (kV) d (cm) Target value

BMED RSM 19.7–20.0 2.80–2.90 8.0–8.8 35 7.6
VR 18.7 2.32 8.0 35 5.8

Sdev RSM 19.7–19.85 2.37 8.0 35 0.75
VR 19.3 2.55 8.0 35 0.56

BD RSM 16.9 1.69 8.0–10 30 1.7
VR 16.4 1.54 13 32 0.1
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parameters shown in Table 7 stand the highest probability of achieving each
respective goal.

Figures 8(c) and (f) show the predictions of each model in the c – r parameter space by
fixing V and d as in Table 7 for the minimum BD (8.0 kV–35 cm and 13 kV–32 cm
respectively). Figures 8(a) and (d) show the analogous prediction surface but for mininum
BMED (8.0 kV–35 cm).

Final experimental tests were made to verify the predicted values of the models.
Figure 9 shows the fibers obtained for each predicted combination of parameters. Figures
9(a) and (b) show the samples obtained with the parameters that minimized BD for both
models. The result BD = 0 confirms the predictions of both models (within small errors).
Analogously, the BMED models predicted minimum values of 7.6 and 5.8 μm for the
RSM and MLR optimized models respectively, while the encountered experimental
values (Figures 9(c) and (d)) were 6.5 and 6.1 μm. Finally, the Sdev predicted versus
actual values for the same parameters were 1.2 vs 1.4 for the RSM model and 0.8 vs
1.1 for the MLR model.

The results show an excellent concordance between the experimental and modeled
data, which verifies the predicting ability of the models and their usefulness to find the
desired target value. Furthermore, the use of an ensemble model that combines the results
of distinct algorithms, turned out to be a very effective way to improve model
performance.

Overall, both methods led to satisfactory results, but MLR showed slightly better
performance, predicting ability and a better way to avoid overfitting. These qualities may
be more crucial in systems where the results vary more abruptly. However, MLR were
much more time-consuming than RSM, mainly because of the coding time and secondly
the computing times. The availability of the script created in this work here provided may
resolve MLR’s biggest disadvantage for future works regarding electrospinning pa-
rameter optimization.

Influence of electrospinning parameters on bead formation

The parameter importance shown in Figure 7 leads to the conclusion that conductivity or
charge density and surface tension, which are determined mainly by solvent ratio, are the
most significant physical magnitudes regarding bead size. The viscosity of the solution,
determined mainly by polymer concentration, is the second most significant parameter for
bead diameter and standard deviation. Korycka et al. have concluded that viscosity plays
the most important role in bead size, but their study consisted of a single solvent solution
of PVP in ethanol.48

Bead density is highly affected by polymer concentration, solvent ratio, and tip to
collector distance as well, which supports the fact that bead formation depends strongly on
the polymer solution properties but also on the complex electrospinning dynamics. The
fact that polymer concentration is the most relevant factor in beads number (Figure 7) is in
agreement with the works of Ruiter et al.28, Khanlou et al.47, and Cui et al.46 The latter
also reported the significance of the molecular weight and solvent system. Zaarour et al.
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showed that the formation of beads-on-string structures in PVDF electrospinning is highly
dependent on solvent system, solvent ratio and polymer concentration.37

It is well known that there is a minimum polymer concentration for the formation of
fibers by electrospinning and that below that value, only beads are obtained.14,71,72 This is
because it is necessary to overcome the concentration of interchain entanglement to avoid
capillary breakage. In that sense, the formation of beads and bead-on-string structures is

Figure 9. Optic microscope images, and SEM images (insets) of the final experimental tests. (a)
RSM, optimal BD parameter combination. (b) VR, optimal BD parameter combination. (c) RSM,
minimum BMED parameter combination. (d) VR, minimum BMED parameter combination. (e) and
(f) show the histograms of the BED distribution of the samples shown in figure (c) and (d)
respectively.
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often related to low concentration. However, in this work, the range of concentrations
is outside that regime (>15%), so the relation between polymer concentration and
number of beads is not monotonic. In fact, solution viscosity also plays a role in
restraining jet stretching and may lead to beads and thicker fibers. In this study, bead-
free fibers were obtained with PVDF concentrations between 16.4 and 16.9 wt%,
while by increasing polymer concentration, bead-on-string fibers were obtained. This
is similar to the recent findings of Song et al., who made PVDF (Mw = 534 kDa) fibers
by the similar technique of near-field electrospinning and obtained smooth bead-free
fibers for 16–18 wt% concentrations, and beads-on-string structures above 18 wt%.
Moreover, it is important to notice that the range of functional polymer concentration
for electrospinning will be correlated with the molecular weight (Mw) of the polymer,
as higher Mw increases chain entanglements and viscosity.35 Supplemental Figure S3
(Supporting Info) shows the relation between optimized DMAC/acetone electro-
spinning solution concentration and PVDF molecular weight found in other studies. It
clearly shows that the polymer concentration which leads to bead-free mats is in-
versely correlated with Mw.

Low conductivity and high surface tension are associated with bead formation,
as the electrical forces may result insufficient to elongate the jet and produce uni-
form fibers.14,73 As shown in Table 1, DMAC has much higher conductivity than
acetone, but higher surface tension as well. Both magnitudes play an opposite role in
the fiber-bead formation dynamic. According to Figures 4(b) and 8, DMAC/acetone
ratio seems to generally reduce the size and size dispersion of beads but increase its
number.

Finally, Figure 10 shows the response surface of the VR model in the V-d space.
Increasing the distance between tip and collector seems to generally reduce the values of
the three targets (also in accordance to Figure 4(b)), tending to the formation of small and
regular beads or bead-free mats. This may be related to the stretching of the jets by
enlarging its instability region.15 The effect of the voltage varies depending on the
distance, so no general trend can be stated. However, lower V values seem to reduce bead

Figure 10. 3D Surface plots of the VR optimized models as a function of voltage and distance. The
PVDF concentration and DMAC/acetone ratio were fixed in the values that minimized each
target.
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size and size dispersion for large distances. Voltage is the least significant parameter
according to both models, but it should be noticed that the parameter range for V is 100%
(from 8 to 16 kV) while for d is 350% (from 10 to 35 cm).

Conclusions

Response surface methodology and machine learning regressions models were suc-
cessfully able to predict the relation between electrospinning parameters and bead-size
and bead density on PVDF electrospun mats with a small number of tests. Both models
were able to find the combination of parameters that lead to bead-free mats and minimum
sized beads.

Response surface methodology quartic and cubic models showed significance through
low p-values (<0.05) and reasonable R2 and adjusted R2 values. Despite the high order
polynomials, the model did not overfit the data.

Machine learning regressions achieved lower RMSE and higher R2 values than RSM,
and the VR ensemble resulted in an effective meta-model, outperforming the individual
regressions. The training through cross-validation is a very effective way to avoid
overfitting and achieve good generalization ability, which was verified by the similitude
between train and test RMSE values.

The PVDF concentration and DMAC/acetone ratio were the most influential pa-
rameters of the bead formation process. The results presented herein support the inverse
correlation between molecular weight and optimal polymer concentration for bead-free
mats. For low bead size and size variance, the optimal parameters were 18.7 wt% polymer
concentration, 2.32 w/w DMAC/acetone ratio, 8.0 kV and 35 cm. To minimize the bead
density and obtain bead-free mats, the optimal parameters were 16.4 wt%, 1.54 w/w
DMAC/acetone ratio, 13 kV and 32 cm.

Overall, RSM via Design Expert resulted a much faster method, but the MLR achieved
better performance, versatility and showed useful tools for its optimization. The avail-
ability of the python script provided by this work may help other groups significantly
reduce the coding time necessary to implement this method to predict electrospinning
response variables. This work may help introduce highly efficient predicting algorithms
into electrospinning research, greatly reducing the time needed to obtain optimal mor-
phology for any polymer-solvent system and electrospinning machine.
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