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1 Introduction

The aim of the bootstrap program in quantum field theories with conformal invariance
(CFT) (see [1] for a review) is to constraint as much as possible the CFT data: the set
of conformal weights and operator product expansion (OPE) coefficients, i.e. the structure
constants. In this program, crossing symmetry is the main ingredient since it provides some
equalities involving the OPE coefficients, highly constraining them. Reflection positivity
(RP), established as a rigorous theorem in [2] and sometimes referred to as unitarity, has
also played a role in this program. The most celebrated example of constraints imposed
by RP is the so-called unitary bound for conformal dimensions of different operators in
any space-time dimension. Another consequence of RP is the reality of OPE coefficients
corresponding to real operators.
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In contrast with crossing symmetry, RP consists of a set of inequalities (infinitely many
of them) involving the euclidean continuation of vacuum expectation values (Schwinger
functions) smeared with test functions of several arguments. This set of inequalities tells
that the Schwinger functions come from vacuum expectation values of operators acting in
a Hilbert space which is naturally endowed with a positive definite bi-lineal form. The
term reflection refers to a reflection operation Θ in the euclidean hyperplane. Roughly
speaking, Θ changes the sign of the coordinate x0 corresponding to the temporal variable
in the Lorentzian formulation of the CFT. RP inequalities arise by taking the square norm
of certain states in the Lorentzian CFT.

It is natural to ask whether, besides the known restrictions (unitary bounds and the
reality of OPE coefficients), there are more constraints coming from RP. In other words,
if we restrict ourselves to the set of CFT constrained by these two restrictions, is RP
consistent with any CFT data there? A definitive answer will require a proof that, for
any conformal dimensions and OPE coefficients fulfilling the mentioned restrictions, RP
inequalities are automatically fulfilled. Regarding this, there was a lot of work, specially
during the seventies, for instance the early works of G. Mack [3]. This issue was considered
recently in [4]. There, it was proposed certain minimalist set of axioms, which include the
RP of 2-point function for primary and descendants fields (which is equivalent to unitary
bound) and the condition that the OPE coefficients must be real. From this set of axioms,
it was given a proof of RP at level of 4-points functions.1

Therefore, it is clear that RP, at least at the level of 4-points functions, will not
lead to any further constraints on the CFT data. In fact, one can check this in the
particular example of 4-points functions involving equal spinless fields φ of dimension ∆0.
Here, we consider this case in order to keep the discussion simple. The 4-point function
< 0 | φ(x1)φ(x2)φ(x3)φ(x4) | 0 > is, up to a factor, equal to a function G(x) of the cross-
ratio x, which is real for the case of aligned points. This function admits a decomposition
in terms of conformal blocks F as follows:

G(x) = x−2∆0
∑
p

(Cp∆0∆0
)2
F (p)(x)

where p stands for the pair (∆, `) (conformal dimension and spin) of all the exchange fields
and the F ’s are the conformal blocks, completely fixed by general properties of the CFT.
It turns out that the conformal blocks F themselves fulfill the requirements of RP and
since they are combined with positive coefficients (the C’s are real) the 4-points function
is automatically RP. Therefore, RP does not impose restriction on the C ′s, as expected
from [4].

However, there is a way in which RP can be used to see some of the constraints on the
OPE coefficients implied by CS. In our simple example of equal spinless fields, CS states
that G is symmetric around x = 1

2 :

G(x) = G(1− x), (1.1)
1As it is mentioned there, the complete proof of RP for higher order n-points functions will require to

overcome technical difficulties in the OPE expansion or to make stronger some of the proposed axioms.
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In a more general case of non-equal fields, the function on the l.h.s. is different from
the one on the r.h.s. But let us focus now on this simple case. The standard approach
consists in finding “forbidden regions” for the conformal dimensions of the fields appearing
in the equation, i.e., it consists in finding the regions where the equation has not solutions
for real OPE coefficients. The main idea is to demand that all odd derivatives of G vanish
at x = 1

2 (the procedure is slightly different). These derivatives are obtained by summing
all the contributions of each conformal block. This is the so-called “sum rule”, introduced
in [5] and subsequently improved (see for instance [6] for the progress in the numerical
techniques).

The idea of the present paper comes from the observation that the l.h.s. of (1.1), as
a function of the cross-ratio x, obeys some inequalities inherited from RP and therefore
the rhs, as function of x, should also obey those inequalities. Let us notice that, even in
this simplified case where the same G appears at both sides, on the r.h.s. it appears the
composition of G with 1 − x. This change of x by 1 − x implies that, on the rhs, these
inequalities are not automatically fulfilled, and at least the OPE coefficients are restricted.
In order to understand this, let us briefly describe the connection between RP and some
inequalities for a function of a single variable used by us in [7].

In that paper we showed that Rindler positivity (a positivity conditions similar to
RP) leads to the more simple property of positive definiteness (pd) of a single variable
function. Pd functions have nice properties which can be translated into a positivity of
certain coefficients. In particular, when a pd function f on (a,+∞) is bounded, it can be
proved that f should be a a complete monotonic (CM) function, i.e., a function fulfilling
(−1)kf (k)(x) ≥ 0. By choosing sharp test functions located in certain one-parameters
family of points, one can see that RP implies that, up to a factor, G has to be a CM
function of both ρ ≡ − log(x) and η ≡ −1 + 1/

√
x.

Let us explain in a more precise way the strategy that we will use in this paper for the
ρ case first. As we have said before, according to [4], RP is automatically fulfilled at the
level of the 4-points function. It means that the l.h.s. of eq. (1.1) should be automatically
a CM function of ρ = − log(x) , regardless of what values the real OPE coefficients take.
In fact, the conformal blocks F are CM functions of ρ for any exchange values (∆, `), as
it can be checked in several examples that we will see later. Since they are combined with
positive coefficients (the C’s are real) the l.h.s. of eq. (1.1) fulfills automatically RP, not
imposing restrictions on the C ′s, as expected from [4]. However, on the rhs, due to the
substitution of x by 1 − x, the conformal blocks F lose generically its CM property. We
will see that, for some region in (∆, `) space of exchange fields, the functions accompanying
the square of the structure constants in the r.h.s. are not CM functions. This means that
RP is not automatically guaranteed on the r.h.s. for arbitrary OPE coefficients. This is
the core of our strategy: the OPE coefficients should be constrained in order to make the
r.h.s. a CM function of ρ (and similarly for η).

These constrains on the OPE coefficients, deduced using the r.h.s. CM property, will
not be stronger than those coming from the CS equality itself. In other words, if we
solve the CS equality, the r.h.s. will be a CM function of ρ (and of η), so the constrains
arising from the mentioned combination of RP and CS are of course already included in the
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full constrains imposed by the CS eq. (1.1). However, this interplay between RP and CS
allows us to have a rough idea of some of the constraints on the space of OPE coefficients
which could be generally more difficult to see in the full program. As we will see, one can
get pictures like the one of figure 2 of section 4.3. There, the upper zone contains those
conformal dimensions contributing with the “incorrect” sign (for being a CM function),
enforcing the presence of at least one exchange field in the lower zone that contributes with
the “correct” sign in order to balance the positivity and ultimately leading to a CM r.h.s. .

Since we will refer many times to the role of the l.h.s. and r.h.s. in the derivation
of constraints, we want to emphasize that there are two distinct aspects of the difference
between them. The first one has to do with the substitution of x by 1−x, whose relevance
will be understood after we review the issue of pd functions of a single variable. The
second difference appears in the more generic case in which we consider 4-points functions
corresponding to spinless fields with two non-equal conformal dimension. In that case,
eq. (1.1) will be replaced by:

G21
21(x) = G11

22(1− x)

Then, there will be two different G’s at both sides in this case. As we will see, the l.h.s. has
a form directly related with a norm of a state, were RP applies, whereas the r.h.s. doesn’t.

We want to stress that this approach does not intend to compete with the standard
ones based on the sum rule, which has already provided a lot of precise estimates on the
conformal dimensions and OPE coefficients and that become more precise as far the com-
putational methods were improved. Our work should rather be considered as a discussion
on the compatibility of CS and RP, showing how (some consequences of) RP is manifest
in the CS constraints and can be used as a shortcut for getting a global idea of the space
of allowed conformal dimensions. In this paper we want to focus on simple cases in order
to explain the main ideas, leaving more involved cases for a future work.

Organization of the paper. In section 2, we recall the general form of RP inequalities
and the material about positive definite functions of single variables with the one-parameter
arrange of points used in [7]. In section 3 we will see the implications of RP in the case
of CFT and check some positivity conditions in the conformal blocks. Then, in section 4,
after a warming up with the Ising model in d = 2, we will present the main strategy of
combining CS and RP, starting from simple examples. Finally, we add some comments
about the potential use of this approach.

2 RP inequalities

In order to keep it simple, we will avoid the use of general test functions, which is the
right way to deal with distributions. For simplicity also, we will consider the case of a 1+1
hermitian scalar fields.

We will use a particular case of RP inequalities as follows: let us consider sequences
X of “length N”, made of N time ordered points:

X = {(t1, r1), (t2, r2), . . . (tN , rN )},
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with 0 < tα < tα+1; ri denote the spacial part. Let us consider M sequences of this kind
Xi = {xi1, . . . xiN}, where we have added the supra index i to each spacetime point. Using
that the Hamiltonian of the QFT is bounded from below, one can define states of the form:

ψi =
N∏
α=1

e−H(t(i)α −t
(i)
α−1)φα(0, r(i)

α )Ω,

where φα stands for differents scalar fields (in the case of a CFT each with conformal
dimension ∆α), Ω for the vacuum state and where we have set ti0 = 0.

The RP inequalities follows then by demanding that the square norm of ψ = ∑M
i=1Ciψi

(Ci arbitrary complex numbers) will be positive:

‖ψ‖2 =
∑
i,j

CiC
∗
j (ψj , ψi) ≥ 0

There are an infinite number of inequalities of this type, since we are free to choose the
sequences Xi appearing in the sum and the coefficients Ci. Let us see how these inequalities
look like in the particular case in which we only allow sequences Xi of length 2:∑

i,j

CiC
∗
j (ψj , ψi) =

∑
i,j

CiC
∗
j (Ω, φ2(0, rj2)e−H(tj2−t

j
1)φ1(0, rj1)e−H(ti1+tj1)φ1(0, ri1)e−H(ti2−ti1)φ2(0, ri2)Ω) ≥ 0

We can see that (ψj , ψi) is the Euclidean continuation of the Wightman function

(Ω, φ2(−tj2, r
j
2)φ1(−tj1, r

j
1)φ1(ti1, ri1)φ2(ti2, ri2)Ω)

i.e, the Schwinger 4-point function S4 evaluated at the points of the composed sequence
Θ(Xj)Xi, where Θ is defined by ΘX = {(−tN , rN ), (−tN−1,−rN−1, . . . .(−t1, r1)}. Θ
makes a reflection in the time coordinate. With this notation, now in general for sequences
Xi of length N , RP states that for any set of complex numbers Ci (i = 1, . . . ,M , M
arbitrary large), it holds:

M∑
i=1

C∗jCiS2N (Θ(Xj)Xi) ≥ 0 (2.1)

There are an infinite number of these inequalities. This kind of inequalities express the
positive definiteness of the quadratic form S2N (Θ(.)(.)) acting on a sequence of time ordered
points Xi.

To be more concrete, let us restrict to the case N = 2, i.e, to RP for the Schwinger
4-point functions:

M∑
i,j=1

C∗jCiS4(Θ(Xj)Xi) ≥ 0 (2.2)

Although we have not used test functions, the choice of each sequence correspond formally
to test functions sharp at the tiα.

We want to convert the positive definiteness of this quadratic form into a positive
definiteness of a function of a single variable, as we did in [7]. Let us make a brief summary
of it below.
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2.1 Positive definiteness of functions of a single variable

The characterization and the properties of positive definite functions of a single variable
have been intensely studied in the early twentieth century, mainly by Schoenberg, Widder
and Bernstein. Several known properties of the vacuum correlation functions in relativistic
QFT are obtained by the applications of some of these results. In this section, we give some
definitions and enunciate key theorems on positive definite functions that are relevant to
our paper. For a complete study of these topics we refer the readers to [8–10] (also see [11]
for a brief account of the main theorems).

There are two notions of positive definiteness for a function of a single variable. The
definition we use here is the following:

Definition 1. A real function f : (a, b) → R is positive definite (pd) if, for any natural
number N and for any choice of points {xi} (i = 1, . . . , N) with xi ∈ (a, b), the matrix M
of coefficients Mij ≡ f(xi+xj2 ) is positive definite.2

Positive definiteness in this sense turns out to be a very restrictive condition. A surprising
consequence of this property is the following: if f : (a, b) → R is positive definite and
continuous in (a, b), then it is C∞(a, b) (even more, it is real analytic there [9]).

Moreover, the derivatives fn(x) of order n satisfy an infinite set of inequalities valid
at any x ∈ (a, b): the N ×N matrices H(N,f) of coefficients

(
H(N,f)

)
m,n

= f (n+m) (n,m =
0, . . . , N − 1) are positive definite,

detH(N,f) =

∣∣∣∣∣∣∣∣∣∣
f f (0+1) f (0+2) .. f (0+N−1)

f (1+0) f (1+1) . . ..

.. .. . .

f (N−1+0) . . . f (N−1+N−1)

∣∣∣∣∣∣∣∣∣∣
≥ 0 (2.3)

for all N ∈ N. Conversely, an analytic function satisfying this infinite set of inequalities
is pd. In fact, the inequalities (2.3) need only be satisfied at one point in (a, b) and then
they are automatically satisfied throughout the interval [11].

An obvious consequence of the definition of positive definiteness is that a pd function
is non-negative. A less obvious consequence is that the even derivatives of a pd function
are also pd (this follows easily from the inequalities (2.3)), and hence non-negative. Note
also from the definition that a linear combination of pd functions with positive coefficients
is also pd.

Simple examples of pd functions are f(t) = eλt for λ a real number. The posi-
tive definiteness can be checked easily both from the definition and from the inequali-
ties (2.3). The definition of pd function requires that ∑i,j=1...N cicjf( ti+tj2 ) ≥ 0. In this
case, ∑i,j=1...N cicjf( ti+tj2 ) = (∑i=1...N cie

λti
2 )2 ≥ 0. Therefore, f is pd. Checking the

inequalities is trivial since all the determinants are just 0. Linear combinations of expo-
nential functions with positive coefficients will also be pd. In particular, a constant function
f(t) = c, with c ≥ 0 is a pd function.

2The other notion of positivity of a function arises when considering Mij = f (|xi − xj |) instead.
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Pd functions are closely related to absolutely monotonic (AM) and completely mono-
tonic (CM) functions, whose definitions are the following:

Definition 2. A function f is said to be absolutely monotonic (AM) if f (n) ≥ 0 for all
n = 0, 1, . . . and completely monotonic (CM) if (−1)nf (n) ≥ 0 for all n = 0, 1, . . . .

Note that the exponential f(t) = eλt is AM for λ > 0 and CM for λ < 0. A pd function
can always be written as the sum of an AM function and a CM function. This follows from
a classical theorem (see [9],Theorem VI.21), which states that a function f on (a, b) is pd
if and only if it admits the following integral representation:

f(t) =
∫ ∞
−∞

e−λtg(λ)dλ =
∫ 0

−∞
e−λtg(λ)dλ+

∫
0

∞
e−λtg(λ)dλ (2.4)

where g is non-negative (strictly speaking, g(λ)dλ has to be understood as a Borel measure).
Note that the first term on the r.h.s. side above is AM and the second term is CM.

Most important for this paper are the pd functions defined on (0,+∞) (or more gen-
erally on any interval of the form (a,+∞)) which are bounded at infinity. From the de-
composition (2.4) it follows that such functions are necessarily CM.

Roughly speaking, this is because the first term in (2.4) diverges as t → ∞, so this
term must be absent in order for f to be bounded at infinity (for a technical proof of this
see [8]). Conversely, it can be shown [9] that any CM function on (0,+∞) admits the
integral representation of the second term in (2.4), and hence it is pd. In other words, the
space of pd functions on (0,+∞) which are bounded at infinity is equal to the space of CM
functions on the same interval.

This equivalence gives rise to additional inequalities to the ones given by equation (2.3),
which come from the obvious fact that, if f is CM, then −f ′ is also CM. Using this and
the above equivalence, we conclude that, for f pd on (0,+∞) and bounded at infinity, −f ′
is also pd.

The additional inequalities arise from substituting f by −f ′ in (2.3):

detH(N,−f ′) = (−1)N

∣∣∣∣∣∣∣∣∣∣
f ′ f ′(0+1) f ′(0+2) .. f ′(0+N−1)

f ′(1+0) f ′(1+1) . . ..

.. .. . .

f ′(N−1+0) . . . f ′(N−1+N−1)

∣∣∣∣∣∣∣∣∣∣
≥ 0 (2.5)

Thus, pd functions on (0,+∞) which are bounded at infinity are characterized by two
equivalent sets of conditions: (i) (−1)nf (n) ≥ 0 and (ii) equations (2.3) and (2.5). The
first set of conditions appears to be much simpler than the second, but the second is more
useful in some cases.

Having these tools in mind, let us come back to the issue of RP. What we will do next
is to impose further restriction to the sequences Xi mentioned in the previous subsection.
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Figure 1. Left η-type, right ρ-type sequences.

2.2 RP applied to one-parameter aligned arrange of points in d dimensions

Let us consider a sequence of aligned points in a euclidean d-dimensional space, in the
direction of the coordinate “t”. Then, we can write: Xi = {ti1, ti2, . . . tiN}, with the time
coordinate ordered as 0 < tα < tα+1. The main idea is to take a family of sequences
{Xi} such that, given a single real parameter λ(i) that defines univocally the sequences,
the quantity S2N (Θ(Xj)Xi) will then be a function of a “sum variable” λ = λ(i) + λ(j).
If that is possible for the chosen family, then we can apply the machinery for a positive
definite function of a single variable S2N (λ) reviewed above. Restricting ourselves to length
2 sequences, there are two natural families (see figure 1):

1. First family (η-type): Xi = {ti, ti + L}, ti > 0, L > 0.

2. Second family (ρ-type): Xi = {d0, d0 + Li}, d0 > 0, Li > 0

The names refers to the parameters that will be introduced soon. In the first one,
the two points of each sequence are separated by a fixed quantity L, and the single real
variable that defines each sequence in this family is ti.

In the second one, the separation is not fixed but the closest point to the origin is the
same: d0. The one parameter that identifies each sequence is Li.

As we said before, one can consider that these two families correspond (formally) to a
special choice of sharp test function. Let us see how the additive property holds in each
family.

In the first one, it is enough to use invariance under time translation:

S4(Θ(Xj)Xi) = S4(−tj2,−t
j
1, t

i
1, t

i
2) = S4(0, tj2 − t

j
1, t

j
2 + ti1, t

j
2 + ti2)

= S4(0, L, tj1 + ti1 + L, tj1 + ti1 + 2L) = F (ti1 + tj1) (2.6)

In this case, the Schwinger functions appearing in the RP inequalities are functions of the
sum of the starting points of each sequence, since L is a fixed parameter. It is important
to mention here that the first family has this property in any QFT, not just in CFT.

For the second family, it is not immediate to identify the pd function of the sum of the
parameters. In fact, in a general QFT there is not such function. However, we will see in
the next section that in CFT the conformal invariance will allow us to rewrite the 4-point
function S4(Θ(Xj)Xi) as a function of the sum of the parameter log

(
2d0
Li

+ 1
)
.
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3 RP of the 4 point function in CFT

In a general CFT the 4-point function S4(x1, x2, x3, x4) corresponding to 4 scalar fields
of conformal dimensions ∆i (i = 1 . . . 4) can be written in terms of a function g21

34 (that
depends on the order of the fields) of two cross-ratio u and v defined by: u = x2

12x
2
34

x2
13x

2
24

and

v = x2
14x

2
23

x2
13x

2
24
. Here xij is the distance between the points xi and xj in the d-dimensional

Euclidean space.

S4(x1, x2, x3, x4) =
(
x2

24
x2

14

) 1
2 ∆12 (

x2
14
x2

13

) 1
2 ∆34

g21
34(u, v)(

x2
12
) 1

2 (∆1+∆2) (
x2

34
) 1

2 (∆3+∆4)
, (3.1)

where ∆ij = ∆i −∆j .
As we mentioned in the previous section, we want to focus on the case in which the 4

points are aligned with x1 < x2 < x3 < x4 and where in order to write the RP inequality
of eq. (2.1) with N = 2, we need to restrict to the case ∆1 = ∆4 and ∆2 = ∆3. This 4
points are identified with the tiα as: x1 = −tj2, x2 = −tj1, x3 = ti1, x4 = ti2. The Schwinger
function (3.1) can be written in terms of a single cross-ratio x =

√
u (since in this case

v = (1− x)2) as follows:

S4(x1, x2, x3, x4) =
(

(1− x)2

x

)∆21

(x2
23)−∆21(x2

12x
2
34)−∆1g21

21(x) (3.2)

The positive definiteness requires then that: ∑i,j CiC
∗
jS4(−tj2,−tj1, t

i
1, t

i
2) ≥ 0.

Depending on the one parameter arrangement of points given by the ti, this condition
will be equivalent to the positive definiteness of a single variable function associated with
each arrangement. Let us consider the two family of sequence introduced before

3.1 Positivity conditions in the ρ-family

In the ρ-family, it is not obvious that S4(Θ(Xj)Xi) becomes a function of the sum of
a suitable parameter of Xj and Xi. In order to see that, let us define the parameter
ρi = log(2d0

Li
+ 1). The cross-ratio x associated with the 4 points in the sequence Θ(Xj)Xi)

becomes then x = e−(ρi+ρj) = e−ρ, with ρ the sum variable. Evaluating (3.1) in this
particular case, we find:

S4(x1, x2, x3, x4) = S4(−tj2,−t
j
1, t

i
1, t

i
2)

=
(

(1− x)2

x

)∆21

(2d0)−2∆21(LiLj)−2∆1g21
21(x)

(3.3)

The positive definiteness requires that ∑i,j CiC
∗
jS4(−tj2,−tj1, t

i
1, t

i
2) ≥ 0. Since the Ci

are arbitrary numbers, and x is the product e−ρie−ρj , one can redefine

C̃i =
(
eρi

2d0

)∆21

Li
−2∆1Ci

– 9 –
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and conclude that
(1− x(ρ))2∆21g21

21(x(ρ)) (3.4)

is pd as a function of ρ = − log(x). Moreover, since it is bounded as ρ→∞, it has to be a
CM function. This is equivalent to say that it should have a positive Laplace anti-transform
and then the coefficients bn in the formal expansion:

(1− x)2∆21g21
21(x) =

∑
n

bnx
n =

∑
n

bne
−nρ (3.5)

should be all non-negative (where n denotes a generic non-integer power). This coefficients
are not identical to the ones of g, since there is a prefactor (1−x)2∆21 . If we write formally
g21

21(x) = ∑
m amx

m and insert the expansion:

(1− x)2∆21 =
∞∑
l=0

(−2∆21)l
xl

l!

where (−2∆21)l is the Pochhammer symbol, the previous positivity conditions implies that
the coefficients bn:

bn ≡
∑

l+m=n
(−2∆21)l

am
l! (3.6)

must be non negatives.
Although these conditions seem different from the proven positivity of the coefficients

of the expansion of g itself mentioned previously in the literature (see appendix A of [12]),
it can be seen that both are equivalent conditions. If we use the symmetry of the 4-point
function under permutation 1 ↔ 2 and 3 ↔ 4, one can easily check that this implies the
following identity:

(1− x)2∆21g21
21(x) = g12

12(x) (3.7)

Using this equality one can see that (1−x)2∆21g21
21(x) is a CM function of ρ for all values of

∆1 and ∆2 if and only if g12
12(x) is a CM function of ρ. And this last condition is equivalent

to demanding that the coefficients “a” appearing in the expansion of g in powers of x also
must be non-negatives, in agreement with [12].

3.2 Positivity conditions on the η-family

If we choose as the parameter defining the sequences Xi in the η-family the normalized
distance ηi = ti/L, one can see that the cross-ratio x is a function of the sum variable
η = ηi + ηj : x = 1

(1+ηi+ηj)2 = 1
(1+η)2 . We can also check that this is the case for the other

factors in (3.2) and it give us:

S4(x1, x2, x3, x4) = L−2∆1−2∆2

(
(1− x(η))2

x(η)

)∆21

η−2∆21g21
21(x(η)) (3.8)

that has to be a pd function of the variable η. Moreover, since this is bounded as η →∞,
it implies that:

S4(x1, x2, x3, x4) = L−2∆1−2∆2

(
η + 2
η + 1

)2∆21

g21
21

( 1
(η + 1)2

)
, (3.9)
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has to be completely monotonic (CM) as function of η. Note that (3.9) differs from (3.4)
in the factors in front of g.

From the ρ case in section 3.1 we see that g21
21(x) has a power expansion with posi-

tive coefficients of x = 1
(1+η)2 . For any positive number α,

(
1

(1+η)2

)α
is a CM function.

Therefore as g21
21(η) is a combination of CM functions with positive coefficients. So when

∆21 = 0 the positivity conditions of the ρ case imply that the conditions in the η case are
also fulfilled.

In the general case of ∆21 6= 0, we need to take into account the extra factor:
(
η + 2
η + 1

)2∆21

=
(

1 +
√
x(η)

)2∆21

that differs from the factor (1−x)2∆21 appearing in the positivity conditions (3.4) of ρ. So
in order to study the CM character of (3.9), it is convenient to consider two separated case.

Case ∆2 > ∆1. Let us recall the form of the function (3.9) which should be CM as a
function of η:

S4(x1, x2, x3, x4) =
(
η + 2
η + 1

)2∆21

L−2∆1−2∆2g21
21(x(η))

Using the definitions and theorems of section 2.1, one can see that
(
η+2
η+1

)2∆21 is a CM
function. This can easily be done by showing that its logarithm (when ∆21 > 0) is a CM
function and so it will also be its exponential.

Therefore, S4 is a CM function of η, as it is a sum with positive coefficients in which
each term is a product of CM functions,

(
η+2
η+1

)2∆21 ( 1
(1+η)2

)α
.

Case ∆2 < ∆1. This case is more involved, since in this case
(
η+2
η+1

)2∆21 is not a complete
monotonic function. So, the CM character of S4 is not guaranteed by the positivity of
coefficients in g, meaning that in this case we have extra conditions. The CM character of
S4(η) means that:

(−1)nS(n)
4 (η) ≥ 0,

or equivalently, that its Laplace anti-transform is non-negative.

3.3 Checking positivity of coefficients in conformal blocks

In this subsection, we want to see how the previous considered positivity conditions are
fulfilled in the conformal block itself. We will focus in the particular case of 2d CFT,
considering all the Virasoro descendants. In this 2 dimensional case the check can be done
in an elegant way and we use it to illustrate the idea, but this positivity checks can be
done, at least numerically, for conformal blocks in general dimensions.

Now, we use the conformal block decomposition of g:

g21
34(x, x̄) =

∑
p

Cp34C
p
12F

21
34 (p|x)F̄21

34 (p|x̄), (3.10)
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where

F21
34 (p|x) = xhp

+∞∑
k=0

F
(p)
k xk

F̄21
34 (p|x̄) = x̄h̄p

+∞∑
k=0

F̄
(p)
k x̄k,

(3.11)

where x and x̄ are the holomorphic and antiholomorphic cross-ratios, that are equal when
the points are aligned and ordered, and ∆p = hp + h̄p, `p = hp − h̄p are the conformal
dimension and spin of the exchange fields.

RP inequalities applies in the case in which 1 = 4 and 2 = 3. In this case, we have:

g21
21(x, x̄) =

∑
p

(Cp12)2F21
21 (p|x)F̄21

21 (p|x̄), (3.12)

As we have mentioned in the introduction, we known from [4] that RP is automatically
fulfilled in the 4-point functions, without restricting the OPE coefficients or the field di-
mensions (besides unitary bound and reality of the OPE coefficient). Then, from the simple
fact that the C’s appears as C2 and they are real, from the positivity of the coefficients
of g we conclude that the conformal blocks should also have an expansion with positive
coefficients, because if not, there will be further restrictions on the CFT data.3 This can
be checked explicitly using the exact form of the conformal blocks.

3.3.1 ρ-family

Let us consider the implications of RP for the ρ-family and let us check this in the two
dimensional case with invariance under local conformal transformations where we have the
closed form of the coefficients. In this case the function F admits the following form:

F (c, hi, hp, x) =
∞∑
q=0

xhp+qχq (c, hi, hp) 2F1

[
hp + q + h21, hp + q + h21

2 (hp + q) ;x
]

(3.13)

where the q-sum is over the contribution of the descendants (see for instance, eq (2.11)
of [13]), and the antiholomorphic function F̄ admits an analogous expression.

The coefficients χq (c, hi, hp) are algebraic expressions completely determined by the
conformal symmetry.

Because of the form of hypergeometric functions

2F1

[
a, b

c
;x
]

=
∞∑
n=0

(a)n(b)n
(c)n

xn

n! (3.14)

we see that the coefficients of the hypergeometric functions are positive since a = b =
hp + q + h21 =real, and so (a)n(b)n = (a)2

n ≥ 0, together with c being positive because h
and q are positive, the coefficients of the 2F1 expansion are positive. The same happens
with the antiholomorphic version of (3.13). As χ is positive, then the coefficients in the

3Actually, what appears is Cp21C
p
12 = (−1)`pC2

12, where `p is the spin of the exchange field. The minus
sign for odd spin cancels with other minus from the conformal blocks.

– 12 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
1

power expansions of g are positive too. Then by (3.7) equality, also the bn coefficients
in (3.5) are positive and the positivity condition coming from RP holds.

In fact, the positivity of the bn coefficients can also be checked directly from the
expression

(1− x)2(∆2−∆1)g21
21(x)

and some properties of the hypergeometric functions 2F1. While g has non-negative coeffi-
cients, the first factor (1−x)2(∆2−∆1) contains terms with negative coefficients if ∆2 > ∆1.
This leads to the possibility that some bn coefficients in (3.6) may be negative, and then
have more restrictions comparing to [12]. As we have seen, this is not the case. To check
that all bn are indeed positive it will be useful to decompose

(1− x)2(∆2−∆1) = (1− x)2(h2−h1)(1− x)2(h̄2−h̄1) (3.15)

Let us see the holomorphic part of eq. (3.12) using eq. (3.11): multiplying (1−x)2(h2−h1)F
inside the sum:

(1− x)2(h2−h1)
2F1

[
hp + q + h21, hp + q + h21

2 (hp + q) ;x
]

=2F1

[
hp + q − h21, hp + q − h21

2 (hp + q) ;x
] (3.16)

where in the last equality we use an hypergeometric identity. Because of the form of
the hypergeometric function (3.14), again we see that the coefficients are positive, since
a = b = hp + q − h21 = real, and so (a)n(b)n = (a)2

n ≥ 0, together with c being positive
because h and q are positive, the coefficients of the 2F1 expansion are positive. The same
happen with the antiholomorphic part.

Then, despite the potentially negative contribution of the prefactor (1−x)2(h2−h1) the
coefficients in (1 − x)2(h2−h1)F turn to be non-negative. The final step in the proof is to
check that the factors χq (c, hi, hp) does not spoil this positivity. It is easy to see if we look
at the equation 2.12 of [13].

So, the Virasoro conformal blocks are fixed by symmetry and we saw that these stronger
positivity conditions are already fulfilled in each conformal block separately. Since g is a
combination of conformal block weighted by positive coefficients (the square of the OPE
coefficients) the RP restricted to this family of sequences are automatically fulfilled without
imposing any further restrictions to the OPE coefficients beyond unitary bound.4

3.3.2 η-family

As we said before, the only non-trivial case is ∆21 > 0. This case can be checked explicitly
in several examples. The positivity condition can be state in the form(

1 +
√
x(η)

)2∆21

g21
21(x(η)) =

∫ +∞

0
F (s)e−sηds (3.17)

with F (s) ≥ 0 and as before x(η) = 1
(η+1)2 .

4Similarly, in the d dimension using the closed form of the conformal blocks [14], one can check also that
the positive conditions are fulfilled.
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This is a less obvious example of a positivity condition implied by RP, different from
the positivity condition of the coefficients of g showed above in section 3.3.1 and previously
in [12].

4 Combining crossing symmetry with reflection positivity

4.1 Warming up with 2d Ising model

The strategy can be understood in the following pedagogical example. Let us consider the
Ising model in d = 2, which is a minimal model corresponding to c = 1

2 with three spinless
primary fields of total conformal dimension ∆ = h+ h̄ = 0, 1/8, 1 (h = h̄). As usual, let us
denote these fields with 1, σ, ε respectively. The OPE coefficients are partially determined
by the fusion rules, which says in particular that:

[σσ] = [1] + [ε]

It means that the OPE coefficients C [σ]
σσ = 0. C [1]

σσ can be normalized to 1 while C [ε]
σσ (C

from now on) is not fixed by the fusion rules alone. However, the value of C is completely
fixed by CS, which impose that:

Gσσσσ(x) = Gσσσσ(1− x) 5 →
x−2∆σ(F σσσσ [1](x) + C2F σσσσ [ε](x)) = (1− x)−2∆σ(F σσσσ [1](1− x) + C2F σσσσ [ε](1− x))

The F σσσσ [1] and F σσσσ [ε] are the conformal blocks corresponding to the exchange fields 1
and ε, which are completely fixed by general properties of the CFT:

F [1](x) = 1
(1− x) 1

4
(1 +

√
1− x)

F [ε](x) = 1
(1− x) 1

4
(1−

√
1− x)

(4.1)

where we have suppressed the index σ.
Witting down the r.h.s. of te CS equation:

rhs = 1
(1− x) 1

4
(1 + C2 + (1− C2)

√
x) (4.2)

one can see that, in order to get a CM function of ρ in the rhs, the coefficient of
√
x must

be not negative: C2 ≤ 1.
This example illustrates the main idea of this paper: the l.h.s. is automatically CM,

since the conformal blocks itself satisfies this conditions and they are combined with non-
negative coefficients. Then the r.h.s. should be a CM function of ρ as well. But this is not
guaranteed by the form of the conformal blocks. In fact, the first term is a CM function of
ρ but the second term is not. This imposes an upper bound to the non-CM term, which
in this case turns to be C2 ≤ 1. Let us formulate the procedure in the more complicated
case where we have an infinite number of OPE coefficients.

5In general, G is related to g, by G21
34(x) = x−(∆3+∆4)g21

34(x).
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4.2 General procedure in the d-dimensional CFT

Let us write again the crossing symmetry equation for four identical scalar fields of confor-
mal dimension ∆0, but now isolating the contribution of the identity at both sides:

1
x2∆0

1 +
∑
∆,`

C2
∆,` F

∆,`(x)

 = 1
(1− x)2∆0

1 +
∑
∆,`

C2
∆,` F

∆,`(1− x)

 (4.3)

where the sum is over all conformal dimension ∆ (except the identity ∆ = 0) and spin ` of
the exchange fields, and we have simplify the notation in the C’s suppressing the external
field label ∆0.

We can see that in the r.h.s. we have the conformal block corresponding to the identity,
i.e., the term 1

(1−x)2∆0 . This term is already a CM function and therefore does not help in
our strategy of bounding the OPE coefficients demanding the r.h.s. to be CM. As adding a
pd function would lead to less constrains, it is better not to have pd functions in the r.h.s. .
So, to get a CM lhs, and a r.h.s. without the contribution of the identity, our strategy will
be to rewrite the equation in the following way:

1 + 1
1− ( x

1−x)2∆0

∑
∆,`

C2
∆,` F

∆,`(x) = x2∆0

(1− x)2∆0 − x2∆0

∑
∆,`

C2
∆,` F

∆,`(1− x) (4.4)

In the l.h.s. we have a sum of CM functions of ρ = − log(x) for ρ > log(2), this can be
checked by noticing that the factor

1
1− ( x

1−x)2∆0
= 1

1− ( e−ρ

1−e−ρ )2∆0

is a CM function of ρ in this region.
Now, we are ready to formulate our strategy in a precise way demanding that the r.h.s.

of eq. (4.4) must be a CM function of ρ.6 If we call:

F̃∆,`(ρ) ≡ x2∆0

(1− x)2∆0 − x2∆0
F∆,`(1− x), with x = e−ρ

to each contribution in the r.h.s. of eq. (4.4), one can formulate that the entire r.h.s. could
be CM in three equivalents ways:

1. Linear and local inequalities. The formal sum of the n order derivatives of each
contribution should be non-negative: (−1)n∑∆,`C

2
∆,` F̃

(n)
∆,`(ρ) ≥ 0

2. Non Linear local inequalities. The determinants of order N , equations (2.3), (2.5),
of the complete rhs, should be non-negative. This inequalities should hold for every
value of ρ ∈ (log(2),+∞)

3. Linear but global analysis. The Laplace anti-transform must be non-negative, i.e.
the expansion in e−λρ (for λ > 0) should have non-negative coefficients.

6No new restriction will come from the complete monotonicity of η because, as said before, CM in ρ

imply CM in η when all four fields are identical.
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4.3 Linear analysis of the rhs

The conformal blocks corresponding to external spinless fields in d-dimensions, for the case
relevant for us in which the 4 points are aligned were found in closed form in [14].

Using these results, let us consider first the conformal block corresponding to spinless
exchange fields: (

x2

(1− x)

)∆/2

3F2

[
∆
2 ,

∆
2 ,

∆
2 −∆min

∆+1
2 ,∆−∆min

;− x2

4(1− x)

]
where ∆min = d−2

2 corresponds to the minimal conformal dimension of a spinless field.
According with the previous discussion, the contributions of spinless fields in the r.h.s.

of the rewritten CS is a sum, weighted by non-negative coefficients, of the following function:

F̃∆,0(ρ) = x∆0

1− ( x
1−x)2∆0

(
(1− x)2

x

)∆/2−∆0

3F2

[
∆
2 ,

∆
2 ,

∆
2 −∆min

∆+1
2 ,∆−∆min

;−(1− x)2

4x

]

The necessary condition for the r.h.s. to be a solution of the CS equation is:

(−1)n
∑
∆
C2

∆F̃
(n)
∆,`(ρ) ≥ 0 (4.5)

being F̃ (n) de n-derivative respect to ρ = − log(x). Let us ignore for the moment the
contribution of all the other spins in the rhs, which in this case are only even.7

This is a family of (formal) inequalities, which impose restriction on the C’s since most
of the terms individually does not fulfills the inequalities.

Let us consider for example the case d = 4, looking only at spinless exchange fields just
to understand the idea. In figure 2 we have displayed the area in the plane {∆0,∆} where
the first derivative of F̃ is negative(grey) or positive(blue). So, for n = 1, as the complete
sum in (4.5) must be positive, and because C2

∆ > 0, necessarily at least one of the exchange
field in the grey region must have a non-vanishing structure constant associated to ∆0. It
means that the minimum ∆ value of the exchange fields is bounded by the border line of
the blue-gray regions, because only in the gray region the first derivative of F̃ has the right
sign (negative) for a CM function.

Actually, one needs to include the contributions coming from all exchange fields with
even spins. For a given ∆0, it is needed a ∆ value in the gray region of any of the plots
like those in figure 3, where we have shown only the first spin contributions. For ∆0 close
enough to 1, the previous conclusion can be strengthened. Looking for instance to values
of ∆0 in (1, 1.4), one can conclude that it should appear an exchange field contribution of
spin ` = 0 or ` = 2, with its conformal dimension in the gray area. This can be seen by
checking that in higher spin plots the border blue-gray line moves to the right as the spin
increase, as it happens from ` = 4 to ` = 8 in the figure.

In order to turn this numerical argument into a rigorous one, we need to prove that
all the infinite higher spin conformal blocks contribute with a derivative of wrong sign. We

7That is because one can see that, for spinless fields i, j, the OPE coefficients obey Ckij = (−1)`kCji,
where `k denote the spin of the exchange field k. In this case, i = j, so the OPE coefficient vanishes when
`k is odd. See for example, equation 2.2.48 in [15].
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Figure 2. The blue region is the set of pairs of conformal dimensions (∆0,∆) such that the
contribution of a spinless exchange field in the r.h.s. fails in its first derivative to be a CM function.
∆0 is the dimension of the external field in the 4 point function of 4 identical scalar fields. Since
the entire r.h.s. should a pd function, it is required the presence of exchange fields in the gray area.
The dotted line correspond to ∆ = 2∆0 was given just as guide for the eye.

don’t have an analytical proof of this, but we checked it numerically for high values of even
spin (from ` = 2 to ` = 50). A simple way to be convinced of this, is that as ` ≥ 4 increases,
the region of ∆0 with no ∆ with correct (negative) first derivative sign also increases. For
` = 0, 2 for any ∆0 there is always a ∆ with the correct first derivative sign, but for higher
spins, considering unitary bound (∆ ≥ `+ d− 2), there are regions of ∆0 that don’t have
any ∆ with correct first derivative sign. For example looking at the plots in figure 3, this
region for l = 4 is ∆0 ∈ (1, 1.4), for l = 6 is (1, 1.9) and for l = 8 is (1, 2.4), approximately.
This tendency is observed for all the plots of higher spin values evaluated. Nevertheless, for
example, one can also state, that “for ∆0 approximately in (1.4, 1.9) at least one exchange
field contribution in the greys areas of spin ` = 0 or ` = 2 or ` = 4 should be present”, this
is because in this region, for ` ≥ 6 there is no ∆ with the correct first derivative sign, but
there is for ` = 0, 2, 4. One can make similar statements for other ∆0 regions.

Until now, we have focused in the first derivative linear analysis, but as we have said
before, the complete RP analysis involves all derivatives. We can repeat the linear analysis
for higher derivatives. The plots for derivatives from order two to five can be seen in figure 4.
From this linear analysis, we observe that no restriction comes from even derivatives. This
is because it is expected a CFT theory to have exchange fields of high conformal dimensions
in its spectrum that compensate for the mismatch in the behavior as x→ 0 at both side of
the CS equation (see for example section 3.1 in [16]). As all the upper regions for the even
derivatives are gray, this means that there will always be an exchange field with a correct
signed even derivative. So no restrictions will come from even derivatives.8 On the other
hand, for odd derivatives, we can state that there must be at least one exchange field below

8Higher order derivatives involves very intensive time consuming calculations, but we don’t expect any
change of behavior for derivatives higher that the ones showed at figure 4.
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2 4 6 8 10

10

15

20

25

30

(b) ` = 4
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(d) ` = 8

Figure 3. Similar regions as in figure 2, but for exchange fields of higher spins.

the upper blue region in the gray areas of each odd derivatives. The positivity conditions
for each derivative are independent. For example, there could be only one exchange field
at the intersection of all gray areas to assure the correct sign of all derivatives, but that is
not necessary.

We didn’t find yet a wise way to make the analysis for arbitrary higher derivatives.
We think that stronger constraints will come from the non linear local analysis and the
global analysis using the asymptotic expansion of the next section.

It is interesting to compare this RP analysis with the bound for the minimum needed
conformal dimension of the exchange fields founded originally in [5], which was improved
in [17]:

∆ ≤ 2 + 0.7(∆0 − 1)1/2 + 2.1(∆0 − 1) + 0.43(∆0 − 1)3/2

This limiting curve, valid for ∆0 = near 1 (the dimension of the free scalar field in d = 4)
is always above the dotted line of figure 2 and below our limiting curve. This inequality
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(a) 2nd derivative
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(b) 3rd derivative
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(c) 4th derivative
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(d) 5th derivative

Figure 4. Similar regions as in figure 2, but for higher derivatives of F̃ . Gray areas are the ones
with “correct” signed derivative in each case (negative for odd derivatives and positive for the even
ones). The blue regions are those with “wrong” signed derivatives.

says that it should exist a non vanishing OPE coefficient corresponding to a conformal
dimension of an spinless exchange field satisfying that bound.

As we have anticipated, the restriction obtained by the sum rule is stronger that the
one obtained here.

4.4 Asymptotic expansion

Let us now discuss the positivity using the second approach, based in demanding that the
expansion in powers of e−λρ will have positive coefficients. We meet with some issues here
that we will face in a future work. The main difficult is in the fact that, besides terms of
the form e−λρ, we also have terms like ρe−λρ. We will refer to these terms as “logarithmic
terms” because they came from the logarithmic terms present in the asymptotic expansion
of the hypergeometric functions of the conformal blocks (see the log terms in equations (A.7)
and (A.9) of the appendix).
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In the conformal blocks (for any even spin) it appears hypergeometric functions of
the form:

3F2

[
∆
2 ,

∆
2 + r, ∆

2 − ε
∆
2 + r + 1

2 ,∆− ε
;Z
]
, (4.6)

with r an integer number from 0 to n (` = 2n for even spin `, n ∈ N) and Z = x2

−4(1−x) ,
being x the cross-ratio, that after the exchange x→1−x, becomes ZR= (1−x)2

−4x for the r.h.s.
What we need is an expansion for large value of ρ, which means ZR large. So, we

need an expansion valid for ZR ∈ (∞,−1). In appendix A, we discuss how we get this
expansion.

We want to consider how the term ρe−λρ spoils the complete monotonicity and how it
could be canceled once the infinite number of exchanges fields are included.9

Let us analyze the function f(ρ) = ρe−λρ in the interval (ρ0,∞) , with ρ0 some positive
value. One can see that this is a non CM function, since the derivative of order n has the
wrong sign for ρ < n

λ . Despite this, one can expect that the sum of several terms like this
one, together with terms like e−λρ, with different coefficients and different values of λ, will
be combined to give a CM function.

One can prove that a sum of a finite number of such terms can not give a CM function.
However, it is known that there will be an infinite number of primary both side of the
CS equation. This was pointed out several times in the literature. See for instance the
comments on section 10.3 in [18] or section 3.1 in [16]. The argument is based on the
mismatching in the behavior as x → 0 in both side of the CS equality in each conformal
block. We encounter here the need of the infinite number of primaries, motivated by the
impossibility of having a CM function in the r.h.s. considering only a finite numbers of
conformal blocks.

It will be interesting to know then, under what conditions of the CFT data the infinite
sum in the r.h.s. of the CS equation becomes a CM function, i.e. an expansion of only
terms like e−λρ with positive coefficients. We leave this for a future work.

4.5 Case of non equal external spinless fields

Now, one can consider the more interesting case in which the 4-point function involves two
different spinless field of dimensions ∆1 and ∆2. The reason why this is a more interesting
case comes from the fact that different structure constants appear on both sides of the
equality:

1
x∆1+∆2

∑
p

(−1)`pC2
12F

21
21

(p)(x) = 1
(1− x)2∆2

∑
p

Cp11C
p
22F

11
22

(p)(1− x) (4.7)

where `p is the spin of the exchange field,10 and is to be noticed that in the r.h.s. only
exchange fields with even spin appear.

9Notice that these type of terms comes from the logarithmic terms shown in the appendix. Schematically,
the first part of the kth-term in (A.7) and (A.9) becomes Z−kR log(−ZR) ∼

∑
λ,β

ρe−λρ + be−βρ.
10One can be worried about the positivity of the coefficients on the lhs, but the minus sign for odd spin

exchange fields coming from (−1)`p is compensated with an equal one coming form the conformal blocks
F 21

21
(p)(x).
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One can see that in the right hand side the OPE coefficients appears in the form Cp11C
p
22,

which is not a priori positive. Therefore, in the subsequent analysis, we need to take into
account the unknown sign of this combination in addition to the conformal dimension
and spin which labels the conformal blocks. This introduce more freedom, making the
constrains weaker.

When one considers CFT in d greater than 2, since the F bacd
(p) depend only on the

difference ∆a −∆b and ∆c −∆d, in the r.h.s. we have a simple (with known closed form
conformal blocks) version of the CS equation:

1
x∆1+∆2

∑
C2

12F
21
21

(p)(x) = 1
(1− x)2∆2

∑
Cp11C

p
22F

(p)(1− x), (4.8)

where by “simple” we mean that now, F (p) in the r.h.s. is known in closed form as it is the
same conformal block seen before which appears in the case in which all external fields are
identical.

Now, we can repeat the previous procedure leading to the CM character of:

x∆1+∆2

(1− x)2∆2 − x∆1+∆2

∑
p

Cp11C
p
22F

(p)(1− x) (4.9)

when x is such that (1−x)2∆2 −x∆1+∆2 > 0. These conditions hold for x less than certain
x0, determined by the condition (1− x)2∆2 = x∆1+∆2

In contrast with the approach based on the sum rule, here one can derive inequalities
for a quantity involving only Cp11C

p
22 and not Cp12, and as only the r.h.s. is involved in the

constrains, then only the functions for even spins F (p) (which are available in closed form)
are used. Also, there is no need to calculate the conformal blocks present in the l.h.s. that
are only known from recurrence relations and more computational power is required to
calculate them and its derivatives numerically.

It is important to remark that in this case, when the external conformal dimensions are
not equal, the η-inequalities are not implied by the ρ-types. So, both types of inequalities
should be considered. We left for a future work the study of this case.

5 Final remarks

We have introduced a reflection positivity approach that can be thought of as a comple-
mentary tool to the main one based on the sum rule [5]. The main point of this paper
was to show that RP itself is a strong condition which contains an important part of the
restrictions imposed by the full CS equality (1.1). The key observation was that, in con-
trast with the l.h.s. of eq. (1.1), the r.h.s. does not fulfill automatically RP for an arbitrary
choice of OPE coefficients.

We have started our discussion with the case in which all the external fields (scalars
fields) have the same conformal dimensions. When there is a pair of non-equal conformal
dimensions, this RP based approach becomes more useful since it leads to constrains involv-
ing only the OPE coefficients and the conformal blocks (which are known in closed form)
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of the r.h.s. In other word, in this case the r.h.s. becomes considerable simpler (with con-
formal blocks in closed form and absence of odd spin of exchange field) and this approach
allows to disentangling the l.h.s. from this.

One important aspect of this approach was the use of simple inequalities arising by the
applications of RP to one-dimensional arrange of points, used by us in [7]. Instead of using
the full RP inequalities, we had to deal only with positive definite functions of a single
variable and, in particular, with complete monotonic functions of a variable related with
the real cross-ratio. Two different arrange of points lead to ρ = − log(x) and η = 1√

x
− 1

as suitable parameters.
As we have mentioned in section 4.2, the complete monotonic character of a function

can be expressed in three different ways. We have focused mostly on the linear inequalities,
which say that all even (odd) derivatives of rhs, as function of ρ = − log(x) (an also of the
variable η), should be positive (negative). We expect that a more exhaustive use of the
RP positivity on the rhs, i.e., the use of the asymptotic expansion in e−ρ and/or the use
of the non-linear inequalities, will lead to an improved version of the constraints described
here. A good illustration of the power of the non-linear analysis vs the linear one, can be
seen in this simple example:

f(x) = (50 + x)e−x

This is a non complete monotonic function. However, if one analyze only the signs of its
derivative, would not realize this until computing the 51-th derivative!. In contrast, the
computation of determinant (2.3) of order N = 2 gives: −e−2x which immediately shows
that f is a non cm function. These type of functions appears in the asymptotic expansion
analyzed in section 4.4.

As a by product, we have seen how RP applied on the l.h.s. (where RP is automatically
fulfilled) can be useful for uncovering positivity conditions of the conformal blocks which
could not be evident. We see how RP applied to different configurations of points lead
to positivity conditions for coefficients appearing in the conformal block multiplied for
different factors, depending on the arrangements under consideration.

The inequalities of η-type are the less obvious and go beyond the positivity of the
coefficients in the x expansion that was first mentioned in [12]. It is important to recall that
η variable has the meaning of a distance, as is displayed in figure 1, and the corresponding
inequalities are also valid for a 4-point of a general QFT.
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A Conformal Block asymptotic expansion

In [14], it has been found the closed form of the conformal blocks in any dimension (d),
for the case of four external scalars with ∆12 = 0, ∆34 6= 0. In general, if we have two
different scalar fields in the l.h.s. of the CS equation 〈φ1φ2φ2φ1〉, then the r.h.s. is of the
form 〈φ1φ1φ2φ2〉 and we get the case ∆12 = ∆34 = 0, with only even spins present in the
OPE. As seen in [14], in these conformal blocks it appears hypergeometric functions of
the form:

3F2

[
∆
2 ,

∆
2 + r, ∆

2 − ε
∆
2 + r + 1

2 ,∆− ε
;Z
]
, (A.1)

with r an integer number from 0 to n (` = 2n for even spin `, n ∈ N), ε = d−2
2 and Z =

x2

−4(1−x) , being x the cross-ratio, that after the exchange x→ 1− x, becomes ZR = (1−x)2

−4x
for the r.h.s. .

It can be seen that the relevant information in the CS equation is in the range ρ ∈
[ρc,+∞), for some arbitrary finite value ρc, and then by the completely monotonic and
analytic properties of the CS eq. the rest will be fulfilled.11 So, it is very important to
have the expansion of the hypergeometric function (A.1) when |Z| > 1, that is for ZR in
the r.h.s. when ρc ∈

(
− log(3− 2

√
2), +∞

)
(or x ∈

(
0, 3− 2

√
2
)
).

For general Z values the analytically continued hypergeometric function pFq have an
integral representation, when Z 6= 0 and ak 6= 0,−1,−2, . . ., for k = 1, 2, . . . , p:( p∏

k=1
Γ (ak) /

q∏
k=1

Γ (bk)
)
pFq

(
a1, . . . , ap
b1, . . . , bq

;Z
)

= 1
2πi

∫ c+i∞

c−i∞

( p∏
k=1

Γ (ak + s) /
q∏

k=1
Γ (bk + s)

)
Γ(−s)(−Z)s ds,

(A.2)

where Γ(·) is the Gamma function, and the contour of integration, for example for the
|Z| > 1 case, needs to be closed at the infinity of the left half plane, separating the poles
of Γ(−s) and those generated by the factor in parenthesis with the other Γ functions.

When ak = 0,−1,−2, . . . for some k in 1, 2, . . . , p, regardless of the value of Z, the
hypergeometric function is a polynomial of finite order, defined by the usual hypergeometric
series that get cut at N = min(|ak| / ak ∈ −N0), i.e., the minimal value between the
modules of the ak’s that are negative integers,

pFq

(
a1, . . . , ap
b1, . . . , bq

;Z
)

=
N∑
n=0

∏p
k=1 (ak)n∏q
k=1 (bk)n

Zn

n! (A.3)

Next, we will limit only to the odd d case.12

11In fact, it can be seen from [19], that from the properties of completely monotonic functions, it is
sufficient to impose the equality of l.h.s. and r.h.s. of the CS equation only at ρc integers from an arbitrary
number N to +∞, for the equality to be satisfied at all ρ real numbers (or at all x reals in (0, 1)).

12For even d, the expansion is different, we are not showing it here. For example it also has terms of
order log2(−Z).
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In the conformal block, we need to expand the hypergeometric 3F2 (A.1). If we define
T as the expansion of the hypergeometric:

T ≡
Γ
(

∆
2

)
Γ
(

∆
2 + r

)
Γ
(

∆
2 − ε

)
Γ
(

∆
2 + r + 1

2

)
Γ (∆− ε)

3F2

[
∆
2 ,

∆
2 + r, ∆

2 − ε
∆
2 + r + 1

2 ,∆− ε
;Z
]

= 1
2πi

∫ c+i∞

c−i∞

Γ
(

∆
2 + s

)
Γ
(

∆
2 + r + s

)
Γ
(

∆
2 − ε+ s

)
Γ
(

∆
2 + r + 1

2 + s
)

Γ (∆− ε+ s)
Γ(−s)(−Z)s ds,

(A.4)

and take into account unitary bound, that r is an integer (from 0 to n) and ε = d−2
2 a

half integer for odd d, the expansion T becomes a sum of terms coming from the different
poles of the first factor of the integral representation, that for odd d, differs if ∆ is an odd
integer or not. We present these cases next.

A.1 ∆ 6= 2N− 1

T = Σ1 + Σ2 + Σ3

Σ1 =
(−Z)−∆

2 Γ
(

∆
2

)
Γ(−ε)Γ(r)

Γ
(
r + 1

2

)
Γ
(

∆
2 − ε

) r−1∑
k=0

(
∆
2

)
k

(
1
2 − r

)
k

(
−∆

2 + ε+ 1
)
k

(ε+ 1)k(−(r − 1))k
Z−k

k! (A.5)

(with Σ1 = 0 if r = 0).

Σ2 =
(−Z)ε−∆

2 Γ(ε)Γ
(

∆
2 − ε

)
Γ(r + ε)

Γ
(

∆
2

)
Γ
(
r + ε+ 1

2

) 3F2

[
∆
2 − ε,−r − ε+ 1

2 , 1−
∆
2

1− ε,−r − ε+ 1 ; 1
Z

]
(A.6)

Note that the 3F2 hypergeometric in Σ2 has the usual expansion as |1/Z| < 1, and in fact,
it is a polynomial, as the sum gets cut because at least one of its upper arguments is always
a negative integer or zero.

Σ3 =
(−1)r(−Z)−∆

2 −rΓ
(
r + ∆

2

)
Γ(−r − ε)

Γ
(

1
2

)
Γ
(
−r + ∆

2 − ε
)
r!

+∞∑
k=0

(
1
2

)
k

(
r + ∆

2

)
k

(
r + ε− ∆

2 + 1
)
k

(r + 1)k(r + ε+ 1)k
[log(−Z) + h2,k]

Z−k

k! ,

(A.7)

where
h2,k = −ψ

(
−k − r + ∆

2 − ε
)
− ψ

(
k + r + ∆

2

)
+ ψ(−k − r − ε)

+ψ(k + r + 1) + ψ(k + 1)− ψ
(1

2 − k
)
,

(A.8)

and ψ is the Digamma function.
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A.2 ∆ = 2N− 1 ⇐⇒ ∆
2 − ε ∈ Z

In this case we have two possibilities:

• ∆
2 − ε ≥ r (if r 6= 0) and ∆

2 − ε > 0 (if r = 0)

T = Σ1 + Σ2 + Σ′3 + Σ4

Σ′3 =
(−1)r(−Z)−∆

2 −rΓ
(
r + ∆

2

)
Γ(−r − ε)

Γ
(

1
2

)
Γ
(
−r + ∆

2 − ε
)
r!

∆
2 −ε−r−1∑
k=0

(
1
2

)
k

(
r + ∆

2

)
k

(
r + ε− ∆

2 + 1
)
k

(r + 1)k(r + ε+ 1)k
[log(−Z) + h2,k]

Z−k

k! ,

(A.9)

(with Σ′3 = 0 if ∆
2 − ε− r = 0).

Note that Σ′3 is the same as Σ3, but the sum upper limit now is finite.

Σ4 =
(−1)r(−Z)ε−∆Γ

(
−∆

2

)
Γ(∆− ε)(

∆
2 − ε

)
!
(

∆
2 − ε− r

)
!Γ
(
r + ε− ∆

2 + 1
2

)
4F3

[
1, 1,∆− ε,−r + ∆

2 − ε+ 1
2

∆
2 − ε+ 1,−r + ∆

2 − ε+ 1, ∆
2 + 1 ; 1

Z

] (A.10)

Note that the 4F3 hypergeometric has the usual expansion as |1/Z| < 1.

• ∆
2 − ε ≤ 0

This case is only possible for r=0, and T is just the regular hypergeometric expan-
sion (A.3), resulting in a polynomial of order N = −

(
∆
2 − ε

)
, i.e., an expansion of

positive powers of Z.13
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