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Summary 

DNA sequencing is one of the fields that has advanced the most in recent years within clinical 

genetics and human biology. However, the large amount of data generated through next 

generation sequencing (NGS) techniques requires advanced data analysis processes that are 

sometimes complex and beyond the capabilities of clinical staff. Therefore, this work aims to 

shed light on the possibilities of applying hybrid algorithms and explainable artificial 

intelligence (XAI) to data obtained through NGS. The suitability of each architecture will be 

evaluated phase by phase in order to offer final recommendations that allow implementation 

in clinical sequencing workflows.. 
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Introduction 

DNA sequencing has revolutionized the field of biology 

and medicine, providing invaluable tools for deciphering the 

genetic information underlying all living organisms. As 

sequencing techniques advance, the volume of data generated 

has grown exponentially, leading to the need for more 

advanced and specific techniques for its analysis. It is in this 

context that artificial intelligence (AI) has begun to play a 

crucial role, facilitating the processing and interpretation of 

these vast data sets in reasonable times and with increased 

accuracy. 

Hybrid AI algorithms are those that combine various 

artificial intelligence techniques or methodologies to achieve 

more effective results than those that would be obtained by 

using a single technique. These can combine, for example, 

deep learning techniques with heuristic or optimization 

methods, allowing complex and multifaceted problems to be 

faced, such as genomic sequencing, in a more holistic and 

robust way. 

Hybrid artificial intelligence (AI) algorithms represent a 

combined approach that integrates different AI techniques and 

paradigms into a single system, with the goal of overcoming 

the individual limitations of each technique and ultimately 

improving overall performance and efficiency. of the resulting 

algorithm. 

In the field of AI, there are numerous methods and 

techniques, each of which has its strengths and weaknesses. 

For example, while deep learning algorithms such as neural 

networks are exceptional at detecting complex patterns in 

large data sets, they can lack the interpretability offered by 

more traditional methods such as decision trees. Hybrid 

algorithms are designed to combine the strengths of multiple 

techniques, while mitigating their weaknesses. 

There are several ways hybrid algorithms can be built: 

1. Serial Combination: One technique is used as pre-

processing or post-processing for another. For 

example, you can use a clustering method to segment 

the data and then apply a classification algorithm on 

each cluster. 
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2. Parallel combination: Different techniques work 

simultaneously and their results are combined. A 

common example is model assembly, where multiple 

models (such as decision trees, SVMs, and neural 

networks) are trained on a single data set, and then 

their predictions are combined, often by voting, to 

produce a final result. . 

3. Levels of abstraction: One technique takes a high-

level view of the problem, while another focuses on 

more granular details. For example, a neural network 

can be responsible for extracting general 

characteristics from the data, while a genetic 

algorithm could optimize certain parameters based 

on those characteristics. 

4. Knowledge incorporation: Data-driven techniques 

can be combined with knowledge-based techniques. 

For example, a system of rules can incorporate expert 

knowledge in a specific field, while a machine 

learning algorithm is used to adapt or refine those 

rules based on real data. 

Hybrid algorithms offer great flexibility and are 

particularly useful in complex problems where there is no 

single technique that is optimal for all facets of the problem. 

However, their design and optimization can be more 

challenging, as interactions between different techniques must 

be considered and ensure that they work together 

harmoniously. 

On the other hand, explainable AI, also known as XAI (for 

its acronym in English "Explainable Artificial Intelligence"), 

refers to methods and techniques in the field of artificial 

intelligence that produce results that can be easily understood 

by humans. As AI is increasingly used in critical areas such as 

medicine and biology, the ability to understand and trust the 

decisions made by these algorithms is essential. In the context 

of an NGS pipeline, explainable AI can be crucial to 

understanding why certain variants have been detected and not 

others, or to offer insight into possible areas of improvement 

in the process. 

Explainable Artificial Intelligence (XAI) refers to methods 

and techniques in the domain of artificial intelligence that 

provide results that are understandable and transparent to 

humans. As AI models, particularly deep learning models, 

become more complex and often behave like "black boxes", 

the need for explainability and transparency has grown in 

importance. 

The main idea behind XAI is that a user has the right to 

know why a model made a particular decision and how it 

reached that conclusion. This understanding is essential for 

several reasons: 

1. Trust: For people to trust and widely adopt AI 

systems, they need to understand how they work and 

why they make certain decisions. Without a clear 

explanation, users may be reluctant to trust a system's 

recommendations or decisions. 

2. Accountability and Legal Accountability: In many 

contexts, such as medical or financial, understanding 

why a decision was made can be crucial for 

accountability and regulatory compliance. If 

something goes wrong, it is essential to identify and 

explain the cause. 

3. Model Improvement: Explainability can help 

developers identify and correct errors or biases in 

their models. If you can understand why a model 

makes errors, it is easier to remedy those problems. 

4. Facilitate Adoption: In sectors where decisions have 

a significant impact on people's lives, such as 

medicine or transportation, the adoption of new 

technologies depends largely on their transparency 

and ability to be audited. 

Various techniques and approaches have emerged to 

address XAI: 

1. Intrinsically Explainable Models: These are models 

that are naturally transparent, such as decision trees 

or linear regression. Although they are typically less 

complex and often less accurate than deep learning 

models, they provide a clear view into how decisions 

are made. 

2. Post hoc methods: These are methods that seek to 

explain the decisions of a model after it has been 

trained. A popular example is LIME (Local 

Interpretable Model-agnostic Explanations), which 

approximates a complex model with a simpler, 

locally understandable model around a specific 

prediction. 

3. Visualization: Tools and techniques that allow you to 

visualize how models work internally, especially 

neural networks, to give intuition about what 

characteristics are being considered and how 

decisions are made. 

4. Decomposition Techniques: These techniques 

decompose predictions into individual feature 

contributions, providing insight into which features 

were most relevant to a particular decision. 

XAI does not simply seek to create models that are 

transparent, but rather seeks to ensure that that transparency is 

useful and meaningful to users, allowing them to make 

informed decisions and trust AI-based solutions. The growing 

demand for explainability in AI reflects a broader trend toward 

ethics and responsibility in technology. 

The combination of hybrid algorithms and explainable AI 

opens an innovative panorama in genomic analysis, allowing 

not only to increase precision and efficiency in the detection 

of variants and other related tasks, but also to guarantee that 

the results are interpretable and justifiable for healthcare 
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professionals. area, thus strengthening confidence in the 

adoption of these advanced technologies. 

 

Preprocessing phase 

 

Hybrid algorithms combine the features and advantages of 

multiple approaches to solve a specific problem. In the context 

of data preprocessing in a Next Generation Sequencing (NGS) 

pipeline, hybrid algorithms can be extremely valuable in 

addressing the diversity and complexity of genomic data and 

improving the efficiency, accuracy, and speed of analysis. 

Applying the following techniques has been evaluated 

1. Error Correction in Sequencing Reads: 

a. Hybrid of k-mer-based techniques and deep 

learning: By combining traditional k-mer-

based methods with recurrent neural 

networks (RNNs), it is possible to identify 

and correct errors in sequencing reads more 

effectively. K-mers can offer a first 

approximation to detect inconsistencies, 

while deep learning can refine the 

correction based on contextual patterns in 

the sequences. 

2. Reading Alignment: 

b. Hybrid of heuristic algorithms and graph 

techniques: Some algorithms use a 

combination of heuristic techniques for a 

first filtering of possible alignments and 

graph techniques to refine and confirm the 

alignment. This combination can improve 

the speed and accuracy of alignment. 

3. Elimination of Duplicate Readings: 

c. Hybrid of hashing and machine learning: To 

identify and remove duplicate reads, a 

combination of hashing could be used to 

quickly cluster potentially duplicate reads 

and machine learning classification 

algorithms to accurately determine whether 

the reads are duplicates or simply similar. 

4. Normalization of Depth of Coverage: 

d. Hybrid of statistics and generative models: 

Combining statistical techniques to analyze 

the distribution of coverage depth together 

with generative models (such as Generative 

Adversarial Networks) could allow the 

generation of synthetic reads that balance 

coverage depth across regions of the 

genome. 

5. Identification and Trimming of Adapters and 

Primers: 

e. Hybrid of string search algorithms and deep 

learning techniques: Identification and 

removal of adapters and primers is essential 

to ensure the quality of subsequent analysis. 

Traditional string search algorithms, such as 

the Boyer-Moore or Knuth-Morris-Pratt 

algorithm, can be used initially for rapid 

identification of known adapter sequences. 

However, to identify adapters or primers 

that are not in known databases or that have 

mutations, a deep learning model could be 

implemented, specifically a Convolutional 

Neural Network (CNN), which would be 

trained with labeled data sets to detect 

subtle patterns and variations in adapter 

sequences. 

f. Use of clustering techniques and neural 

networks: Since adapter sequences may 

present certain variations, clustering 

techniques, such as the k-means algorithm, 

can be applied to group similar reads. 

Subsequently, with the set of 

representatives of each cluster, a neural 

network could be used to refine and confirm 

the presence of adapters and determine the 

optimal point for trimming. 

g. Combination of spectral analysis and 

machine learning-based filtering 

techniques: Spectral analysis can 

decompose data sequences into frequency 

components to detect recurring patterns, 

such as those introduced by adapters and 

primers. Once these patterns are detected, 

machine learning algorithms, such as 

decision trees or support vector machines 

(SVM), can be used to classify and filter the 

reads with adapters, based on features 

extracted from the spectral analysis. 

Incorporating hybrid algorithms in the preprocessing phase 

of the NGS pipeline is crucial as it can dramatically improve 

the quality of subsequent genomic analysis. It is essential to 

combine the strengths of multiple techniques to effectively 

address the challenges inherent in genomic data and ensure 

accurate and reliable results. 

In the case of explainable artificial intelligence (XAI), it is 

intended to play a crucial role in ensuring that the decisions 

made by algorithms are understandable, justifiable and 

reliable. Here are some examples and approaches to integrate 

XAI in this phase: 

1. Explanation based on feature importance: 

- SHAP (SHapley Additive exPlanations) 

algorithm: It is a method that is based on 

game theory to assign a value to each 

characteristic based on how much it 

contributes to the decision of a model. For 
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example, during filtering out low-quality 

reads, SHAP could reveal which features 

(such as read length, average quality, 

presence of adapters, etc.) are most 

influential in discarding or retaining a read. 

2. Deep learning models explained: 

- Grad-CAM (Gradient-weighted Class 

Activation Mapping): It is useful for 

convolutional neural networks (CNNs) used 

in the detection of adapters or contaminants. 

Grad-CAM can generate heatmaps to 

highlight areas of the sequence that were 

vital to the model decision. Thus, biologists 

and bioinformaticians can get a visual 

intuition of problem areas in a reading. 

3. Intrinsically interpretable models: 

- Decision trees and random forests: These 

models can be used to classify reads based 

on quality characteristics and provide clear 

and understandable decision paths. 

Although they are not as accurate as deep 

learning models, their interpretable nature 

makes them valuable in scenarios where 

transparency is essential. 

4. Explanations based on examples: 

- Counterfactual examples: For a particular 

read that has been filtered, a counterfactual 

example can be provided that shows what 

that read should have been like (in terms of 

quality, length, etc.) to not be filtered. This 

gives a clear idea of what factors 

contributed to its elimination. 

5. Explanation through visualization: 

- Tools such as LIME (Local Interpretable 

Model-agnostic Explanations) can be used 

to decompose and visualize the decisions of 

a complex model in simpler and more local 

terms. For example, if a deep learning-based 

model decides to discard a read, LIME 

could identify and visualize the specific 

regions of the sequence that led to that 

decision. 

Integrating XAI into NGS preprocessing ensures that 

critical decisions made in this phase are transparent and 

justifiable. This not only reinforces confidence in the results, 

but also allows researchers to refine and improve their 

pipelines based on clear and understandable feedback. 

 

Alignment phase 

 

Sequence alignment is one of the most critical steps in next-

generation sequencing (NGS) data analysis. Its main objective 

is to map the reads obtained from the sequencer to a known 

genomic reference. Given the enormous amount of data 

generated in NGS experiments and the inherent complexity of 

alignment, hybrid algorithms that combine traditional 

bioinformatics techniques with advanced AI methods can 

offer significant improvements in accuracy, speed, and 

efficiency. 

1. Combining hashing techniques with neural networks: 

Traditional alignment algorithms, such as BWA or 

Bowtie, use hashing techniques to index the 

reference sequence and facilitate fast searches. We 

can improve this process by using neural networks to 

identify error-prone regions or variants in the reads 

before the alignment process. In this way, the neural 

network acts as a pre-filter that identifies and corrects 

errors, which facilitates and accelerates the 

subsequent hashing and alignment process. 

2. Deep learning models for complex region detection: 

Genomic regions with high repeatability or complex 

secondary structures often present alignment 

challenges. A deep learning model, such as a CNN, 

can be trained to detect these complex regions and 

reroute the associated reads to more robust or 

specialized alignment algorithms, while the 

"simpler" reads can be handled by faster, less 

intensive algorithms. in resources. 

3. Optimizing scoring with machine learning: 

Traditional algorithms use static scoring matrices, 

such as BLOSUM or PAM, to guide the alignment 

process. Using machine learning techniques, we can 

dynamically adapt these matrices based on specific 

characteristics of the reads and reference, thereby 

improving alignment accuracy. 

4. Reinforcement learning for alignment decisions: 

Reinforcement learning can be used to train models 

that make alignment decisions. In this approach, a 

reinforcement learning agent is “rewarded” for 

correct alignment decisions and “penalized” for 

incorrect decisions, allowing the model to adapt and 

improve over time. 

Applying hybrid algorithms in the alignment phase of an 

NGS pipeline can provide an optimal combination of speed 

and accuracy, addressing specific challenges that traditional 

algorithms may not handle efficiently on their own. 

The alignment phase in an NGS pipeline is critical because 

decisions made during this stage directly affect subsequent 

phases. The adoption of Artificial Intelligence (AI) has helped 

improve the accuracy and speed of alignment, but the opaque 

or "black box" nature of many AI models can be a challenge, 

especially in genomics, where interpretability and justification 

of results They are vital. This is where Explainable Artificial 

Intelligence (XAI) comes in. 
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1. Visualization of alignment decisions: An XAI-based 

tool could provide detailed visualizations that 

explain how and why certain reads aligned to specific 

locations. For example, highlight features in the read 

sequence that had significant weight in the alignment 

decision. This is essential so that bioinformaticians 

can validate the accuracy of the alignment and detect 

possible errors or anomalies. 

2. Interpreting scoring matrices: Although scoring 

matrices, such as BLOSUM, are static, when 

incorporating machine learning techniques that adapt 

these matrices, XAI can provide insights into which 

characteristics of readings and references are most 

influencing adaptation of these matrices. 

3. Decomposing complex genomic regions: When a 

deep learning model identifies difficult or complex 

genomic regions for alignment, XAI can decompose 

and show what specific features make these regions 

challenging. This could include visualizations that 

highlight repetitiveness, secondary structures, or 

mutations. 

4. Feedback and continuous learning: By offering clear 

and understandable explanations of alignment 

decisions, XAI allows for more effective feedback 

from genomics experts. They can quickly identify 

where the AI model might be making mistakes and 

provide corrections. This feedback is crucial for the 

continuous training and refinement of the model. 

5. Building trust: Genomics is a discipline where errors 

can have significant implications, especially in 

clinical applications. By providing transparency into 

the alignment process, XAI builds trust among 

researchers, clinicians, and other stakeholders, 

assuring them that AI-based alignment decisions are 

robust and reliable. 

In summary, while AI has revolutionized the alignment 

phase in NGS with its ability to quickly process large volumes 

of data and make accurate decisions, XAI complements these 

advances by providing the transparency and understanding 

necessary to continually validate, correct and improve these 

processes. of alignment. 

 

Variant detection phase 

 

Variant detection is one of the most critical and challenging 

aspects in next-generation sequencing (NGS) analysis. It is 

essential to identify variations in DNA, such as SNPs (single 

nucleotide polymorphisms), indels (insertions or deletions), 

and structural variants with high precision and sensitivity. The 

application of hybrid algorithms in this phase combines 

traditional rule-based techniques with machine learning to 

offer a more robust and adaptive approach. 

1. Incorporation of prior knowledge: Traditional 

algorithms for variant detection are based on prior 

knowledge and rules defined by genomics experts. 

These hybrid algorithms can combine this 

knowledge with machine learning models that are 

trained on large data sets. For example, a rule-based 

model could be used to identify variant candidates, 

and then a deep learning model to refine and validate 

these candidates. 

2. Variant classification models: Hybrid algorithms can 

combine heuristic features with features learned by 

machine learning models. For example, a 

combination of statistical features, such as base 

quality, depth of coverage, and allele balance, along 

with features learned by neural networks, can be used 

to classify variants more accurately. 

3. Predicting functional effects: Once variants are 

identified, it is crucial to predict their functional 

impact. Hybrid algorithms can combine annotated 

databases with machine learning techniques to 

predict the effect of a variant on gene or protein 

function. 

4. Integration of multiple data sources: DNA 

sequencing is rarely performed in a vacuum. Often, 

other data is available, such as gene expression data, 

epigenetic information, or phenotypic data. Hybrid 

algorithms are particularly suitable for integrating 

these multiple data sources, using traditional 

techniques to process high-quality data and machine 

learning for heterogeneous or incomplete data. 

5. Adaptive models: One of the key advantages of 

hybrid algorithms is their ability to adapt to new data. 

As more genomes are sequenced and new variants 

are discovered, models can be retrained and adapted, 

combining prior knowledge with new insights. 

With the increasing adoption of machine learning 

techniques in variant detection, there is a need to understand 

and explain the decisions made by these complex models. This 

is where Explainable Artificial Intelligence (XAI) comes into 

play. 

1. Explaining complex model decisions: When using 

machine learning algorithms, such as neural 

networks, to identify genomic variants, it is vital to 

understand how and why a model made a particular 

decision. XAI can help visualize and break down the 

contributions of specific features (such as read 

quality, depth of coverage, etc.) to the final model 

decision. This allows geneticists and clinicians to 

have confidence in the results and also identify areas 

where the model could be improved. 

2. Local and global interpretation: XAI techniques can 

not only offer insights into individual decisions (local 

interpretation) but also into the overall behavior of 
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the model (global interpretation). For example, you 

can understand which features are generally the most 

informative for variant detection or whether certain 

genomic regions tend to be more problematic for the 

model. 

3. Model validation and refinement: The explanations 

provided by XAI can be used to validate and refine 

models. If a model is making decisions based on 

features that have no biological relevance, this may 

be an indication that it needs to be retrained or tuned. 

4. Improved interdisciplinary communication and 

collaboration: XAI not only benefits those who 

develop the models but also a broader audience of 

users. The generated visualizations and explanations 

facilitate communication between bioinformaticians, 

geneticists, clinicians and other healthcare 

professionals, allowing for more informed 

discussions about genomic findings and their clinical 

relevance. 

5. Facilitate clinical decisions: In a clinical context, 

decisions based on variant detection can have 

significant implications for the diagnosis, prognosis, 

and treatment of diseases. XAI's ability to explain 

why a variant was classified as pathogenic or benign 

can help clinicians make more informed decisions. 

 

Variant annotation phase 

 

Annotating variants in an NGS pipeline involves 

associating biological, functional and clinical information 

with the identified variants. The goal is to understand the 

potential biological impact of a variant and its clinical 

relevance, if any. Hybrid algorithms, which combine symbolic 

and sub-symbolic learning techniques, can play a crucial role 

in this phase to optimize the accuracy and robustness of the 

annotation. 

1. Integration of Different Data Sources: Variants can 

be annotated using multiple databases and biological 

resources. Hybrid algorithms allow the integration of 

this diversity of sources, by using the capacity of sub-

symbolic learning to handle unstructured or semi-

structured data and symbolic logic to integrate 

domain-specific rules and knowledge. 

2. Variant Prioritization: Not all variants identified in a 

genome are clinically relevant. Hybrid algorithms 

can employ deep learning techniques to recognize 

patterns in the data and symbolic techniques to apply 

biological and clinical rules, resulting in more 

accurate prioritization of variants based on their 

relevance and potential pathogenicity. 

3. Optimizing Functional Interpretation: The function 

of a genetic variant can be inferred from multiple 

characteristics, such as its location, evolutionary 

conservation and effect on the protein. Here, the 

symbolic component can provide a logical structure 

for combining these features, while the sub-symbolic 

component can capture complex and subtle 

interactions between them. 

This project proposes to investigate the following 

architectures in greater depth: 

1. Hybrid of Neural Networks and Rule-Based 

Systems: An architecture could employ a neural 

network to extract features from genomic sequences 

and patterns in annotation databases. From there, a 

rules-based system could step in to assign specific 

labels to variants based on their clinical relevance, 

using standard criteria and guidelines. 

2. Model based on Decision Trees and Convolutional 

Networks: A decision tree can segment the 

annotation process into different stages depending on 

the type of variant and its location. At each stage, a 

convolutional network could analyze the local 

sequence around the variant to identify specific 

functional features. 

3. Integrating Fuzzy Logic with Deep Networks: In 

situations where there is ambiguity in the annotation, 

fuzzy logic can help capture this uncertainty. For 

example, if a variant is possibly but not definitely 

pathogenic, a fuzzy logic algorithm could provide a 

degree of certainty. A deep network, on the other 

hand, could be used to determine this degree based 

on multiple characteristics of the variant and its 

context. 

These examples demonstrate the potential of hybrid 

algorithms in the variant annotation phase. By combining 

different techniques, these algorithms can offer robust and 

accurate solutions to interpret the biological and clinical 

meaning of genetic variants. 

Explainable Artificial Intelligence (XAI) aims to design AI 

models that offer clear and understandable explanations of 

their decisions, which is essential to ensure trust in the 

annotations provided by AI algorithms. 

1. Rationale for Annotations: It is vital that researchers 

and clinicians understand why a variant has been 

annotated in a certain way. XAI can provide clear 

reasoning, such as identifying specific features of a 

variant that indicate its potential pathogenicity or 

highlighting prior knowledge that supports a 

particular annotation. 

2. Validating Annotations with Domain-Based Rules: 

Explainable models can be designed to provide 

justifications based on rules established in the 

scientific literature, ensuring that annotations are 

aligned with current knowledge in genomics. 
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3. Visualization of Important Features: XAI can 

provide visualizations that highlight genomic regions 

or features that had a significant impact on the 

annotation decision. This is especially useful for 

identifying conserved regions, functional domains, 

or binding sites that may influence the function of a 

variant. 

We propose as models to apply within the project: 

1. Attention Models in Neural Networks: These models 

can highlight specific areas of a genomic sequence 

that were key to an annotation decision. For example, 

if a variant is annotated as pathogenic due to its 

location in a conserved domain, the attention model 

can visualize and highlight that region as 

justification. 

2. Interpretable Decision Trees: Decision trees are 

inherently explainable and can be designed to make 

annotation decisions based on clear and justifiable 

criteria, such as the presence of a variant in a specific 

region or its comparison with databases of known 

variants. 

3. Attribution Decomposition Methods: These 

methods, such as SHAP (SHapley Additive 

exPlanations), can decompose the contribution of 

different characteristics to the final decision of the 

model. In the context of annotation, this could 

translate into providing weights or importances to 

different genomic regions or databases queried 

during the annotation process. 

4. Interactive Interfaces: XAI-based tools can provide 

interfaces where users can interact with the model, 

adjust parameters, and observe how these changes 

affect annotation decisions, giving them a deeper 

understanding of the process. 

By implementing XAI in the variant annotation phase, it 

can be ensured that decisions made by complex algorithms are 

transparent, defensible, and aligned with expert knowledge in 

the genomic field. This transparency is essential to gaining the 

trust of researchers and medical professionals who depend on 

accurate annotations to make informed decisions. 

 

Conclusions 

As we move into the era of precision genomics, the need 

for sophisticated tools and algorithms that can handle, analyze 

and deliver insights from large genomic data sets has become 

evident. In this context, hybrid AI algorithms and Explainable 

Artificial Intelligence (XAI) have proven to be essential tools 

in the processing, alignment, search and annotation of variants 

within an NGS pipeline. 

Hybrid algorithms combine the best of two worlds: the 

predictive capabilities of deep learning models and the 

structure and understandability of traditional algorithms. This 

combination has significantly improved accuracy and 

efficiency in various phases of the pipeline, from 

preprocessing to variant annotation. However, with the 

increasing complexity of these models, transparency and 

interpretability have become central concerns, and this is 

where XAI comes in. 

Incorporating XAI into genomic analysis not only 

strengthens the accuracy of the models, but also provides an 

additional layer of transparency, ensuring that decisions made 

by the algorithms can be understood, justified and, ultimately, 

trusted. This transparency is vital to ensure the acceptance and 

trust of medical professionals, researchers and patients in the 

results provided by an AI-based pipeline. 

In summary, as we embark on deeper genomic discoveries 

and seek to translate these findings into effective clinical 

interventions, the integration of hybrid algorithms and XAI 

into NGS pipelines will be essential. These tools will not only 

boost the accuracy and efficiency of genomic analysis, but will 

also ensure that the insights generated are transparent, 

interpretable and, most importantly, reliable. The combination 

of computational power and explainability puts us in an 

optimal position to take full advantage of the benefits of the 

genomic revolution in the coming years. 
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