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Summary 

The Variant Detection process (Variant Calling) is fundamental in bioinformatics, demanding maximum precision and 

reliability. This study examines an innovative integration strategy between a traditional pipeline developed in-house and an 

advanced Intelligent System (IS). Although the original pipeline already had tools based on traditional algorithms, it had 

limitations, particularly in the detection of rare or unknown variants. Therefore, SI was introduced with the aim of providing 

an additional layer of analysis, capitalizing on deep and symbolic learning techniques to improve and enhance previous 

detections. 

The main technical challenge lay in interoperability. To overcome this, NextFlow, a scripting language designed to manage 

complex bioinformatics workflows, was employed. Through NextFlow, communication and efficient data transfer between 

the original pipeline and the SI were facilitated, thus guaranteeing compatibility and reproducibility. 

After the Variant Calling process of the original system, the results were transmitted to the SI, where a meticulous sequence 

of analysis was implemented, from preprocessing to data fusion. As a result, an optimized set of variants was generated that 

was integrated with previous results. Variants corroborated by both tools were considered to be of high reliability, while 

discrepancies indicated areas for detailed investigations. 

The product of this integration advanced to subsequent stages of the pipeline, usually annotation or interpretation, 

contextualizing the variants from biological and clinical perspectives. This adaptation not only maintained the original 

functionalities of the pipeline, but was also enhanced with the SI, establishing a new standard in the Variant Calling process. 

This research offers a robust and efficient model for the detection and analysis of genomic variants, highlighting the promise 

and applicability of blended learning in bioinformatics. 
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Introduction 

Deep Symbolic Learning (ASP) represents an innovative 

trend in the field of artificial intelligence, focusing on fusing 

the advantages of Deep Learning with those of symbolic 

learning. This method was born in response to one of the main 

limitations of Deep Learning: the absence of clarity and 

explainability in its models. What ASP seeks is to create 

systems that, in addition to being highly efficient in their 

performance, are equally clear and justified in their operations. 

Deep Symbolic Learning works by combining neural 

networks, which are adept at learning detailed and stratified 

representations of information, with symbolic schemes that 

favor the development of logical models and well-defined 

semantics. Unlike the purely numerical or statistical approach 
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of traditional Deep Learning, ASP integrates elements such as 

symbols, guidelines and logical links in its process, thus 

giving an additional dimension of context and organization to 

the knowledge generated. 

One of the outstanding points of ASP is its ability to 

capitalize on knowledge previously encoded in symbolic 

formats, using it as a basis to guide and enrich the learning of 

neural networks. This characteristic is essential in areas where 

there is a vast body of knowledge, as is the case in fields such 

as biology and genomics. 

Within the Variant Detection phase in Next Generation 

Sequencing (NGS) workflows, ASP emerges as a strategy 

with a lot of potential. Neural networks have the ability to 

discern intricate patterns and nuances in sequencing data. In 

parallel, the symbolic component can include guidelines and 

previously known data on genetic variants, mutations, and 

their biological importance. This could not only increase the 

accuracy of variant detection, but also provide logical and 

prior knowledge-based rationales for the reasons for 

classifying certain sequences as variants. 

The duality inherent in Deep Symbolic Learning also 

introduces superior versatility in modeling. While neural 

networks adapt to specificities and variations in information, 

the symbolic segment can function as a bulwark, ensuring that 

inferences and results are in tune with the previously 

established biological knowledge base. In this way, the ASP 

is consolidated as a cutting-edge and reliable tool to address 

the specific challenges of variant detection and the genomic 

field as a whole. 

 

In the field of bioinformatics and genomics, precision, 

efficiency and explainability are essential imperatives. 

Responding to these needs, this study presents the conception 

and structuring of an Intelligent System based on Deep 

Symbolic Learning (ASP) with the primary objective of 

optimizing the Variant Detection phase in Next Generation 

Sequencing (NGS) workflows. This innovation is the fruit of 

an extensive and meticulous design and experimentation 

process. 

The underlying motivation for developing such a system 

lies in the convergence of two paradigms: the power and 

adaptability of deep learning and the semantic and structural 

clarity of symbolic learning. By amalgamating these two 

perspectives, we aspire to configure a tool that not only boasts 

cutting-edge precision but also provides scientists and health 

professionals with a transparent and interpretable perspective 

of the derived results. 

The system architecture is deployed through different 

crucial stages. Initially, it focuses on the acquisition and 

rigorous preprocessing of the sequencing data, guaranteeing 

the quality and relevance of the information that will be fed to 

the model. Subsequently, we embarked on the design, 

construction and training of hybrid models, which take 

advantage of the depth of neural networks and the semantics 

of symbolic representations. Finally, it focuses on the 

interpretation of the results, not only from a numerical or 

statistical perspective, but also from a logical and semantic 

framework. 

 

Each of these segments has been finely calibrated to ensure 

maximum cohesion between the deep and symbolic learning 

components. This integration ensures that, regardless of the 

variations and noises intrinsic to the sequencing data, the 

system not only retains its robustness but also remains aligned 

with the corpus of consolidated genomic knowledge. Taken 

together, this work aims to set a new standard in the field of 

genomic variant detection, advocating an integrative approach 

that combines precision with explainability. 

Model architecture 

The model architecture represents the core of the system 

and has been designed to efficiently encapsulate the 

capabilities of Deep Symbolic Learning. This architecture is 

made up of multiple layers and modules, each with a specific 

function, that work together to interpret sequencing data. 

 

 
1. Ingestion and Preprocessing Layer: Before any 

model can work with the data, it must be properly 

prepared. This layer handles raw NGS data ingestion 
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and performs essential preprocessing operations such 

as normalization, error correction, and preliminary 

identification of regions of interest. Furthermore, it 

transforms the data into representations that can be 

easily consumed by subsequent layers. 

2. Deep Learning Module: Once preprocessed, the data 

is fed to this module, which consists of convolutional 

and recurrent neural networks designed specifically 

for genomic sequences. These networks detect 

patterns and features in the data, such as conserved 

sequences, repetitive regions, or potential variant 

sites. The deep nature of this module allows the 

system to learn hierarchical representations of the 

data, from low-level features such as nucleotide trios 

to high-level abstractions such as genomic structures. 

3. Symbolic Learning Module: Parallel to the deep 

learning module, the symbolic module operates on 

the same data. Using a predefined set of rules, 

heuristics, and prior knowledge of genomics, this 

module identifies and validates findings. For 

example, you can confirm the identification of a 

variant if it matches known rules about mutation 

patterns or specific genomic contexts. 

4. Fusion Module: This is one of the most critical 

components of the architecture. Here, the outputs of 

the deep and symbolic learning modules are 

combined and integrated into a unified 

representation. Data fusion techniques are used to 

combine the strengths of both approaches, ensuring 

that the system not only detects patterns in the data 

but also validates and interprets them according to 

existing genomic knowledge. 

5. Decision Layer: With the unified information from 

the fusion module, this layer is responsible for 

making final decisions about the identification and 

classification of variants. It uses both quantitative 

information (such as the probability assigned by the 

deep learning module) and qualitative information 

(such as the validation provided by the symbolic 

module) to make final judgments. 

6. Interpretation and Output Layer: Once the decisions 

are made, this layer presents the results in a way that 

can be interpreted by the user. Detected variants are 

annotated with relevant information, such as their 

potential functional or clinical impact. Additionally, 

thanks to the symbolic component, the system can 

provide clear explanations as to why a particular 

variant was identified. 

As a whole, the architecture is designed to be modular, 

allowing individual components to be updated or replaced as 

research progresses or needs change. This flexibility ensures 

that the system can keep up with rapid advances in genomics 

and bioinformatics. 

Data preprocessing 

The preprocessing process in the context of next generation 

sequencing (NGS) is crucial, as it largely determines the 

quality and accuracy of subsequent results. Despite advances 

in sequencing technologies, data obtained directly from 

instruments are often plagued by imperfections, artifacts, and 

noise. The Ingestion and Preprocessing Layer acts as the first 

filter and transformer of this raw data, preparing it for 

subsequent analysis. 

Initially, when the data is ingested, the layer begins by 

identifying and separating the different samples and runs, 

ensuring that each set of sequences is clearly demarcated and 

catalogued. This initial organization is essential to avoid 

confusing or mixing data from different sources or 

experimental conditions. Once cataloged, the data goes 

through a quality filtering process. Here, sequences that do not 

meet a specific quality threshold, determined by read quality, 

are discarded or corrected. This correction is done using 

redundant information in the data, such as overlapping reads, 

and with the help of specialized techniques that estimate the 

correct sequence based on patterns observed in the data. 

Next, an alignment step is carried out, where the sequences 

are mapped against a reference genome. It is in this phase 

where variations, such as SNPs and indels, begin to stand out. 

However, due to the inherently noisy nature of sequencing 

data, not all observed discrepancies from the reference 

genome are due to real variants. Systematic errors in 

sequencing, artifacts and noise can create false signals. 

Therefore, a post-alignment refinement step that recalibrates 

and optimizes the quality of the alignment, adjusting and 

correcting possible errors, is essential. 

Once the data has been aligned and refined, an operation to 

identify regions of interest is performed. These regions are 

segments of the genome that are particularly relevant for 

subsequent analysis, either because they show signs of 

variation, because they are associated with known genomic 

regions of clinical or functional interest, or because they 

exhibit patterns that indicate the presence of regulatory 

elements or other characteristics. genomics. 

In parallel with the identification of these regions, the layer 

is also dedicated to normalizing the data. Normalization is 

essential to ensure that data from different sources, 

technologies or experimental conditions are comparable to 

each other. This task may involve adjusting the depth of 

coverage, correcting systematic biases, or transforming the 

sequences into representations that are friendlier for 

subsequent analysis. 

The result of this preprocessing layer is a clean, structured 

data set ready to be consumed by the deep and symbolic 

learning modules. It is essential to understand that, despite 

being only the first step in the pipeline, the decisions and 

operations carried out in this phase have a direct impact on the 
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precision, efficiency and quality of the final results of the 

system. 

Model parameters 

Deep Learning Module 

The Deep Learning Module, as an integral part of our 

system, plays an essential role in detecting and understanding 

complex and subtle patterns in sequencing data. This detection 

relies on deep learning's ability to extract hierarchical features 

from data, from fundamental aspects such as individual 

nucleotide sequences to higher-level interpretations such as 

the identification of genomic structures and regulatory 

regions. 

One of the cornerstones of the module is the incorporation 

of convolutional neural networks (CNNs). CNNs are 

particularly suitable for processing sequencing data, as they 

can recognize local patterns within sequences and are shift 

invariant. That is, if a particular nucleotide sequence is 

indicative of a variant or a genomic phenomenon, CNNs can 

detect it regardless of its position in the input sequence. 

Convolutional layers in the network examine overlapping 

segments of the genomic sequence, identifying relevant 

patterns and features through filters, and transforming them 

into high-level representations that are easier to interpret by 

subsequent layers. 

On the other hand, recurrent neural networks (RNNs) are 

also integrated, and more specifically LSTM (Long Short-

Term Memory) given the sequential nature of the genomic 

data. These networks are adept at handling long-term 

dependencies and variable length sequences, making them 

ideal for understanding broader contexts in sequencing data. 

For example, the influence of a distant sequence on the 

expression or function of a particular gene can be captured by 

these recurrent units. 

While CNNs focus on spatial patterns and RNNs capture 

temporal dynamics, the combination of both allows the 

module to obtain a complete and detailed view of the data. 

This synergy between convolutional and recurrent networks is 

crucial for addressing the complexities and variabilities 

inherent in genomic data. 

Additionally, in the training process of this module, it is 

essential to define and adjust various parameters. The learning 

rate, batch size, loss function and regularization are critical 

aspects that determine the effectiveness of the model in 

learning from the data without falling into overfitting. The 

model is trained using large labeled data sets, where genomic 

sequences are accompanied by information on known 

variants, genomic structures and other relevant annotations. 

Over time, the model adjusts its weights and internal 

parameters to minimize the discrepancy between its 

predictions and the actual data, arriving at an optimal 

representation that can generalize to new data not previously 

seen. 

Taken together, the Deep Learning Module is an 

amalgamation of advanced machine learning techniques that, 

when working together, allow the system to identify, classify 

and understand the variants and structures present in next 

generation sequencing data with precision and efficiency. 

without precedents. The adaptive and evolutionary nature of 

this module ensures that, as more data and knowledge 

becomes available, the system can continue to improve and 

refine its genomic interpretation capabilities. 

Symbolic learning module 

The Symbolic Learning Module represents a fundamental 

facet of our system that contrasts and complements the deep 

learning module. While deep learning digs into data to 

discover implicit patterns and complex relationships, 

symbolic learning focuses on representing and using explicit, 

structured knowledge about the domain in question, in this 

case, genomics. 

The basis of this module lies in the creation and 

manipulation of symbolic representations of information. In 

the context of genomic sequencing, these representations 

address known genomic structures, rules inherited from 

previous studies, genetic patterns associated with specific 

phenotypes, among others. These symbols and rules are 

organized into knowledge structures, often referred to as 

knowledge bases, which are essentially systems of rules or 

logic designed to reason about data. 

One of the central approaches within symbolic learning is 

the rule-based system. These rules are derived from prior 

knowledge, scientific literature or even through experts in the 

field. These rules are applied to the data to filter, classify and 

predict the presence of particular genomic phenomena. The 

rules defined for this model are: 

• Motif Sequence Rule: If a specific nucleotide motif 

is detected in a promoter region, it predicts the 

binding of a known transcription factor. 

• Pathogenic Variant Rule: If a variant is identified in 

an exon of a gene associated with an inherited disease 

and that variant has previously been classified as 

pathogenic, classify it as high risk. 

• Splicing Rule: If a variant is detected in the first or 

last two positions of an intron, consider the 

possibility that it affects the splicing sites and, 

therefore, the formation of the mRNA. 

• Conservation Rule: If a variant is found in a highly 

conserved region across different species, that region 

likely has an important biological function. 

• Repetition Rule: If a sequence has multiple repeats of 

a specific trinucleotide, consider the possibility that 

it is related to trinucleotide repeat diseases. 
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• Silencer Rule: If a variant is found in a region known 

to contain silencing elements, evaluate the potential 

of said variant to affect gene regulation. 

• Protein Interaction Rule: If a variant is identified in a 

protein interaction domain, investigate its potential 

impact on the formation of protein complexes. 

• Synonym Rule: If a variant does not change the 

resulting amino acid in a protein, it is generally 

classified as synonymous, but can still be reviewed 

for potential effects on splicing or mRNA stability. 

• Founder Effect Rule: If a specific variant is common 

in a particular population or ethnic group and is 

associated with a disease, consider the possibility of 

a founder effect. 

• Compensation Rule: If multiple variants are detected 

in the same gene or pathway and one is pathogenic, 

investigate the other variants to see if they have a 

potential compensatory effect. 

A key advantage of symbolic learning is its ability to 

interpret. Unlike deep learning models, which are often 

considered black boxes, rule-based systems offer clear and 

transparent reasoning behind each decision or prediction. This 

clarity is invaluable in fields such as genomics, where the 

interpretation and justification of results can have significant 

implications in areas such as clinical diagnosis or biomedical 

research. 

However, it is not enough to simply codify existing 

knowledge. The module is also capable of "learning" or 

refining its rules and representations based on new data. Using 

techniques such as rule induction, the module can examine the 

data, compare it to its current knowledge base, and adjust, 

delete, or create new rules to better reflect the reality of the 

data. This is especially useful in an ever-evolving field like 

genomics, where new discoveries can change our 

understanding of biological systems. 

Combined with the Deep Learning Module, the Symbolic 

Learning Module offers a holistic and deep understanding of 

genomic data. While the former focuses on discovering non-

obvious patterns and relationships in the data, the latter 

provides a structured and justified framework for interpreting 

and reasoning about these discoveries. Together, they offer a 

powerful combination of data-driven intuition and 

knowledge-based reasoning, enabling the system to operate 

with accuracy, efficiency and transparency unmatched in 

next-generation sequencing analysis. 

Fusion Module 

The Fusion Module stands as the essential integrative 

component in our system, responsible for amalgamating the 

results and intuitions obtained from both the Deep Learning 

Module and the Symbolic Learning Module. This task is 

essential since, although both modules separately are 

powerful, it is their coordinated collaboration that gives rise to 

the true synergy and enhancement of the analysis. 

From a technical perspective, the Fusion Module operates 

in several stages. Initially, it collects the outputs of the Deep 

Learning Module. These outputs, in the form of feature 

vectors, latent representations, or direct classifications, 

encapsulate complex patterns and nonlinear relationships 

discovered in the data. These representations are extremely 

valuable but may lack direct interpretability or connections to 

explicit biological knowledge. 

Simultaneously, the Fusion Module accesses the 

knowledge base of the Symbolic Learning Module. Rules, 

structures, and symbolic representations provide a structured 

framework and contextualization for data, based on decades 

of research and understanding in genomics. 

With both sources of information at its disposal, the Fusion 

Module begins the integration process. It uses advanced 

techniques, such as reasoning based on fuzzy logic and 

attention neural networks, to appropriately weight the 

information from both modules. In essence, it is about 

determining where to trust data-driven predictions most and 

where to apply symbolic knowledge to correct, guide or 

complement those predictions. 

For example, if the Deep Learning Module detects a 

possible genetic variant of interest but that variant contradicts 

a well-established symbolic rule, the Fusion Module can 

choose to prioritize the rule or at least send an alert to a more 

detailed review. 

A crucial consideration in this process is feedback. The 

Fusion Module not only integrates, but also learns. As it 

receives more data and faces more scenarios, it refines its 

ability to balance and combine information from the other 

modules. This is essential to ensure that the system, as a 

whole, remains adaptive and evolutionary, adjusting to new 

challenges and discoveries in the field of genomics. 

Finally, the Fusion Module completes its operation by 

producing a series of unified results that incorporate both deep 

and symbolic learning. These results may be classifications, 

predictions, annotations or any other output format relevant to 

genomic analysis, but what is certain is that they reflect an 

integrated and holistic view of the problem, taking advantage 

of the best of both worlds. 

Final implementation 

In the constantly evolving environment of bioinformatics, 

the Variant Detection process (Variant Calling) represents a 

critical pillar, where precision and reliability are essential. In 

this context, the original pipeline, developed in-house, already 

had advanced tools for this process. Although these tools, 

based on conventional algorithms and reference repositories, 

demonstrated reasonable efficiency, they presented certain 

limitations, particularly in terms of false positives and in the 

detection of atypical or not yet cataloged variants. 
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In order to reinforce and not supplant the existing system, 

an Intelligent System (SI) was introduced. This strategy was 

motivated by the aspiration that the SI would offer an 

additional level of analysis, using deep and symbolic learning 

techniques, in order to review and potentially improve the 

detections previously identified by the original pipeline. 

 

The first technological challenge faced was to guarantee 

fluid and effective communication between the SI and the 

tools of the original pipeline, given the particularities of both 

systems. In this scenario, we turned to NextFlow, a scripting 

language designed specifically to manage complex 

bioinformatics workflows. Thanks to its innate capabilities to 

coordinate, monitor and ensure reproducibility of tasks, 

NextFlow emerged as the ideal platform for our integration. 

 

The integration process began with the creation of a 

specific function in NextFlow that invoked the SI. 

Subsequently, after the Variant Calling process of the original 

system, the transfer of results to the SI was facilitated using 

NextFlow channels. This transition was managed by ensuring 

that the data was compatible, generally adopting the VCF 

format. 

 

Once inside the SI, an analysis sequence was established 

that began with a preprocessing module, followed by deep and 

symbolic learning modules, culminating with a fusion module. 

The culmination of this process generated a set of optimized 

variants that were combined with previous results. 

 

This convergence offered notable benefits. Variants 

identified uniformly by both tools were considered high 

reliability. The discrepancies, by contrast, provided an 

indication for future research or detailed reviews. 

 

The final product of this integration was transmitted to the 

next stage of the pipeline, usually oriented towards annotation 

or interpretation, where the variants were analyzed from a 

biological and clinical perspective. 

 

In summary, this adaptation allowed the original pipeline 

to not only retain its initial functionalities, but also to be 

enriched with the depth and precision of the SI, thus enhancing 

the comprehensive Variant Calling process. The integration 

described in this study can serve as a paradigm for future 

research and development in the bioinformatics field. 

Conclusions 

Despite the success and notable improvement that the 

Intelligent System (IS) has brought to the Variant Calling 

process, as with any emerging technology, there are certain 

limitations that must be addressed to reach its full potential. 

One of the main restrictions has been computational 

capacity. Although SI is highly efficient in its operation, deep 

and symbolic learning modules, by their nature, require a high 

degree of computational power, especially when handling 

large volumes of data. At the current stage, it has occasionally 

faced bottlenecks in terms of processing speed. With 

additional investment in infrastructure, such as purchasing 

more powerful hardware or deploying to cloud computing 

environments with greater resources, these challenges could 

be easily mitigated. 

Another limitation has been the size and diversity of the 

training data available. While vast data sets have been used to 

train the SI, there is always the risk of inadvertent bias. 

Expanding the diversity of the data, both in geographic and 

ethnic terms, would improve the generalization of the system 

to different populations. Additional funding could go toward 

acquiring more data and establishing collaborations with 

institutions that hold diverse genomic repositories. 

Integration with external databases, although it has been a 

strength, also has limitations. Depending on the availability 

and updating of these databases, there could be gaps in the 

knowledge that the IS can access. In the future, it would be 

ideal to consider the creation of an internal database, 

constantly updated, that compiles the most recent information 

in genomics and that can be fed by both internal and external 

results. 

Finally, while incremental retraining has been an 

advantage, the periodicity and effectiveness of retraining 

could improve with the implementation of a more automated 

system that continually monitors the emergence of new data 

and adjusts the model in real time. This could require, again, 

an investment in development and cutting-edge monitoring 

systems. 
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