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Abstract: The analysis of genetic data has always been a problem due to the large amount of 

information available and the difficulty in isolating that which is relevant. However, over the years 

progress in sequencing techniques has been accompanied by a development of computer techniques 

to the current application of artificial intelligence. We can summarize the phases of sequence 

analysis in the following: quality assessment, alignment, pre-variant processing, variant calling and 

variant annotation. In this article we will review and comment on the tools used in each phase of 

genetic sequencing, and analyze the drawbacks and advantages offered by each of them. 
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1. Introduction 

In the last few years we have experienced an unprecedented evolution in terms of DNA 

sequencing, to the point that it has become one of the main tools in multiple areas of biomedical 

science. It all began with the discovery of the structure of deoxyribonucleic acid - DNA - by Watson 

and Crick [1], the genetic material from which every living organism develops, consisting of a double 

helix with two polymer chains complementary to each other. Each of these strands is formed by the 

union of nucleotides, organic molecules composed of a carbohydrate, a phosphate group and a 

nitrogen base; the latter are cyclic compounds whose identity - adenine (A), thymine (T), cytosine (C) 

or guanine (G) - will determine the type of nucleotide, and therefore, each of the strands that make 

up DNA can be specified as a sequence of these four letters. Thus, the DNA sequencing process 

consists of determining the precise order of these four nucleotides along a DNA molecule. The 

complementarity we have previously mentioned is due to the fact that these two chains are naturally 

linked to each other by specific chemical bonds between their nucleotides, in the form A-T and C-G - 

mainly due to their chemical properties, so we might said that if we know the sequence of one of the 

chains we will be able to find out the sequential order of the other due to the complementarity of its 

nitrogen bases. 

 

In parallel, Sanger [2] and Maxam and Gilbert [3] managed to develop different methods for 

sequencing DNA molecules in the late 1970s, although the Sanger sequencing technique or dideoxi 

method became the prevalent tool during the following years until the emergence of next-generation 

sequencing methods. This technique is based on the DNA polymerization reaction itself, a process 

known as replication that occurs in all types of biological organisms, in which a chain of DNA is 

synthesized using its complementary chain as a template; in this process, the nucleotides used carry 

with them a different fluorescent molecule according to its nitrogen base, in addition to a small 

chemical modification that causes, when it joins the chain in synthesis, that it no longer has the 



 

 

capacity to bind to the next nucleotide, stopping the process at this point. Consequently, our reaction 

mixture will contain a multitude of DNA molecules that differ in length, since this type of modified 

nucleotides join the chain by chance. Subsequently, a molecular biology technique known as capillary 

electrophoresis will be used, in which the DNA fragments are separated by size and go through a 

detector that collects the luminous signal emitted by the last nucleotide of each fragment, thus 

knowing the sequential order of the bases according to their passage through the detector. In the end 

we will obtain as a result the set of signals collected by the detector ordered from the smallest 

fragment to the complete molecule. 

 

During the coming years DNA sequencing brought with it an enormous amount of 

achievements and applications that culminated in the completion of the Human Genome Project in 

2004 [4], where the human genome sequence was first obtained - a genome is defined as the complete 

DNA sequence of an organism -. The development of this enormous and long project - which lasted 

almost 15 years -, in addition to the enormous variety of applications that it might have in the future, 

revealed the urgent need for more advanced sequencing technologies that would allow us to obtain 

the genome of an organism in a fast and relatively accessible way in economic terms for most 

laboratories. Thus, after the completion of the project, the National Human Genome Research 

Institute (NHGRI) initiated a funding program known as the $1000 Genome project [5], with the goal 

of having high-precision sequencing methods - less than 1 error per 10000 bases -, long read lengths, 

high performance, and a reduction in the cost of sequencing a genome to $1,000 within 10 years. This 

accelerated the arrival of new sequencing technologies, coined with the term of next generation 

sequencing to differentiate them from the classical first generation sequencing methods of Sanger 

and Maxam and Gilbert. 

2. Next Generation Sequencing technologies 

The new sequencing methods that began to emerge from this moment share a series of 

characteristics that ostensibly improve the performance of classical techniques [6]. Firstly, they are 

based on the preparation of DNA libraries to adapt the genome according to the sequencing 

technique to be used; secondly, the sequencing process occurs in parallel on multiple fragments of 

the initial genome, allowing thousands to millions of sequencing reactions to occur at the same time; 

and finally, the detection of the sequenced bases is carried out directly without the need for 

electrophoresis, greatly accelerating the entire process. Within this wide range of new sequencing 

techniques we will differentiate two main groups: on the one hand the second generation sequencing 

methods, also called short-reads sequencing or based on PCR amplification, and on the other hand 

the latest techniques, known as third generation sequencing, long-read based or real time sequencing.  

2.1. Second Generation Sequencing 

This type of technology was the first to emerge after the completion of the Human Genome 

Project since 2005, and its most characteristic features are the amplification of the fragments to be 

sequenced by PCR and the high parallelization of the process. Polymerase Chain Reaction (PCR) is a 

fundamental technique in molecular biology in which DNA molecules are amplified by carrying out 

an in vitro replication process; the main goal is to imitate this cellular process by mixing all the 

necessary molecular components in a test tube, resulting in a large number of exact copies of the 

original fragment. This stage will allow the optical signal detected by the machine to be much greater 

in each sequencing reaction, greatly improving the precision of the process. The preparation of the 

DNA library is specific to the sequencing method, although they all have several characteristics in 

common. First, DNA must be fragmented into pieces ranging from 400 to 1200 base pairs in a process 

known as 'shotgun sequencing', because fragmentation occurs at random in multiple positions in the 

genome, resulting in multiple pieces of DNA that overlap each other. It should be pointed out that in 

a sequencing experiment it is traditionally necessary to extract the DNA from the biological sample 

being studied, normally made up of millions of cells, each one with its own DNA molecule that is 

intended to be sequenced; this is why each region of the genome will be represented by multiple 



 

 

fragments, which may or may not be overlapping each other. Secondly, all these fragments are 

attached to adaptive sequences, small fragments of DNA of known sequence that have a double 

function; on the one hand, they are in charge of initiating the process of amplification by PCR - the 

cellular replication machinery always needs a small sequence to initiate the DNA synthesis - and on 

the other hand, they will allow all the fragments to be sequenced to be anchored to a solid support 

where the sequencing process itself takes place [7]. 

 

Second generation sequencing technologies fall into two broad categories [8]: sequencing by 

ligation methods - SBL - where the detection of bases is performed by binding oligonucleotides 

marked with a fluorescent molecule, and sequencing by synthesis - SBS - where the detection of the 

signal is produced by incorporating a nucleotide into an elongating chain. Specifically, the main SBL 

- SOLiD - and SBS technologies will be described below, the latter classified into cyclic reversible 

termination (CRT) methods, with the Illumina platform leading, and single-nucleotide addition 

(SNA), with 454 pyrosequencing and Ion Torrent as major flagships. 

 

SOLiD is not one of the most commonly used techniques today, being widely displaced by other 

sequencing methods for various reasons that will be understood after describing its functioning. First 

of all, it is necessary to highlight an aspect of the preparation of the DNA library previously 

explained, since in these methods the amplification of fragments by PCR takes place in tiny resin 

spheres that act as micro-reactors, in a process known as emulsion PCR; its main difference is that a 

mixture formed by an aqueous phase is added, which contains all the chemical reagents necessary 

for the amplification and will include each one of the microspheres. In this way, the process is 

completely parallel and independent for every sphere, each carrying a different DNA fragment. 

Subsequently, the sequencing process itself is carried out using chemically modified 

oligonucleotides, in such a way that they contain at one end a pair of known nucleotides - 1 of 16 

possible combinations of existing nucleotides - followed by a series of universal molecules that have 

no specificity for the DNA sequence. When the oligonucleotide hybridizes through this pair of bases 

the system detects the fluorescent colour, after which it is cleaved out and follows the oligonucleotide 

binding process until it reaches the end of the fragment. Once a cycle has ended, a new sequencing 

process begins with the same fragment, but this time the oligonucleotide will join at base n + 1 to 

detect the rest of the bases that have not been sequenced in the first cycle [8]. After finishing the series 

of cycles the result is that the same fragment of DNA has been sequenced several times but changing 

the order of the pair of nucleotides that is detected, so in the end each nucleotide will be read several 

times, and therefore greatly reducing the error rate of the sequencing process. It is undoubtedly the 

method with the highest precision after Sanger sequencing, with a value of 99.94%, although this 

advantage is notably overshadowed by the many drawbacks it has, such as the short length of its 

reads or the long duration per run [9]. 

       

On the other hand, within the second generation technologies we find SBS, whose best known 

and most currently implemented method is the cyclic reversible termination with the Solexa/Illumina 

platform at the front (Illumina acquired Solexa in 2007). This method has a common feature with 

respect to the classical Sanger sequencing, the use of chemically modified nucleotides that when 

added to the elongating chain they prevent the union of another nucleotide behind. The following 

steps are carried out in each sequencing cycle: union of the DNA fragments and their adapters to a 

solid surface - amplification process within the preparation of the library, generating clusters with 

every original fragment -, addition of the necessary components for the synthesis of new DNA 

strands, including the fluorescently marked modified nucleotides, hybridization of the 

complementary nucleotide to the template sequence, washing of the unincorporated bases and 

detection of the fluorescent molecule, and finally separation of the terminal part of the nucleotide so 

that a new cycle can begin and the whole fragment can be sequenced [10]. The Illumina sequencing 

platform, with its wide range of sequencers with very disparate features and applications, is currently 

a leader in the high-throughput sequencing industry and most library preparation protocols are 



 

 

compatible with Illumina technology. With the release of its new HiSeq X Ten sequencer, it was able 

to achieve to a large extent with the premises of NHGRI; specifically, it is undoubtedly the technology 

with the highest throughput to date - number of fragments sequenced per run -, the lowest cost per 

sequenced base - reaching the $1000 barrier -, and its average length of 300 nucleotides per fragment 

sequenced in its best performance make it valid for most applications [9]. 

 

Second generation technologies also brought another approach, the single-nucleotide addition 

sequencing method - SNA -, whose most important flagships are the pyrosequencing system 454 and 

the IonTorrent technology; both methods rely on a single signal to mark the incorporation of a base 

to an elongating DNA chain, so this time each of the nucleotides will be added one by one 

sequentially. The pyrosequencing technology has the honour of being the first to be released in 2005 

after the completion of the HGP, becoming the first next-generation sequencing instrument. In this 

method the bases are always incorporated in the same order, and their detection occurs when a 

pyrophosphate is released in the formation of the chemical bond between nucleotides - 

pyrophosphates are molecules composed of two phosphate groups that are released when the 

original nucleotide becomes part of DNA -, after which they undergo a chemical reaction and are 

transformed into another compound, luciferase, which is capable of emitting a bioluminescent signal. 

Depending on where this luminous signal has been detected it will be possible to know in which 

fragment such a nucleotide has been added, that we know beforehand, as well as the intensity will 

tell us if multiple bases of the same type have been added. Ion Torrent's technology, on the other 

hand, was the first NGS instrument without using optical signals for base detection, substituted 

instead by a semiconductor system that will detect the union of a nucleotide by a change of pH in the 

medium. This variation is due to the release of protons in the DNA synthesis process, which will 

allow a chemical signal in this case to be transformed into digital information [8]. This type of systems 

arose from the pyrosequencing methodology, having as main advantages the high speed of the runs, 

a lower cost and a more compact instrumentation. However, this type of SNA sequencing, especially 

the 454 pyrosequencing technology, has lagged behind Illumina and other newer technologies, 

mainly because of the big difference in execution performance and other technical issues that we will 

see below [6]. 

2.2 Third Generation Sequencing 

One of the main drawbacks of short-read sequencing techniques is related to one of the later 

stages in bioinformatic data analysis, namely the alignment or mapping of DNA fragments to a 

reference genome. As will be described below, most applications of high-throughput sequencing 

require these sequenced reads to be aligned to a reference genome, a process in which searching 

algorithms are used to map or know the specific position within a genome of the sequenced 

fragments. In this sense, there are two types of problems to be taken into account with this sequencing 

paradigm, either by the sequenced reads themselves or by the reference genome used. In the first 

place, the high complexity of the genomes makes them having regions that complicate to a great 

extent the correct mapping of fragments, such as highly repeated zones or structural variations; the 

first ones can measure several hundred base pairs, so our much shorter reads have the option of 

aligning in several different positions without reaching a unique alignment, something that also 

occurs with structural variations. This type of genomic variants, unlike single-nucleotide 

polymorphism, consist of fragments of a certain length that are duplicated or deleted - a deletion is 

the elimination of a DNA fragment - in different positions in the genome, often even distributed 

among several chromosomes. It has been shown that these types of genomic variants are involved in 

a large number of diseases [11], so their incorrect mapping and/or interpretation can have serious 

clinical implications. In addition to this issue regarding the length of sequenced fragments, another 

potential improvement that could be made in second generation methods is the use of PCR for clonal 

amplification of fragments. This process will be avoided in third generation technology, as it is a 

relatively error-sensitive technique in DNA zones with high GC-base content, and would result in 

considerable time savings in the preparation of libraries [12]. 



 

 

 

The third generation sequencing technologies or long-read based methods will be characterized, 

as its name suggests, in obtaining DNA fragments sequenced with a much longer length than the 

techniques described above, of the order of kilobases - 1 kb corresponds to 1000 base pairs -. 

Furthermore, as mentioned above, the fragments to be sequenced are not amplified by PCR, but the 

bases are detected from the single original molecule obtained in the preparation of the library; this 

also makes the sequencing process to be at real time, i.e. without washing and scanning cycles as was 

done in the second generation methods. The first approach to this type of technology was born in 

early 2011 with the release of the first PacBio RS sequencer by Pacific Biosciences, which uses the 

technology known as SMRT sequencing - single molecule real-time sequencing - a very similar 

method to the one used by the Illumina platform. Unlike the Illumina system, the fragments to be 

sequenced form a structure known as SMRTbell - the result of joining open adaptive sequences at 

both ends that make up a linear and circular molecule - which will be individually loaded into wells 

that will act as detectors. Within these structures, a DNA polymerase will be placed, which will be 

prepared to replicate the linear DNA sequence that has entered, making use of the corresponding 

fluorescently marked nucleotides, whose optical signals will be detected by a camera system in real 

time. A particularity of this platform is that the polymerase, once it has finished replicating the 

original chain, can start the process again with the resulting molecules, thus sequencing the same 

sequence several times; this will result in an unprecedented degree of precision, reaching a level of 

99.999% with approximately 25 sequencing cycles. This great advantage is limited by the high cost 

involved during the first few years and the low performance obtained; although recent advances 

have improved them considerably these are still the main pitfalls to implement this technology in 

various mass sequencing projects [12]. 

 

The second major third-generation sequencing approach is the nanopore-based technology 

known as Oxford Nanopore Technology - ONT, name given by the company that developed it - 

which emerged in 2014 with the appearance of its first MinION sequencer. This novel sequencing 

method allows the detection of each nucleotide in the DNA chain as it passes through a nanopore, 

thanks to the voltage changes experienced by an electric current caused by the passage of these 

molecules. The DNA fragments to be sequenced carry with them adaptive sequences that will allow 

the union of motor proteins, whose function is to transport the DNA chain through the nanopore; 

this tiny opening is part of a large protein complex, and has inside an area more sensitive to the 

passage of nucleotides with a detector that measures changes in the current voltage, to different 

degrees depending on the nature of the nucleotide itself. This technology has features that make it 

the most promising at present, being perfectly valid in multiple sequencing projects. With it the 

longest readings to date have been achieved - reaching even 1 Mb [13] -, and there is no upper limit 

if the quality and quantity of the DNA of origin is good; the cost of sequencing is relatively low, 

making it possible for small laboratories to acquire and use it; and finally, its great scalability - it has 

from portable sequencers that fit in the palm of the hand like the MinION to high-throughput devices 

such as the PromethION - makes it a truly flexible technology to the needs required by the project. 

On the other hand, it still has a relatively high average error rate compared to other platforms, 

although lately attempts are being made to implement a system similar to PacBio in which both DNA 

strands are sequenced through the nanopore, thus reducing the error level to approximately 3% [12]. 

 

In addition to these two main technologies, in recent years new methods of long-read sequencing 

have emerged that is interesting to note. These new systems are known as SLR, or synthetic long-

read sequencing, since the sequenced fragments are not really of this length, but short reads 

assembled in silico to generate a larger fragment. They are based on the Illumina sequencing platform 

of short fragments generation, but they present a series of changes regarding the preparation of the 

library. Illumina's own company acquired the Moleculo sequencing system, in which the initial DNA 

is fragmented into long molecules, up to 10 kb, and then introduced into micro-wells where they will 

be specially marked with adapters as a barcode system. Later they are fragmented again to be able to 



 

 

be sequenced by Illumina and at the end, as each fragment is labelled according to its molecule of 

origin, they can be reconstructed synthetically to generate the long reads. The 10X Genomics 

technology, on the other hand, does not classify the original long fragments in micro-wells, but in a 

system of micelles in emulsion, similar to the system of sequencing by ligation with microspheres. 

As for the advantages of this type of platform, its main characteristic is that it is based on Illumina 

sequencing, taking advantage of its low level of error and its enormous performance per run; 

however, it requires the acquisition of new equipment to prepare the libraries, relatively increasing 

their cost, in addition to the fact that they depend on an amplification process by PCR, so that 

sometimes these technologies are not considered as really long-reads based methods [12]. 

3. NGS data analysis 

The rapid advances in high-throughput sequencing following the completion of the Human 

Genome Project have allowed this technology to settle as a routine tool in multiple research 

laboratories and genetic centers, regardless of their area of work or their ability to address large or 

small projects. It has been discovered that in our genome are the biological answers to many of the 

questions that humanity continually asks itself regarding all types of medical problems, from the 

basis of any disease to the reason for our intelligence. However, the new paradigm has brought with 

it an enormous amount of data that classical computational approaches have not managed to handle, 

which has led to the emergence of multiple tools and algorithms to try to analyze and manage all 

these data from different sequencing platforms. This set of tools will be classified according to the 

stage in which it intervenes in the processing of data generated by next-generation sequencing 

methods, from the analysis of the reads from the sequencer to the obtaining of relevant biological 

information according to the project in question. The applications where the full potential of high 

performance sequencing can be exploited are very diverse: genomic DNA sequencing, which also 

includes the obtaining of new unknown genomes, the study of genetic variants at a population level 

or the clinical diagnosis of both Mendelian diseases and more complex syndromes such as cancer; 

RNA sequencing, also known as RNA-seq, where we may be able to analyze a complete 

transcriptome as a complement to the use of classical microarrays - RNA is a polymer of nucleotides, 

as is DNA, whose function is to serve as an intermediary between the genome and proteins, cellular 

components responsible for all the functions of an organism - or, more specifically, we can analyze 

by means of sequencing projects the interactions that occur between proteins and DNA [6]. 

 

In this paper we will focus on analyzing the existing pipeline for the analysis of mass sequencing 

data from genomic variants identification studies based on clinical applications, i.e. DNA variations 

related to various human diseases - when we compare the DNA of different individuals within the 

same species we see that it is exactly the same except in certain positions of the genome, whose 

variation is responsible for certain cellular proteins not working, generating a disease, or for the 

differences among individuals -. The stages that make up this type of analysis, and which will be 

described below, are the following: evaluation of the quality of the reads, alignment  against a 

reference genome, identification of the variants and, finally, their annotation to give biological 

significance to the data. In addition to this main workflow, it is normally necessary to follow 

intermediate steps of filtering and various pre-processing of the data, following the standards of some 

of the main tools. 

3.1. Quality assessment 

The files resulting from any of the sequencing technologies described above contain all the reads 

detected by the sequencer in a standardized format known as FASTQ. This format presents an input 

for each sequenced read, in which each nucleotide brings with it an associated value of its quality 

generated by the sequencer itself. The reason for introducing a measurement of the quality of the 

bases is that, as we commented previously, each sequencing technology has a certain precision value 

when it comes to detecting true positives, so sequencing errors are inherent to all techniques, even 

more so taking into account both the human factor and failures related to the instrumentation or 



 

 

chemical reagents used - it is common for example in certain platforms, such as Illumina, that as 

sequencing advances along the fragment the probability of error increases due to wear and tear on 

the molecular components used -. Therefore, our FASTQ file will have an associated value of the error 

probability for each nucleotide of the reads, thus being necessary to carry out this first step to ensure 

the quality of the fragments. 

 

There are now numerous tools that allow us both to evaluate the overall quality of the reads and 

to perform a trimming of them based on certain parameters to filter, for example areas that do not 

reach a certain quality threshold. Tools have been developed that allow us to perform both processes 

together, such as NGSQC Toolkit [14], PRINSEQ [15] or the Galaxy environment [16], which produce 

general reports of the reads and are capable of filtering them. However, the most commonly used in 

sequencing data analysis pipelines today is the evaluation of reads using FASTQC [17] and their 

subsequent filtering with Trimmomatic [18], two totally independent tools but with a wide range of 

very interesting modules. FASTQC is a software that provides a large number of graphs and statistics 

showing the average quality of the reads, the average quality per base, the distribution of 

indeterminate nucleotides (Ns) or GC content, etc; on the other hand, Trimmomatic is a very powerful 

tool for filtering sequences based on multiple parameters, quite optimized for Illumina sequencing 

platform data, in addition to allowing the systematic elimination of adapters, sequences with no real 

biological value that come from the preparation of libraries in any of the sequencing platforms, whose 

elimination avoids the entry of a large signal of noise in subsequent stages [19]. Albeit it is not the 

most critical stage of the whole pipeline, it is necessary to clean the reads and facilitate the work of 

the tools that will follow, but there are currently no exhaustive reviews that compare the performance 

of different quality control software. Even so, different tools have been developed that might improve 

the performance of Trimmomatic, such as PathoQC [20], AfterQC [21], or the newest ones, fastp [22] 

and FastProNGS [23], which show several improvements in computational cost per run, a relevant 

aspect when analyzing several samples at the same time and hardware requirements start to increase 

considerably. 

3.2. Aligment 

Once the reads have been properly processed it is necessary to perform a mapping or alignment 

against an existing reference genome, for which there are two main sources, the University of Santa 

Cruz (UCSC) and the Genome Reference Consortium. Both institutions provide the scientific 

community with an assembly of the reference of human genome, on which they continuously apply 

improvements and various optimizations in order to know the specific genomic position of millions 

of reads from a sequencer. As for the process of aligning itself, it is necessary to highlight the 

enormous computational complexity involved in having to accurately place the reads in their correct 

position within the genome, something that is not as simple as it might seem. The human genome 

possesses enormous complexity, with regions so odd that have not yet been possible to characterize, 

such as repetitions of one or several nucleotides in the intergenic regions or duplications of the same 

gene in different chromosomes, so the process carried out by an aligning software is incredibly costly. 

To facilitate the work of this type of tools there are several concepts that are interesting to clarify. On 

the one hand, the longer the fragments, the easier it is to map them, just as it is easier to find in a book 

a unique coincidence of a specific phrase than of a single word, since in the latter case it is more likely 

that several options will be found where to place the word. On the other hand, a sequencing mode 

widely used today is the paired-end sequencing, in which each DNA fragment sequenced has a pair 

known and labelled beforehand, so we know exactly the extent that separates the two reads. 

Therefore, they are fragments that go hand in hand, so their mapping is more accurate because the 

genomic coordinates of one can help locate the other, if it falls in a compromised area. 

 

The different alignment software will be classified according to the type of algorithm they 

implement for the mapping of the reads [24]. First of all there are hashing-based algorithms - the 

result of the hash function that generates keys to unequivocally represent a set of data - that elaborate 



 

 

an index to quickly find the position of each read, but in exchange for mapping them very promptly 

they are very sensitive to errors; within this category we would find RMAP [24], SOAP [26], 

Novoalign [27] or SHRiMP [28]. In second place we find those based on the Smith-Waterman 

algorithm, which applies dynamic programming methods to ensure that local alignment is optimal 

with respect to a given scoring system, so they will be more precise and less sensitive to errors but 

more time-consuming; an example of this type of software is BFAST [29], whose peculiarity is that it 

exclusively implements this algorithm. Finally, the algorithms based on the Burrows-Wheeler 

transform optimize the use of memory, being currently the preferred for short reads to offer a balance 

between efficiency, sensitivity and specificity; currently there are many tools that implement this 

algorithm, such as BWA [30], Bowtie [31], or SOAP2 [32] and SOAP3 [33]. Numerous studies have 

evaluated the performance of various aligners for the identification of variants, although in the end 

the most commonly used today are those that offer the best performance - BWA, Bowtie, Novoalign 

and SOAP. Generally, most NGS data analysis projects use BWA or Bowtie2, the improved version 

of their predecessor, although several reviews seem to indicate that BWA delivers slightly better 

results [34] at a significantly faster speed [35]; however, it seems that this software is not as accurate 

even with low error rates - a characteristic of a good aligner is that they are able to map reads 

correctly, even when they contain errors from sequencing or genetic polymorphisms that diminish 

coincidences with respect to the reference genome - so it is a tool that does not let any potential 

alignment to escape, with the trade-off of generating many incorrectly mapped reads [36]. Novoalign, 

on the other hand, has also shown a very good performance with respect to the rest of the tools when 

GATK is subsequently used for the identification of variants [37], in addition to presenting a greater 

sensitivity or proportion of true positives when the reads are very short [35]. Finally, SOAP and its 

improved versions have a high accuracy even with high error rates in the mapping, so it seems the 

best choice for the identification of SNPs or single-nucleotide polymorphisms in later stages [36]. 

3.3. Post-alignment and pre-variant calling processing 

The results obtained from the mapping algorithms contain the reads aligned against the 

reference genome in a quasi-standard format known as SAM, or Sequence Alignment/Map format, 

in which diverse information is presented about each aligned read, such as the specific position in 

the reference, its orientation - remember that the DNA molecule is bicatenary, so it is said to have a 

positive chain and a negative chain, also called forward and reverse, respectively - or the quality of 

such alignment. This information is stored in labels known as flags, whose resulting value is going 

to be the result of the sum of all the individual labels, each one of them representing a type of 

information that will serve us later to manage and filter them. Once these SAM files have been 

obtained, it is almost always necessary to carry out a series of pre-processes before identifying the 

variants themselves, either because they are essential requirements for subsequent tools or because 

they greatly facilitate their work. Most NGS data analysis projects will focus the attention of this pre-

processing on three fundamental tools, such as SAMtools [38], GATK [39] - a suite of analysis tools 

that will later be fundamental for variant identification - and Picard [40]. Below we will describe the 

workflow followed in most variant identification studies from these tools, as they tend to be more 

standardized and revised pipelines within the bioinformatics community [41]. 

 

First, most variant calling algorithms require the mapped reads be ordered by genomic position 

and indexed, i.e. an index file is created to facilitate the search for information on the aligned reads. 

In addition, it is also common that the SAM file is transformed to its binary version BAM, which 

contains exactly the same information but in a compressed manner to make the management of the 

data easier; all this can be done through the SAMtools package, which even provides functions to 

offer summaries of the main alignment statistics, such as the percentage of correctly mapped reads 

or the proportion of correctly aligned pairs. These statistics will give us the possibility of eliminating 

certain biases from the alignment software itself, for example keeping all those readings mapped 

correctly or uniquely in the reference genome, all from SAMtools [41]. Subsequently, and due to the 

fact that the use of GATK for the identification of variants is very standardized, it is common to follow 



 

 

the protocol or best practices pipeline designed by the creators of this software [42], in which several 

stages of preprocessing of the aligned reads before the identification of variants are detailed, using 

tools from GATK itself and from Picard. Therefore, using the files from SAMtools as input, the 

following processes will be carried out: creation of a reference sequence dictionary and preparation 

of the appropriate information from the reads, which will update the information in our files; 

marking or labelling of duplicate sequences using Picard as these are DNA fragments that have been 

sequenced several times during the sequencing process, giving rise to reads that do not provide any 

type of information and may falsify the coverage values of certain regions of the genome; local 

realignment around the indels - insertions and deletions -, since this type of structural variations 

causes the adjacent zones to be mapped incorrectly, a typical problem in the majority of aligners 

existing at present; and finally, a specific GATK process known as BQSR, or Base Quality Score 

Recalibration, is carried out, which as its own name indicates will determine the real value of error 

probability associated with each sequenced base, which sometimes are not completely precise. This 

will be essential because the variant identification algorithms will later use these quality values, 

together with another set of parameters, to obtain the degree of reliability of each identified variant, 

so it is logical that the process of detecting variants is required to be as accurate as possible and obtain 

a large proportion of true positives [41]. 

3.4. Variant calling 

Thus far, the identification of variants and SNPs was typically done in microarrays, but their 

density limited the detection of genetic polymorphisms to a certain amount; however, the emergence 

of mass sequencing techniques has made possible a new approach of exhaustive variant 

identification, covering all possible points of a genome where there is a variation with respect to the 

reference, and also being able to obtain variants that we call rare - due to their low proportion in the 

population - whose role in complex diseases has recently been demonstrated [24] [43]. Therefore, and 

thanks to numerous tools developed in recent years, we may be able to obtain a complete map of the 

genomic variants of any individual in a much more precise and reliable way, although depending on 

complex algorithms to mitigate the enormous computational cost involved in the new paradigm of 

mass sequencing. 

 

Genomic variants can be classified into several groups, depending on both their genetic nature 

and the type of algorithm needed to identify them. In the first place there is a first large group 

constituted by variants of small length, from a single nucleotide - what we know as SNP, single-

nucleotide polymorphism, or SNV, single-nucleotide variation - to several pairs of bases - called 

indels, by the conjunction of insertions and deletions -. The single-nucleotide polymorphisms are the 

most common and therefore best known genomic variants, based simply on the substitution of one 

nucleotide base for another; the cellular machinery, as is known, translates this nucleotide sequence 

into a sequence of another type of molecule, the amino acids, constituting what we know as proteins. 

In this way, the change from one nucleotide to another will in turn cause a variation in the sequence 

of amino acids, which can have both negative effects - the protein is truncated and ceases to perform 

its function, giving way to a disease - and neutral - the change of amino acid does not affect the 

protein as a whole and can continue to perform its function -, or even positive - the new amino acid 

enhances the existing protein, either by adding a new function or optimizing the one it already had, 

which ultimately causes the new sequence to be maintained in evolution by the basic principle of 

natural selection -. On the other hand, so-called indels are small insertions or deletions of several 

nucleotides in a particular position, which will commonly cause a negative effect by altering the 

sequential reading of the DNA chain. Both types of variants in turn will be divided into two groups 

for technical reasons, since the algorithms that detect them will be different: on the one hand, 

germline variants are those that occur in the germ cells of an organism - ova and sperm - and are 

therefore those that are inherited from the offspring and will be present in all the cells of your body; 

on the other hand, somatic variants are those that arise as their name indicates in the somatic cells - 

the rest of cells of an organism - during the adult life of any living being, but will not pass on to the 



 

 

offspring. These latter variants, however, are key to understanding the emergence and development 

of complex diseases such as cancer. In second place are the CNVs or copy-number variants, based on 

repeated fragments of relative size that are distributed along the genome, whose difference between 

individuals lies in the number of repetitions that each one presents. It has been shown that these types 

of variants represent up to 9.5% of our entire genome [44], and like the rest of variants can be the 

cause of certain diseases or have no visible effect on the body, simply representing genetic variation 

between individuals. Finally, structural variants or SV are based on genetic rearrangements of large 

areas of our genome, which may move from one chromosome to another or even be completely 

eliminated, clearly causing serious problems in the individual. 

 

Different variant calling tools will typically be grouped according to their ability to detect a 

particular type of variant, although some have specific modules that allow the identification of 

different types of variants from the same sample. As for the first large group of SNPs and indels, 

because they appear more frequently and are better known than structural variants, we can say that 

numerous tools have been developed based fundamentally on two approaches: on the one hand, 

heuristic methods assign variants based on multiple sources of information related to data quality, 

such as VarScan2 [45], which also implements statistical methods such as Fisher's test to compare 

variants with theoretical distributions [24]; on the other hand, probabilistic methods are based on 

Bayesian approaches to optimize the probability of identified genotypes, where we find more tools 

currently and widely used as SAMtools or GATK. Speaking specifically of germline callers, whose 

detection is the most standardized of all, we find various software such as the aforementioned GATK, 

SAMtools or VarScan2, in addition to others such as SNVer [46] or FreeBayes [47]; of all of them, the 

GATK algorithm is usually the one that always offers the most reliable and accurate results [37], in 

addition to having modules to detect other variants and various functions for filtering and 

recalibrating the results, so it seems to be the best option in most studies. However, other reviews 

have highlighted the good role of FreeBayes in detecting a good number of truly high-quality 

variants, so it may be a good option in cases where greater precision is needed to the detriment of the 

number of variants obtained [34]. On the other hand, at the time of detecting somatic variants only 

acceptable results were seen in the previously mentioned tools, such as GATK, SAMtools and 

VarScan2; even so, an attempt was made to test the efficacy of another software, SomaticSniper [48], 

which offered acceptable results by identifying SNPs between tumor samples and controls. For the 

identification of CNVs some specific tools have also been developed, such as CNVnator [49], 

CONTRA [50], ExomeCNV [51], or RDXplorer [52], while for structural variants we have several 

softwares such as Breakpointer [53], CLEVER [54] or SVMerge [55]. In conclusion, according to 

numerous studies and revisions, it is highly recommended to approach the problem of identifying 

variants with a multiple approach, that is, to apply a set of algorithms on our data set to maximize 

the pool of potential variants and then carry out a series of filters to retain the highest possible 

proportion of true positives; these filtering processes can be carried out using specific tool modules 

such as GATK or SAMtools, or a more manual filtering can also be done in which we keep those 

variants that are present in a certain number of tools [19]. 

3.5. Variant annotation 

The next-generation sequencing data analysis pipeline culminates with the process of variant 

annotation to bring some biological significance to the results obtained. Thanks to certain applications 

and tools it is possible to perform what is known as biological or functional annotation of variants, 

in which a large amount of information is searched for on these variants based on multiple 

parameters, such as the genomic region where it is found, the gene and the protein it affects, its effect 

according to the nature of the variant, etc. All this is possible thanks to all the information available 

in different databases and online resources, such as dbSNP [56] or the 1000 genomes project [57], 

which in turn will provide us with metrics to evaluate the possible clinical impact of the variant in 

question, something essential if we are talking about sequencing projects for clinical research, where 

it is necessary to know the potential relationship or causality between the disease of a patient and its 



 

 

genomic variants. These metrics, such as Condel [58], PolyPhen [59] or SIFT [60], provide a prediction 

score based on the variant annotation that classifies it according to its potential clinical impact, from 

variants with great certainty of being pathogenic, to neutral or possibly benign variants, and even 

variants with unknown function or VUS - Variant of Uncertain Significance -. This classification is 

currently standardized and there are consensus guidelines for its evaluation and application in 

different NGS data analysis pipelines [61]. 

 

For this process we also have numerous tools, whose main difference with the rest of NGS 

analysis software is that many offer a graphical interface or a web platform that allow the functional 

annotation being more intuitive and not requiring so much computational knowledge; however, in 

most cases the sequencing projects offer such a large amount of data and variants that this type of 

platform cannot support it, so command line tools are going to be widely used when a high 

parallelization or computation is required in the process. There are many tools to carry out this step, 

such as ANNOVAR [62], NGS-SNP [63], snpEff [64] or VEP [65]; of all of them, the most revised and 

currently used are ANNOVAR and VEP - Variant Effect Predictor -, for its degree of 

comprehensiveness and the possibility of making annotation both in command line and through a 

graphical interface [19]. 

4. Next-generation sequencing data analysis frameworks 

The analysis of next-generation sequencing data involves, as we have seen, numerous stages in 

which the output generally becomes the input of the next step, giving rise to what is known as a 

pipeline, a flow composed of a series of stages of analysis until finally arriving at the result we need, 

the biological and clinical information of the genomic variants detected. This is why the process of 

bioinformatic analysis of data from NGS is a task that requires a minimal IT expertise to know how 

to handle all the files generated, implement all the third-party software that have been mentioned 

previously for each stage and, in most cases, build a script that can be executed in command line to 

make the process more automated. Therefore, during the last years the bioinformatics community 

has been developing analytical pipelines to face this problem, generating tools in which the only task 

is to import the raw reads coming from the sequencer and let it work to finally obtain a set of 

identified variants with relevant biological information, allowing their use and application by 

researchers without any computational background. Often this type of software brings with it a 

graphical interface so that the user can modify parameters and the interpretation of the results is 

much more intuitive, avoiding what is known in computing as black box, a system in which only the 

inputs and outputs are studied without being able to know or take into account their internal 

functioning. 

 

The need for the development of these pipelines and workflows also arises from the large 

number of challenges posed by the new paradigm of genomic data analysis. The numerous 

applications that are being discovered in this era of mass sequencing is causing a constant emergence 

of new tools, the evolution and optimization of existing platforms or the development of increasingly 

innovative algorithms to address new problems that are emerging. All of this results in an increase 

in the complexity of the analysis and an increasing difficulty in selecting the appropriate tools for 

each subprocess of the pipeline, since for each step new algorithms arise, each time more 

sophisticated and optimized, reaching the point that in 2017 there were already more than 11,000 

tools for the analysis of omic data catalogued in the OMICtools platform [66]. This is aggravated by 

the realization that this high complexity is often left in the hands of researchers, who in addition to 

their own line of research must be able, with their scarce IT knowledge, to assemble these pipelines 

and choose the right tool at each step, thus making clear the urgency of standardizing analyses and 

increasing reproducibility in computational biology [67]. Finally, this complexity of use that we have 

mentioned makes it even more necessary to develop technologies that do not require a high technical 

level, without having to apply intricate command line instructions, so that the group of users who 

can apply this type of analysis is greatly expanded [68]. 



 

 

 

Some existing analytical pipeline bioinformatics analyses often offer a predefined order of steps 

and processes to be carried out, not allowing great flexibility to modify or replace certain modules; it 

is the case of pipelines such as HugeSeq [69], SIMPLEX [70], TREAT [71], bcbio-nextgen [72] or 

Sam2bam [73], which implement an automatic analysis of NGS data from the reception of reads to 

the identification of different types of variants, having the ability to receive different formats, be used 

on cloud platforms, carry out specific sections of the entire pipeline and offer researchers 

comprehensive results in the form of summary reports. However, they are usually not very flexible 

tools when inserting new modules or modifying certain stages to adapt it to the needs of the project 

in question, so they may lag behind especially for the bioinformatics community due to their great 

rigidity. To solve this, new platforms known as workflow management systems or pipeline 

frameworks emerge, tools that offer greater openness and flexibility to accommodate different 

pipelines, both in series and parallel, complex dependencies, varied software or parameters modified 

by the user, in addition to more advanced features such as the visualization of the process in real 

time, the possibility of working in the cloud and with graphical user interface or the ability to 

containerize various tools [74]. There is a large amount of workflow management systems at present, 

some of them more standardized and others newer and more innovative. Galaxy [75] is a web 

platform widely used in bioinformatics analysis with more than 100 tools available for the different 

stages of NGS analysis, with the possibility of creating custom pipelines, reproducing them and 

sharing them later with the community. Being a web platform, the graphical interface allows its use 

to be simple and intuitive even in the creation and customization of scripts, so it has become a 

benchmarking system for the rest of workflow frameworks for its wide use in the scientific 

community. SEQprocess [76] is a framework for carrying out NGS data analysis that already offers 

several pre-installed pipelines, as well as the possibility of generating them in a personalized way. It 

is an R package whose main characteristic is that it implements specific analyses for new oncological 

applications based on the TGCA, The Cancer Genome Atlas, although in the case of making your 

own pipeline requires a certain computational background to install the specific software and modify 

the parameters in configuration files. Closha [77], another recently developed workflow framework, 

is a system optimized for use in the cloud through high-performance computing clusters, also with a 

graphical interface and the possibility of running both existing pipeline and customized by the user. 

It presents certain technical advantages, such as the implementation of a new system known as KoDS 

for fast file transfer or the scalability of resources - it increases its performance as computational 

requirements increase -, which makes its execution speed slightly higher than in Galaxy. NGS-pipe 

[78] is another analysis framework that allows custom pipelines to be designed automatically and 

user-friendly, ensures reproducibility in clinical applications and allows parallelization in clusters; 

however, it also requires the installation of software manually and the modification of a config file to 

adjust the parameters needed. Finally, another more innovative framework in this sense is Bio-

Docklet [79], a tool that allows managing pipelines from other systems such as Galaxy in Docker 

containers, encapsulating all the necessary pre-configured software and being a very interesting 

approach in the current scenario so that the researcher does not have to worry about manually 

installing all the required software. 

 

As we have seen, there are currently multiple tools and platforms to face the arduous task of 

analyzing data from a mass sequencing project, each of them more sophisticated than the previous 

one; this makes it a field of computational research that evolves very quickly, so it lacks much of the 

standardization and reproducibility presented by other scientific fields, as may be the case of clinical 

and biomedical research, in which there are usually well-structured protocols and agreed guidelines 

to follow before a particular experiment. Therefore, in view of this situation our recommendation 

would be to carry out an exhaustive study of the applications in which next-generation sequencing 

is present, evaluating each specific case and optimizing the different parameters required. Therefore, 

it can be said that the elaboration of guidelines and pipelines for each of the applications would be a 

great step towards improving transparency and reproducibility between different sequencing 



 

 

projects. Secondly, in relation to the different existing framework systems, it has been seen that they 

have numerous tools to become common instruments in any biomedical laboratory, such as their ease 

of use, the possibility of running parallel work in the cloud or the implementation of graphical user 

interfaces; however, these interfaces are only contemplated during the analysis process and the 

creation of the personalized pipeline, as it has been seen that in most cases the final information is 

not offered in such a graphical and intuitive way. In cases such as clinical research where the 

conclusions of an experiment or even the health of a patient depend on the final information obtained, 

the interpretation of the results is essential, so it would be necessary to focus efforts on developing a 

robust and optimized pipeline for clinicians in which one of the basic pillars is the biological 

annotation of the variants and an optimal interpretation of them, generating graphical and intuitive 

reports where the most clinically relevant information of a patient appears. Finally, a very interesting 

approach to apply in these NGS data analysis pipelines would be the implementation of machine 

learning algorithms, something quite scarce in the current standard frameworks. Artificial 

intelligence is making its way in recent years in the field of genomics, and due to the enormous 

amount of data generated by these platforms, which currently continues to grow at an exponential 

rate, it would be interesting to generate models and training algorithms that further improve the 

results obtained from classic pipelines. 
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