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ABSTRACT 

The advent of big data and advanced genomic sequencing technologies has presented challenges in terms of data 
processing for clinical use. The complexity of detecting and interpreting genetic variants, coupled with the vast array of tools 
and algorithms and the heavy computational workload, has made the development of comprehensive genomic analysis 
platforms crucial to enabling clinicians to quickly provide patients with genetic results. This chapter reviews and describes the 
pipeline for analyzing massive genomic data using both short-read and long-read technologies, discussing the current state 
of the main tools used at each stage and the role of artificial intelligence in their development. It also introduces DeepNGS 
(deepngs.eu), an end-to-end genomic analysis web platform, including its key features and applications. 
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1 INTRODUCTION 

The completion of the Human Genome Project has led to significant advances in high-throughput sequencing, 
turning this technology into a routine tool used in many research laboratories and genetic centers for various 
purposes. It has been found that our genomes hold the answers to many of the questions that humanity has 
been asking itself for centuries. However, this new paradigm generates a vast amount of data that traditional 
computational methods are unable to handle, resulting in the development of various tools and algorithms for 
analyzing and managing data collected by different sequencing platforms. 

DeepNGS is a web platform that assists in and simplifies the process of analyzing data from human genomic 
samples to detect and interpret their potential pathogenicity and potential association with a clinical phenotype. 
With just one click, this platform automates the tedious process of data analysis and hands it over to expert 
workflow management systems deployed in both the cloud and on premises, to optimize computational loads 
and parallelization in a reliable and secure environment for working with genomic data of relevance. The use of 
novel AI algorithms enables optimal clinical detection and interpretation, with machine learning-based pattern 
extraction methods that leverage information from multiple sources to create a model tailored to each 
phenotype. 
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2 GENOMICS DATA ANALYSIS PIPELINE 

2.1 Quality assessment 

FASTQ files are used to store high-throughput sequence data and contain both the raw data and quality scores 
for each base [1]. The quality scores are represented as ASCII characters, with a higher ASCII value indicating 
a higher quality score. The quality scores are used to assess the accuracy of the base calls made by the 
sequencer and can be used to filter out low-quality reads or bases. 

Trimming is the process of removing low-quality or unwanted sequences from the ends of reads. This can be 
done to improve the overall  

quality of the data, or to remove adapter sequences that may have been introduced during the sequencing 
process. There are many software tools available for trimming FASTQ files, and the specific tool and parameters 
used will depend on the specific needs of the analysis. 

FASTQC and Trimmomatic are two commonly used tools for analyzing and processing high-throughput 
sequence data [2], [3]. FASTQC is a software that provides a number of graphs and statistics to evaluate the 
quality of the reads, including measures such as the average quality per base, the distribution of indeterminate 
nucleotides (Ns), and the GC content. Trimmomatic is a powerful tool for filtering sequences using multiple 
parameters and is optimized for use with data from the Illumina sequencing platform. It can be used to remove 
adapter sequences, which are short stretches of DNA that may be introduced during the library preparation 
process and can interfere with downstream analyses. 

There are many other tools available for analyzing and processing high-throughput sequence data, including 
NGSQC Toolkit [4], PRINSEQ [5], Galaxy [6], PathoQC [7], AfterQC [8], fastp [9], FastProNGS [10], and FQStat 
[11]. These tools offer different features and may be better suited for certain types of analyses or data sets. It 
is important to carefully evaluate the available options and choose the tool that is most appropriate for your 
specific needs. 

2.2 Alignment and postprocessing 

Mapping or aligning reads to a reference genome is an important step in the analysis of high-throughput 
sequencing data. It involves placing the reads in their correct positions within the genome, which can be 
challenging due to the complexity of the genome and the presence of repetitive or poorly characterized regions. 
There are many different tools available for aligning reads to a reference genome, which can be broadly 
classified based on the algorithm they use [12]. 

Hashing-based algorithms, such as RMAP [13], SOAP [14], Novoalign [15], and SHRiMP [16], use hash 
functions to rapidly index the position of each read, but they are prone to errors. Algorithms based on the Smith-
Waterman algorithm, such as BFAST [17], are more precise but also more time-consuming. Algorithms based 
on the Burrows-Wheeler Transform, such as BWA [18], Bowtie [19], and SOAP2 [20], offer a balance between 
efficiency, sensitivity, and specificity, and are well-suited for short reads. 

According to studies, the aligners that offer the best performance for variant identification are BWA, Bowtie, 
Novoalign, and SOAP. BWA and Bowtie are among the most widely used aligners, although some studies have 
found that BWA may not be accurate when the error rate in the reads is low [21], and that Novoalign performs 
better when used in conjunction with the Genome Analysis Toolkit (GATK) [22]. SOAP and its improved versions 
have a high accuracy even when there are high error rates in the mapping, making them a good choice for 
identifying single nucleotide polymorphisms (SNPs) [21]. It is important to carefully evaluate the available 
options and choose the aligner that is most appropriate for your specific needs. 

Preprocessing steps are often applied to prepare the SAM file for further analysis. These steps can include 
sorting and indexing the mapped reads according to their genomic position using SAMtools [23] and converting 
the SAM file to a binary version (BAM) for improved management. Additionally, alignment statistics can be 
summarized using Qualimap [24] or mosdepth [25] and duplicate sequences can be marked or eliminated using 
Picard [26]. Other steps such as realigning reads around insertions and deletions using GATK Base Quality 
Score Recalibration can also improve the accuracy and reliability of variant identification [27]. In summary, 
preprocessing sequencing data is crucial to improve the accuracy of the final variant identification by eliminating 
bias and adjusting the quality of identified variants. 
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2.3 Variant calling 

SNP (single nucleotide polymorphism) and indel (insertion/deletion) variant calling tools are used to identify 
variations in DNA sequences at the single nucleotide level. These tools can be divided into two categories: 
heuristic methods and probabilistic methods. Heuristic methods, such as VarScan2 [28], use multiple sources 
of information on data quality to assign variants and may also use statistical tests, such as Fisher's test, to 
compare the variants with theoretical distributions [12]. Probabilistic methods, such as SAMtools and GATK, 
are based on Bayesian approaches that optimize the probability of identifying genotypes. GATK is a widely 
used probabilistic variant calling tool that is known for its reliability and accuracy, and it also has a modular 
design that allows for the detection of different types of variants and has functions for filtering and recalibrating 
results. Other tools, such as FreeBayes, may be more precise in detecting high-quality variants, but may detect 
fewer variants overall [29]. 

Germline callers are specialized in detecting variations that are present in every cell of an individual and are 
passed down to their offspring, while somatic callers are used to identify variations that occur in a specific tissue 
or cell type and are not passed down to offspring. Somatic variant calling typically involves comparing results 
from sequencing two samples from the same patient, a tumor tissue sample and a normal tissue sample, to 
distinguish somatic variants from germline variants. There are several algorithms used by different somatic 
variant calling tools, including heuristic algorithms, joint genotype analysis, allelic frequency analysis, and 
haplotype-based strategies. Heuristic algorithms, such as VarScan2 [28], use certain thresholds to detect 
variants and then apply statistical tests, such as Fisher's exact test, to filter the results and obtain only somatic 
variants. Joint genotype analysis, used by tools such as SomaticSniper [30] and SAMtools, assumes diploidy 
in both samples and attempts to infer the joint genotypes using Bayes' theorem. However, this assumption may 
not hold for tumor samples with highly heterogeneous subclones. Allelic frequency analysis, employed by tools 
such as Strelka [31] and MuTect [32], attempts to move away from the classical joint genotypes approach by 
considering the allelic frequency of variants. Haplotype-based strategies, used by tools such as Platypus [33], 
FreeBayes, and MuTect2 [21], involve assembling reads locally in specific regions and generating haplotype-
based genotypes. 

Structural variant calling tools are used to identify larger scale variations, such as deletions, insertions, 
inversions, or translocations, which cannot be detected by SNP and indel variant calling tools. These variations 
can have significant impacts on gene function and can be involved in the development of diseases. Some tools 
for structural variant calling include BreakDancer [34], CNVnator [35], and DELLY [36]. 

 

2.4 Variant annotation 

Variant annotation is the process of assigning biological significance to the results obtained from variant 
calling. It involves searching for information on variants in various databases and online resources, such as 
dbSNP [37] or the 1000 Genomes project [38], and using metrics such as Condel [39], PolyPhen [40], or SIFT 
[41] to evaluate the potential clinical impact of a variant. These metrics provide a prediction score based on the 
variant annotation and classify the variant according to its potential clinical impact. Variants can be classified 
as pathogenic, neutral, possibly benign, or variant of uncertain significance (VUS), depending on the level of 
confidence in their clinical significance [42]. Variants can also be defined according to the effect they have on 
the protein chain, such as being synonymous or non-synonymous, or causing a frameshift mutation. Non-
synonymous variants result in a change in the protein sequence, which can have functional consequences, 
while synonymous variants do not result in a net change in the protein sequence due to the degeneracy of the 
genetic code. Frameshift mutations, which are caused by the gain or loss of nucleotides, can disrupt the normal 
reading of the DNA sequence and result in a completely different protein sequence. 

There are several tools available for functional annotation, including ANNOVAR [43], NGS-SNP [44], snpEff 
[45], and VEP [46]. These tools can be used in a command-line interface or through a graphical interface, and 
ANNOVAR and VEP are among the most widely used and comprehensive options. In addition to functional 
annotation, it is also important to consider other factors such as the frequency of a variant in the population, its 
presence in known disease-associated genes, and the presence of relevant functional elements in the genomic 
region of the variant. Resources such as The Cancer Genome Atlas Project – TCGA - [47], COSMIC [48], and 
ClinVar [49] can be used to prioritize or filter variants and avoid the need to use multiple variant callers. 
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Functional annotation can be a complex process because the functional prediction of detected variants is not 
always straightforward. While it was previously thought that both point and structural variants resulted in a 
deleterious protein that caused a change in the amino acid sequence, recent studies have shown that this is 
not always the case [50]. Therefore, it is important to consider a range of factors when evaluating the clinical 
significance of a variant and determining its potential impact on gene function. 

 

3 NANOPORE SEQUENCING DATA ANALYSIS PIPELINE 

Long read sequencing technology, such as Single Molecule Real Time (SMART) sequencing and Oxford 
Nanopore technology, has expanded the capabilities of mass sequencing in clinical settings and has the 
potential to become a routine practice [51]. These technologies are based on sequencing long reads and do 
not require the amplification of fragments through PCR, making them useful for the detection of structural 
variants and genome assembly [52]. However, they have not yet achieved the precision of short read 
sequencing technologies like Illumina. The analysis of long read data requires a pipeline with several processing 
steps, including base calling, quality control, error correction, modification detection, genome assembly, 
transcriptome analysis, variant calling, and haplotyping/phasing. In clinical settings, Nanopore sequencing is 
the most commonly used long read technology and is particularly useful for the detection of different types of 
variants of clinical interest. 

Basecalling is the process of converting raw current changes measurements from DNA or RNA strands 
passing through nanopores into sequence data. It is a critical step in the nanopore data analysis pipeline. There 
are both in-house commercial tools developed by Oxford Nanopore Technologies (ONT) and open-source 
software options available for basecalling, using different algorithmic methods. The most widely used software 
package is Guppy, part of the set of tools provided by ONT, which includes algorithms such as Scrappie and 
Bonito and is used in conjunction with the MinKNOW service for managing the sequencing process and 
obtaining sequenced reads [53]. Other popular third-party basecalling tools include Causalcall (using a temporal 
convolutional network) [54], DeepNano (using a recurrent neural network) [55], and fast-bonito (a 
reimplementation of Bonito using a neural architecture search technique to speed up execution) [56]. 

Quality control and preprocessing are important steps in the analysis of long read data, similar to the analysis 
of short read data. These steps are necessary to ensure the accuracy of downstream analyses and to evaluate 
the quality of the generated fragments. There are several tools available for this purpose, such as LongQC [57], 
Poretools [58], poRe [59], NanoOK [60], HPG pore [61], Nanopack [62], and Filtlong [63]. These tools can be 
used to assess the quality and overall state of the generated data through metrics, visualizations, and statistical 
analysis, as well as to perform trimming to improve the quality of a large portion of the fragments. 

The nanopore-based read generation process has an inherent error rate of around 15%, which can lead to a 
significant number of incorrectly sequenced bases. This error rate can be a limitation for the detection of point 
changes or de novo genome assembly. To address this issue, error correction methods can be used. These 
methods can be divided into two categories: self-correction methods, which use graphs to generate consensus 
sequences (such as Canu [64] or LoRMA [65]), and hybrid methods, which use short reads to correct long reads 
through alignments (such as Nanocorr [66], Ratatosk [67], or FMLRC [68]). Hybrid methods have been shown 
to reduce the error rate to 1-4%, which is similar to the error rate of short reads [69]. 

Long reads have the advantage of covering larger genomic regions, making their positioning more unique 
compared to short reads, which often have multiple possible alignments or secondary mappings, especially in 
repetitive regions. This has led to the development of several alignment tools specifically designed for long 
reads, such as LAST [70], GraphMap [71], minimap2 [72], NGLMR [73], and GraphMap2 [74]. Among these, 
minimap2 with its seed-chain-align algorithm has been shown to perform well in terms of accuracy and 
performance in call sets, and it can also be used to map short reads [75]. Another notable tool is GraphMap2, 
a reimplementation of GraphMap that can map in splice-aware mode to accurately detect the ends of exons. 

The goal of a nanopore sequencing data analysis pipeline is to detect variants of clinical interest, including 
single nucleotide variants (SNVs) and structural variants (SVs). One of the main applications of this technology 
is the detection of large structural genomic changes, thanks to the ability of long reads to span these changes 
and accurately detect breakpoints. To do this, tools such as NanoSV [76], Sniffles [73], Picky [77], Nanovar 
[78], and dysgu can be used [79]. Among these, Sniffles and dysgu have been shown to have the best overall 
performance [75]. For the detection of SNVs, a previous error correction step and haplotype-aware variant 
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calling algorithms may be necessary. The PEPPER-Margin-DeepVariant pipeline, which uses Google's 
DeepVariant tool, has been shown to accurately detect SNVs [80]. 

4 MACHINE LEARNING 

Machine learning algorithms can be used in genomic variant analysis pipelines to identify variants associated 
with diseases [81]. These algorithms fall into two main categories: supervised learning and unsupervised 
learning. Supervised learning algorithms, like deep learning methods and neural networks, are used to predict 
the output value of an input variable based on a training dataset that has already been labeled. These algorithms 
are often used in variant calling and annotation because they offer better performance than other methods, 
such as classifiers or clustering techniques. Unsupervised learning algorithms, like clustering or association 
rule learning, are used to discover hidden patterns in a dataset without any prior labels. 

There have been several machine learning tools developed for the detection of variants, including Scotch and 
Metal [82], which obtain new, previously undetected indels, and DeepVariant [83], which is a versatile tool based 
on a deep convolutional neural network that is able to generalize across different genomic constructions, 
platforms, and experimental designs. There have also been efforts to develop machine learning tools for the 
detection of somatic variants in cancer, such as NeuSomatic [84], the first algorithm based on a convolutional 
neural network for the precise detection of somatic variants, and DeepSVR [85], a deep learning model that 
includes three different algorithms - logistic regression, random forest, and deep learning - which are used to 
refine a set of already detected variants and obtain a good set of true somatic variants. 

In addition to these general machine learning tools, there are also tools specific to long-read sequencing 
platforms like Oxford Nanopore and Pacific Biosciences, such as DeepNano, a recurrent neural network for 
reads from the MinION sequencer, and Clairvoyante [86], a convolutional deep neural network specifically 
designed for the SMRT sequencing platform, although it is also valid for other platforms. 

There are also algorithms that focus on improving the functional annotation process of detected variants, 
which are key for the analysis of unknown somatic variants related to cancer or for mutations in non-coding 
regions. Examples of these algorithms include DeepSEA [87], a deep learning-based algorithm that identifies 
functional characteristics of non-coding variants through information from regulatory sequences and chromatin 
profiles, BadMut [88], a meta-estimator that uses deep learning algorithms to integrate several deleteriousness 
prediction scores and predict the pathogenic potential of a variant, and DeepGene [89], software that is a 
classifier based on deep learning that predicts the potential functional effect of missense mutations on protein 
structure and function. 

 

5 WORKFLOW MANAGEMENT SYSTEMS 

Next-generation sequencing (NGS) data analysis involves numerous stages that are often integrated into a 
pipeline. These pipelines and workflow management systems have been developed to facilitate the analysis of 
NGS data for researchers with little IT expertise and to standardize and increase reproducibility in computational 
biology. 

These tools often include a graphical interface and offer predefined steps and processes but may lack 
flexibility in modifying or replacing certain modules. Workflow management systems, on the other hand, offer 
greater openness and flexibility, advanced features, and the ability to visualize processes in real time and work 
in the cloud. Examples of workflow management systems include Galaxy, Taverna [90], and Snakemake [91]. 
These platforms allow researchers to customize their analysis pipelines and choose the appropriate tools for 
each step of the process. 

Nextflow is a workflow management system that enables the automation and parallelization of data analysis 
pipelines [92]. Some of its main features include: 

• Support for various programming languages and execution environments, such as Bash, Python, R, 
etc. 

• Ability to adapt to different storage systems and computing platforms, such as computing clusters, 
cloud platforms, and container systems. 

• Efficient management of dependencies and resources, to avoid redundant tasks and optimize the use 
of available resources. 
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• Real-time monitoring and tracking of workflow execution through the visualization of graphs and 
statistics. 

• Integration with code repositories and version control systems, such as Git and GitHub, to facilitate 
collaborative work and reproducibility of analyses. 

 
In addition to these general tools, there are also more specialized pipelines and tools available for specific 

NGS applications, such as ChIP-seq and RNA-seq, and for specific purposes, like quality control and alignment. 
These specialized pipelines and tools can be used in conjunction with general pipeline frameworks to address 
the specific needs of a given project. 

The development of these tools has contributed to the evolution and optimization of existing platforms and to 
the development of new algorithms that can address complex problems in NGS data analysis. However, 
choosing the right tool for each step can be a complex and time-consuming process, especially with the large 
number of sophisticated tools and algorithms available. It is important for researchers to carefully consider their 
specific needs and choose the appropriate tool or pipeline to ensure the success of their analysis. 

6 DEEPNGS 

DeepNGS (deepngs.eu) is a platform for the rapid and automated analysis and interpretation of human 
sequenced DNA samples from mass sequencing experiments. It can be used in cloud computing environments, 
such as Amazon Web Services, or installed locally on user premises with custom configuration options. It has 
an optimized workflow and uses advanced scripts for continuous optimization, as well as visualization 
techniques and interactive charts to help users interpret and present the results. It aims to obtain a set of genetic 
variants that are relevant for the clinical diagnosis of patients and incorporates machine learning algorithms to 
optimize the analysis process and improve accuracy. The platform uses various computational methods and 
ACMG criteria to predict the potential deleterious effect of specific genetic variants on proteins. The platform 
makes use of artificial intelligence and machine learning techniques to continuously improve and optimize the 
analysis pipeline. 

The platform uses AWS Batch, a service that allows you to run batch computing workloads on the AWS 
Cloud. It manages the underlying compute resources, including Amazon Elastic Compute Cloud (EC2) 
instances and Docker containers, and automatically scales them based on the workload. This makes it easy to 
execute Nextflow pipelines at scale, using a variety of tools and libraries for NGS data processing. 

 
The cloud architecture is described as follows (Figure 1): 
• Data storage: The raw NGS data and reference genome are stored in an Amazon Simple Storage 

Service (S3) bucket. The S3 bucket serves as a central location for storing and accessing the data and can be 
accessed from the compute resources used to run the pipeline. 

• Pipeline definition: The Nextflow pipeline is defined in a Nextflow script and stored in a version control 
system such as Git. The script specifies the tasks that make up the pipeline, as well as the dependencies 
between them and the input and output data for each task. 

• Pipeline execution: The pipeline is executed using AWS Batch, which is a service that allows you to 
run batch computing workloads on the AWS Cloud. To execute the pipeline, the platform submits a job to AWS 
Batch, which launches the necessary compute resources and executes the tasks in the Nextflow script. 

• Pipeline tasks: The tasks in the Nextflow pipeline are executed on the compute resources managed 
by AWS Batch. These tasks can include steps such as read alignment, variant calling, and annotation. Each 
task is implemented as a process in the Nextflow script, and can be written in a variety of languages, such as 
Bash, Python, or R. 

• Data processing: The pipeline tasks can use a variety of tools and libraries for NGS data processing, 
such as BWA, SAMtools, and GATK. These tools and libraries are installed on the compute resources using 
docker containers and Amazon ECS. 

• Output storage: The results of the pipeline tasks, such as alignment files and variant calls, are stored 
in another Amazon S3 bucket. This bucket can be accessed by the pipeline tasks as needed, and the final 
results can be downloaded or analyzed using other tools. 
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Figura 1: DeepNGS cloud platform architecture. 

7 CONCLUSIONS 

There are many tools and platforms available for analyzing data from mass sequencing projects, but this can 
make it difficult to achieve standardization and reproducibility in the field of computational genomics. To address 
this issue, guidelines and pipelines for different applications could be developed to improve transparency and 
reproducibility. DeepNGS is a platform that is optimized for use by clinicians and provides biological annotations 
and intuitive, graphical reports to aid in the interpretation of results. It also incorporates machine learning 
algorithms to improve the results of the analysis. In the future, a premium version of DeepNGS is planned to be 
released, which will include additional features such as access to cancer-specific databases, the ability to 
analyze complex genomic samples, and the ability to analyze familial cases. A version of the platform designed 
for local servers on premises is also planned, with continuous technical support and a workflow management 
system. This version will be customizable at the installation level according to the computational requirements 
of each user and the characteristics of their servers. Overall, the goal of DeepNGS is to provide a robust and 
optimized platform for analyzing and interpreting genomic data, with the aim of improving the accuracy and 
comprehensiveness of results. 
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