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1. Introduction 

DNA sequencing is a fundamental technique in molecular 

biology that allows the exact sequence of nucleotides in a 

DNA sample to be read. Over the past decades, DNA 

sequencing has seen significant advances, evolving from 

manual and laborious techniques to modern high-throughput 

techniques. Despite these advances, interpretation and 

analysis of sequencing data continue to present challenges. 

Artificial Intelligence (AI), and in particular machine 

learning, has emerged as an essential tool to address these 

challenges. The application of AI in the sequencing pipeline 

refers to the use of algorithms and models to automate, 

optimize and improve the precision of the sequencing process 

and its subsequent analysis. 

The Sanger sequencing method, introduced in the 1970s, 

was one of the first to be widely used. Although effective, this 

method is slow and is not suitable for sequencing large 

amounts of DNA, such as entire genomes. With the arrival of 

next generation sequencing (NGS) in the 21st century, greater 

speed and efficiency in obtaining genomic data has been 

achieved. However, the exponential increase in the amount of 

data produced has created a bottleneck in its analysis and 

interpretation. 

This is where AI comes into play. With its ability to process 

and analyze large sets of data quickly, AI can identify patterns, 

make predictions, and provide insights that would be difficult 

or impossible to obtain through conventional methods. 

The application of AI in sequencing pipelines can be 

categorized into several stages: 

- Raw Data Processing: DNA sequencing produces 

enormous amounts of raw data that require cleaning, 

alignment and assembly. Machine learning 

algorithms can optimize this process, eliminating 

errors, identifying regions of interest, and assembling 

sequences more efficiently. 

- Identification of Variants: Once the DNA is 

sequenced and assembled, the next step is to identify 

the genetic variants. AI can help distinguish between 

true variants and sequencing errors, as well as predict 

the potential impact of variants on gene function. 

- Functional Analysis and Interpretation: With the 

sequenced data in hand, it is essential to understand 
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the biological meaning behind it. AI can group genes 

by function, predict protein interactions, and 

associate genetic variants with specific diseases or 

traits. 

Integrating AI into the sequencing process not only speeds 

up analysis, but also improves the accuracy and scope of the 

insights obtained. 

As we progress through this analysis, we will further 

explore specific areas of improvement and how AI can 

contribute to the continued evolution of DNA sequencing. 

 

Although sequencing technologies have advanced rapidly, 

significant challenges still exist: 

- Genome Complexity: Many regions of the genome 

are difficult to sequence due to their repetitiveness or 

structure. These regions can hide crucial information 

about diseases and other genetic characteristics. 

- Sequencing Errors: Despite improvements, errors in 

the sequencing process still persist. These may be 

due to the quality of the DNA, sample preparation, or 

the technology used. 

- Interpretation of Variants of Uncertain Significance: 

Not all identified variants have known clinical 

significance, complicating the interpretation and 

clinical application of the data. 

AI can contribute to these challenges with different 

approaches: 

- Improved Sequencing Accuracy: AI algorithms, such 

as neural networks, can be trained to identify and 

correct sequencing errors, improving the accuracy 

and reliability of the results. 

- Handling Complex Regions: AI techniques can be 

especially useful for analyzing complex genomic 

regions, identifying patterns in the data that may be 

too subtle to detect using conventional methods. 

- Automated Interpretation: AI can help automatically 

interpret detected variants, associating them with 

disease databases and scientific literature, thus 

providing biological and clinical context. 

- Predictive Analytics: With the use of AI, it is possible 

to perform predictive analytics to anticipate how 

certain variants may influence the development of 

specific diseases or traits in the future. 

The incorporation of Artificial Intelligence into DNA 

sequencing pipelines represents a revolution in the way we 

approach and understand genomics. As these technologies 

continue to evolve and collaborate, we can expect significant 

advances in areas such as personalized medicine, genomic 

research, and evolutionary biology. It is essential to recognize 

and seize these opportunities to maximize the positive impact 

of AI on DNA sequencing and, ultimately, human health and 

well-being. 

2. Preprocessing phase 

Next-generation sequencing (NGS) has transformed 

genomics, enabling deep, high-throughput analysis of 

genomic samples. However, before NGS data can be 

interpreted and analyzed in depth, it must undergo a series of 

preprocessing steps to ensure its quality and reliability. AI has 

been incorporated in this phase to improve the efficiency and 

accuracy of preprocessing. 

The NGS data preprocessing process is an essential stage 

in next-generation sequencing analysis. Before artificial 

intelligence was introduced in this area, this process relied 

heavily on specific bioinformatics tools and manual 

intervention. Traditional NGS data preprocessing aims to 

prepare the data for further analysis, ensuring that it is 

accurate, reliable, and free of artifacts or errors introduced 

during sequencing. 

- Initial Quality Control (QC): Before any other step, 

it is essential to perform quality control of the reads 

obtained from the sequencer. Tools like FastQC are 

commonly used to evaluate the quality of reads along 

their lengths. This provides an overview of the status 

of the sequences, allowing researchers to identify 

problems such as contamination, sample degradation 

or problems arising from the sequencing process. 

- Trimming and Filtering: Once the quality has been 

evaluated, the next step is trimming the readings. The 

goal is to remove adapters, primers, and other 

unwanted sequences, as well as discard low-quality 

reads. This is done to ensure that the data used for 

subsequent analysis is of the highest quality possible. 

Tools like Trimmomatic and Cutadapt are common 

for these purposes. 

- Alignment or Mapping: With the clean and high-

quality reads, we proceed to align or map these reads 

against a reference genome. This process seeks to 

determine the exact location in the genome where 

each of the reads come from. BWA and Bowtie are 

examples of alignment tools that have been widely 

adopted in the bioinformatics community. 

- Alignment Post-Processing: After alignment, it is 

crucial to refine and optimize those alignments. This 

may include removing duplicates, which are identical 

reads that may have been caused by artifacts during 

library preparation. It can also include local 

realignment to correct misalignments and quality 

recalibration to obtain more accurate scores. The 

GATK (Genome Analysis Toolkit) has been a 

standard resource for these tasks. 

- Variant Identification: After preprocessing, the data 

is ready for the identification of genetic variants, 

such as SNPs and INDELs. However, this step, 

although closely related, is considered more a part of 

the main analysis than preprocessing. 
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Preprocessing NGS data without AI intervention requires 

great attention to detail and deep knowledge of bioinformatics. 

Although these traditional tools and methods have proven 

effective, they are inherently slower and can be prone to 

human error or subjective interpretation, which led to interest 

in incorporating automated and optimized solutions through 

artificial intelligence. 

Currently we can only find one machine learning tool 

applied to the preprocessing phase: AfterQC. 

AfterQC is an automatic quality control (QC) tool that uses 

machine learning techniques to detect and correct common 

errors in NGS data. 

Its main advantages are that it automates the quality control 

process and that it can correct errors in real time during the 

sequencing process. 

However, it may not be suitable for all sequencing types or 

platforms and its effectiveness is greatly affected by the 

quality of the initial sample. 

AI provides a series of general advantages in this 

preprocessing phase 

- Automation: Reduces the need for manual 

intervention, which minimizes human errors and 

speeds up the process. 

- Improved Accuracy: AI techniques can identify and 

correct errors that might be missed with traditional 

methods. 

- Adaptability: AI tools can be trained and tuned for 

different types of data or experimental setups. 

Regarding its limitations we can highlight: 

- Need for High Computing Capabilities: Many AI 

tools require substantial computing resources, which 

may not be accessible to all laboratories. 

- Learning Curve: Although they automate many 

processes, AI-based tools can have a learning curve 

for those unfamiliar with them. 

- Training Data Dependency: The quality and quantity 

of training data are essential for the performance of 

AI models. 

The preprocessing phase is critical in the NGS pipeline, and 

the introduction of AI-based tools in this process has 

significantly improved its effectiveness and efficiency. While 

these tools offer numerous benefits, it is essential to be aware 

of their limitations and ensure that they are used appropriately 

and in the correct context. As technology and research in this 

field advance, we can expect more optimized solutions and 

more robust tools that continue to revolutionize the world of 

genomic analysis. 

 

The alignment phase, also known as read mapping, is a 

crucial stage in the analysis of next-generation sequencing 

(NGS) data. This phase focuses on determining the exact 

position of a DNA read or fragment within a reference genome 

or transcript. The fundamental purpose is to establish a 

correspondence between each read obtained from the 

sequencer and its probable location in a known genome. 

Through this process, it is possible to identify genetic variants, 

structure the genome of an organism or analyze genetic 

expression, among other objectives. 

The alignment process begins, broadly speaking, by taking 

the sequence reads produced by the sequencing machines and 

comparing them to reference genomes that have been 

previously sequenced and well characterized. The idea is that 

by aligning reads against a reference, you can identify regions 

of the genome where these reads "fit" best. This procedure is 

essential, not only to validate the quality of the sequence 

produced, but also to infer relevant biological information 

from the location and nature of the reads. 

3. Alignment phase 

The alignment process is not trivial, especially given the 

enormous amount of data generated by modern sequencing 

techniques. Reference genomes, especially for complex 

organisms like humans, are vast, containing billions of bases. 

Alignment tools must be extremely efficient to accurately map 

billions of reads in a reasonable time. 

Among the most popular tools for aligning NGS reads are 

BWA (Burrows-Wheeler Aligner) and Bowtie. BWA is 

particularly suitable for aligning short reads to long genomes, 

such as the human genome. It uses the Burrows-Wheeler 

transformation algorithm to index the genome, allowing for 

fast and efficient searches. Bowtie, on the other hand, is 

extremely fast and also employs the Burrows-Wheeler 

transform, but is designed with a focus on memory efficiency, 

allowing it to handle even larger genomes with limited 

computational resources. 

Once the reads have been aligned against the reference 

genome, files, commonly in SAM or BAM format, are 

generated that detail the position and orientation of each read 

relative to the reference genome. These files become the basis 

for many downstream analyses, such as genetic variant 

detection. 

It is essential to mention that alignment is not always 

perfect. Reads may map to multiple locations, or not map at 

all, due to variations in the genome or errors in the reads. 

Therefore, interpretation of alignment results and subsequent 

analysis steps require meticulous care and a deep 

understanding of the biological and technical context of the 

data. 

3.1 Contribution of AI 

The use of artificial intelligence (AI) in the alignment phase 

is motivated by the need to improve the accuracy, speed and 

efficiency of read mapping, especially when faced with large 

or complex genomes. Advanced machine learning techniques 

and neural networks offer a unique opportunity to address 
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these challenges and have shown potential in transforming the 

genomic alignment landscape. 

Convolutional neural networks (CNN) have been 

highlighted as an effective architecture in the read alignment 

domain. CNNs are known for their ability to process and learn 

features from spatially structured data, such as images. In the 

context of genomic alignment, genome reads and sequences 

can be conceptualized and transformed into “images” or 

matrices, where CNNs can learn sequence-specific patterns 

and features. These learned features are used to predict the 

most likely position of a read within the reference genome. 

For example, DAVI (Deep learning-based tool for 

alignment and single nucleotide variant identification) is an 

algorithm that uses CNNs for the alignment of genomic reads. 

By treating alignment as a pattern recognition problem, DAVI 

seeks to capture the complexities of genomic sequences 

through deep learning. 

AI-based techniques have the potential to improve 

alignment accuracy by being able to recognize subtle patterns 

in sequences that might be missed with traditional algorithms. 

Additionally, AI can adapt to new forms of errors or genetic 

variations as they are trained on more data, offering a more 

dynamic and evolutionary approach to alignment. 

Additionally, deep learning techniques, when run on suitable 

hardware such as GPUs, can offer significant speedups in 

terms of processing time. 

Despite its promising applications, integrating AI into 

genomic read alignment presents challenges. First, AI-based 

solutions require large, highly accurately labeled training data 

sets, which is not always easy to achieve in genomics. Second, 

neural networks, particularly deeper architectures, can be 

computationally intensive and require specialized hardware. 

This may not be accessible to all laboratories or research 

centers. Finally, unlike traditional methods, where logic and 

decisions are clearly defined and interpretable, decisions made 

by AI models can be less transparent, which can complicate 

the interpretation and validation of results. 

The introduction of artificial intelligence into the alignment 

phase of genomic sequencing offers exciting opportunities to 

improve the accuracy and efficiency of read mapping. 

However, it is essential to address and overcome the 

limitations associated with the implementation of AI in this 

domain to fully realize its potential and ensure reliable and 

reproducible results. 

4. Variant search phase 

The variant searching phase, often referred to as “variant 

calling,” is a critical stage in the analysis of next-generation 

sequencing (NGS) data. The main objective of this phase is to 

identify places in the genome where there are differences with 

respect to a standard reference. These differences, or variants, 

can range from changes in a single base, known as single 

nucleotide polymorphisms (SNPs), to insertions, deletions and 

rearrangements of longer segments of DNA. These variants 

can have significant biological consequences, from disease 

predisposition to specific phenotypic characteristics. 

Upon alignment of the NGS reads to the reference genome, 

a complete map of how each read relates to the reference is 

obtained. However, to discover variants, it is essential to 

examine areas where the readings differ from the reference. 

This is done by evaluating the stack of aligned reads at each 

position in the genome. 

The variant search process can be divided into several 

stages. The first is the initial identification of places where the 

readings appear to differ from the reference. This preliminary 

identification can result in the detection of possible SNPs, 

insertions or deletions. These candidate variants are then 

further evaluated for quality and reliability. Multiple criteria 

are applied, such as the depth of coverage, the quality of the 

bases, and the balance between reads that support or refute the 

variant. 

GATK, developed by the Broad Institute, is a sophisticated 

suite of tools designed for the analysis of genome sequencing 

data, with a particular focus on the identification of genomic 

variants. In the context of variant searching, GATK has set 

industry standards with its best practices. 

The variant calling process in GATK is based on an 

algorithm called "HaplotypeCaller". Instead of examining 

each position in the genome in isolation, HaplotypeCaller 

jointly considers evidence across a short range of the genome 

to identify potential haplotypes (sets of variants that are 

commonly inherited together). By doing this, it reassembles 

the aligned reads in that interval and compares the 

reassembled haplotypes to the reference genome to identify 

variants. 

HaplotypeCaller creates a probabilistic model to determine 

the probability that there are different variants at a given 

position, given the observed reads. Proposed variants are 

scored based on quality, and those that exceed certain 

thresholds are retained for further analysis. Additionally, 

GATK provides tools to filter and recalibrate variants based 

on multiple metrics to ensure that the final variants are of high 

quality. 

SAMtools is a set of programs that allow you to interact 

with sequence alignments stored in SAM and BAM formats. 

In the context of variant searching, one of its key components 

is `mpileup`, which generates a summary of the alignment of 

reads relative to the reference genome. 

The variant calling process in SAMtools begins with 

`mpileup` generating a set of aligned reads for each genome 

position. Based on the stack of reads, `mpileup` identifies 

positions where the reads differ from the reference. A 

probabilistic model is then used to determine whether these 

differences are significant enough to be considered genuine 

variants or whether they could simply be sequencing errors. 
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After this initial identification, variants are evaluated based 

on several metrics, including base calling quality and coverage 

depth. Variants that do not meet certain quality criteria are 

filtered. Unlike GATK, which uses a haplotype-based 

approach, SAMtools examines each position more 

independently, although it still considers contextual 

information, such as adjacent bases, to make decisions about 

variant calling. 

Both GATK and SAMtools have robust and proven 

approaches for searching for variants, but they differ in their 

methodology and how they model and evaluate evidence from 

aligned reads. GATK, with its haplotype-based approach, 

attempts to capture broader context when calling variants, 

while SAMtools uses a more direct approach, examining 

positions and their immediate context. 

It is crucial to note that while variant calling has been 

refined over the years, it remains an inherently challenging 

process. True variants can be difficult to distinguish from 

artifacts introduced by sequencing errors, incorrect 

alignments, or ambiguities in the reference genome. 

Therefore, a rigorous and careful approach is essential to 

ensure that the identified variants are true and biologically 

significant. 

4.1 Contribution of AI 

The integration of artificial intelligence (AI) in the variant 

search phase arises from the need to improve accuracy, reduce 

false positives and speed up the process, particularly in 

challenging genomic sequences. Advanced machine learning 

techniques and neural networks are being explored to 

transform and optimize this critical area of genomic analysis. 

One of the most promising architectures in variant 

detection is the convolutional neural network (CNN). 

Although CNNs primarily originated in image analysis, their 

ability to detect local patterns makes them suitable for 

analyzing genomic sequences, where variations can be viewed 

as “patterns” in a genomic sequence “image.” DeepVariant, 

developed by Google Brain, is a notable example that uses 

CNNs for variant calling. It takes a region of the genome, 

converts it into a color-coded image, and then uses a CNN to 

identify variants in that region. 

The key advantage of using AI-based techniques, such as 

DeepVariant, is the potential improvement in accuracy. 

Because these techniques can learn and adapt to complexities 

in the data, they are less prone to systematic errors that could 

plague traditional heuristic methods. Machine learning can 

also be trained to recognize and correct specific sequencing 

artifacts, further improving accuracy. Additionally, AI-based 

analysis can be considerably faster, especially when 

implemented on optimized hardware such as GPUs. 

However, there are challenges associated with using AI in 

this domain. First, training AI models requires large, high-

quality data sets. In genomics, where true variants and 

sequencing errors can be difficult to distinguish, obtaining 

accurately labeled training data is challenging. Second, 

interpretability remains a concern. While traditional methods 

offer clear logic behind each decision, an AI model's decisions 

can be opaque, making results difficult to validate and 

understand. Additionally, the transferability of a model trained 

on one data type or sequencer to another may be limited. 

The implementation of artificial intelligence in the variant 

search phase provides an opportunity to overcome some of the 

limitations of traditional approaches. While AI-based 

techniques offer improved accuracies and speeds, it is 

essential to be aware of the limitations and challenges inherent 

in these methods. The combination of human expertise, well-

established heuristics and the power of AI appears to be the 

way forward for optimal variant calling in the future. 

5. Annotation phase 

The variant annotation phase is an essential stage following 

variant search and validation in next-generation sequencing 

(NGS) data analysis. Once variants are identified, it is 

imperative to understand their biological and clinical 

significance. Variant annotation is precisely this process of 

adding relevant information to detected variants, with the aim 

of providing context and potentially inferring the functional 

impact that these variants may have. 

In essence, variant annotation is the act of enriching the raw 

list of variants with additional data. These data may include 

the genomic location of the variant (for example, whether it is 

within a gene, in an intergenic region, or in a regulatory 

region), the amino acid change (if applicable), and predictions 

about the effect of the variant on the function of the gene or 

protein. It may also include information about whether that 

variant has been previously observed in other populations or 

individuals and whether it has been associated with specific 

diseases or phenotypes. 

Currently, variant annotation is performed using 

computational tools and public and private databases that store 

genomic, phenotypic, and clinical information. These 

databases contain vast repositories of known genomic variants 

and often have details on the frequency of those variants in 

specific populations, associations with diseases, and more. 

One of the most widely used tools for annotation is 

ANNOVAR, which allows users to leverage a variety of 

databases and resources to annotate variants. It works by 

extracting relevant information from databases such as 

dbSNP, 1000 Genomes Project, ClinVar, among others. In 

addition to ANNOVAR, there are other programs and 

platforms, such as VEP (Variant Effect Predictor) and SnpEff, 

that also provide extensive functionalities for annotation. 

Despite the advanced tools available, annotation is not 

without challenges. A variant that affects multiple transcripts 

or genes can have different effects depending on the context. 

Furthermore, predictions about the pathogenicity of a variant 
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are not always definitive. The correlation between a specific 

variant and a phenotype can be complex, and not all variants 

found in disease-associated genes are necessarily pathogenic. 

5.1. AI contribution 

The increasing complexity and magnitude of genomic 

information, combined with the need for accurate and rapid 

interpretations, has created an environment conducive to the 

integration of artificial intelligence (AI) into the variant 

annotation phase. Using advanced machine learning 

techniques, we seek to optimize and improve the accuracy of 

predictions and the integration of multidimensional data 

during annotation. 

Neural networks, particularly deep neural networks 

(DNNs), are emerging as potential tools for variant annotation. 

These networks are capable of processing information at 

multiple levels of abstraction, allowing for a deeper 

interpretation of the variant in context. CADD (Combined 

Annotation-Dependent Depletion) is an example that, 

although not based solely on AI techniques, uses a machine 

learning model to integrate multiple annotations into a single 

metric that predicts the deleteriousness of variants in the 

human genome. 

DeepSEA, on the other hand, is a neural network-based tool 

that predicts the effects of non-coding variants using massive 

sequencing data. DeepSEA is a deep learning model designed 

to predict the functional effects of DNA sequence variations, 

particularly in non-coding regions of the genome. At a 

technical level, DeepSEA takes nucleotide sequences as input 

and, using its convolutional neural network architecture, 

transforms the sequence into a set of predictive features for 

various functional states, such as specific protein binding, 

epigenetic marks, and effects on gene expression. . When 

trained with massive genomic and epigenomic data, DeepSEA 

is capable of learning and recognizing patterns in DNA 

sequences that are associated with specific functions. This 

approach allows DeepSEA to identify how specific variants, 

even those in non-coding regions of the genome, can influence 

gene regulation and ultimately cell function or organism 

phenotype. 

One of the main advantages of AI in variant annotation is 

its ability to handle large amounts of data and heterogeneous 

information sources. As more data accumulates, AI-based 

methods can constantly improve their accuracy. Additionally, 

AI models, particularly those based on deep learning, can 

capture nonlinear interactions and complex relationships that 

traditional approaches might miss. This is especially relevant 

when considering epistatic effects or interactions between 

variants. 

However, implementing AI in this phase is not without 

challenges. The quality and quantity of training data remain 

crucial. Training AI models requires large sets of labeled data, 

and if that data contains errors or biases, those problems will 

be reflected in the resulting model. Additionally, the “black 

box” or opaque nature of AI models is a concern in clinical 

genomics, where traceability and justification of decisions are 

vital. Finally, the adaptability of these models can be a 

challenge; Models trained for a specific data set or population 

may not generalize well to other contexts. 

Although incorporating AI into the variant annotation 

phase presents exciting opportunities to improve the accuracy 

and efficiency of the process, addressing its limitations and 

challenges is crucial for widespread adoption. With 

interdisciplinary collaborations and continued development of 

algorithms, AI has the potential to revolutionize the way we 

interpret and understand the human genome in clinical and 

research contexts. 

6. Conclusions 

Next-generation sequencing (NGS) has revolutionized the 

genomics landscape, offering an unprecedented view of the 

diversity and complexity of the human genome. Despite their 

enormous advances, there are areas in current tools and 

approaches that require refinement and optimization. 

Artificial intelligence (AI) is presented as an innovative 

solution, capable of addressing some of these challenges and 

further enhancing the capabilities of NGS. 

Current tools for NGS, although advanced, still face 

challenges in terms of accuracy, speed, and ability to handle 

high-volume data. A notable concern is the handling of 

complex genomic regions, such as those rich in GC or regions 

with tandem repeats, where traditional tools often struggle to 

obtain accurate and consistent reads. Structural variants, such 

as duplications, deletions, and inversions, are also challenging 

to detect and accurately characterize using conventional 

approaches. 

Furthermore, the interpretation of variants, especially those 

in non-coding regions or in understudied genes, can be 

ambiguous. Current tools can provide conflicting or 

inconclusive annotations, making it difficult to make clinical 

decisions based on this data. 

Scalability is another challenge. As the volume of data 

generated by NGS continues to grow, tools must be able to 

process and analyze this data efficiently, without 

compromising accuracy. Furthermore, the integration of 

different types of data, such as transcriptomics, proteomics, 

and epigenomic data, is still a complex task with conventional 

tools. 

Artificial intelligence has the potential to directly address 

many of the challenges mentioned above. For example, in 

complex genomic regions, deep learning models can be 

trained to recognize patterns and anomalies with much higher 

accuracy than heuristics-based methods. These models can be 

especially useful for the detection of structural variants, 

identifying subtle patterns and genomic contexts that 

traditional tools might miss. 
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In terms of interpretation, AI can integrate and analyze 

information from multiple sources simultaneously, offering a 

holistic view of the variant in question. With access to global 

databases and scientific literature, AI models can provide 

more informed, consistent and up-to-date interpretations of 

variants. 

From a scalability standpoint, AI, especially when 

implemented on specialized hardware like GPUs, can process 

massive volumes of data at significantly faster speeds than 

traditional tools. Furthermore, AI's inherent ability to handle 

heterogeneous data facilitates the integration of different data 

sets, providing a richer, multidimensional understanding of 

the genome. 

As the field of genomics advances, the need for more 

accurate, faster, and adaptive tools becomes increasingly 

pressing. Artificial intelligence, with its ability to learn and 

adapt, offers promising solutions to address the challenges 

inherent in existing NGS tools. This synergy between 

genomics and AI has the potential to not only improve our 

current analytical capabilities, but to open new frontiers in 

genomic medicine and research. With continued investments 

in research and development, we are likely to see significant 

advances in this interdisciplinary space in the coming years. 
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