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Summary 

The application of Deep Symbolic Learning in genomic analysis has begun to gain traction as a promising approach to 

interpret and understand vast data sets derived from DNA sequencing. Next-generation sequencing (NGS) techniques have 

revolutionized the field of clinical genetics and human biology, generating massive volumes of data that require advanced 

tools for analysis. However, traditional methods are often too abstract or complicated for clinical staff. This work focuses on 

exploring how Deep Symbolic Learning, a subfield of explainable artificial intelligence (XAI), can be effectively applied to 

NGS data. A detailed evaluation of the suitability of different architectures will be carried out, 
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Introduction 

Deep Learning 

Deep Learning, also known as deep learning, represents a 

subcategory of techniques within machine learning that has 

revolutionized multiple fields of study and application, from 

computer vision to natural language processing, including 

bioinformatics and computational genomics. . Specifically, 

this branch of machine learning is based on artificial neural 

network architectures with numerous hidden layers, which are 

called "deep." These layers allow the model to learn 

hierarchies of features from the data, from the most basic to 

the most complex. 

The foundation of Deep Learning is the simulation of 

neural structures analogous to those present in the human 

brain, although in a considerably more simplified manner. 

Each neuron in these networks is connected to others and can 

transmit information between them. As the data passes 

through each layer, a nonlinear transformation is performed 

that allows for gradual feature detection and construction. For 

example, in the context of computer vision, early layers might 

identify edges, while deeper layers might identify complex 

structures such as faces or specific patterns. 

A key aspect that has driven the success of Deep Learning 

is the ability of these deep neural networks to perform machine 

learning of features. Unlike traditional approaches, where 

features are extracted manually, in deep learning the network 

is capable of autonomously learning the most relevant features 

directly from the raw data. 

The efficiency and accuracy of these techniques, however, 

come at the cost of the need for large volumes of data and 

significant computational power. The constant feedback and 

adjustment of the weights of the connections in these networks 

during training requires powerful processing units, with 

Graphics Processing Units (GPU) being the most used due to 

their ability to handle matrix operations in parallel, essential 

in the neural network training. 

In the context of genomics and next generation sequencing 

(NGS), Deep Learning has shown potential to improve 

accuracy and speed in tasks such as genomic annotation, 

protein structure prediction and, of relevance to our study, in 

the Variant Calling phase, where the aim is to identify genetic 

variants from sequencing data. Deep Learning's ability to 

handle large data sets and learn complex features makes it a 

valuable tool for addressing the challenges inherent in high-

resolution genomics. 

Symbolic Learning 
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Symbolic learning, or Symbolic Learning, is a classic 

approach in the field of artificial intelligence (AI) that focuses 

on the representation and manipulation of knowledge in the 

form of symbols and rules. Instead of relying exclusively on 

numerical or statistical calculations, as in other machine 

learning approaches, symbolic learning is based on the 

construction of symbolic representations of information, 

allowing logical reasoning and deductions based on these 

representations. 

The essence of symbolic learning lies in its ability to model 

complex and structured relationships in data. These models 

are generally interpretable, as they are made up of sets of rules, 

facts or logical structures, which can be easily understood and 

examined by humans. For example, a system based on 

symbolic learning could express knowledge in the form of 

rules of the type "If A, then B", allowing us to reason about 

these rules and reach specific conclusions. 

Symbolic learning has been fundamental in the evolution 

of AI, especially in the early years of the discipline, and has 

given rise to expert systems, inference engines, and 

knowledge bases. These systems are especially effective in 

domains where prior knowledge is essential and can be clearly 

defined and structured, such as in medicine, law or 

engineering. 

In the field of genomics and bioinformatics, symbolic 

learning offers a unique perspective by providing tools to 

represent and manipulate biological knowledge in a structured 

way. Genetic relationships, metabolic pathways or protein-

protein interactions, for example, can be encoded in symbolic 

structures that facilitate their analysis and understanding. 

When combined with approaches such as Deep Learning, 

symbolic learning allows systems to benefit from both the 

feature generalization and machine learning capabilities of 

neural networks, as well as the precision, transparency, and 

interpretability of symbolic reasoning. This combination, 

called "Deep Symbolic Learning", integrates the best of both 

worlds, and in the context of Variant Calling in NGS pipelines, 

can offer robust and highly interpretable solutions for the 

identification and classification of genetic variants. 

Deep Symbolic Learning 

Deep Symbolic Learning (DSL) is an emerging approach 

in the field of artificial intelligence that seeks to combine the 

strengths of Deep Learning and symbolic learning. This 

integration aims to resolve one of the main criticisms of Deep 

Learning, which is the lack of interpretability and 

transparency of its models, offering solutions that are not only 

powerful in terms of performance, but also understandable and 

justifiable. 

Deep Symbolic Learning operates through the conjunction 

of neural networks, capable of learning rich and hierarchical 

representations of data, with symbolic structures that allow the 

construction of logical and semantically coherent models. 

Instead of considering only numerical or statistical patterns, as 

pure Deep Learning does, DSL incorporates symbols, rules, 

and logical relationships into its learning process, providing 

greater context and structure to the knowledge acquired. 

A notable aspect of DSL is its ability to leverage previously 

established knowledge, encoded in symbolic representations, 

to inform and guide the learning of neural networks. This is 

especially useful in domains where there is a rich knowledge 

base, such as biology and genomics. 

In the context of Variant Calling in NGS pipelines, DSL 

offers a promising approach. Neural networks can learn 

complex patterns and subtleties in sequencing data, while the 

symbolic component can incorporate rules and known facts 

about genetic variants, mutations, and their biological 

relevance. This could not only improve the accuracy of variant 

identification, but also provide logical and knowledge-based 

explanations for why a certain sequence is considered a 

variant. 

The hybrid nature of Deep Symbolic Learning also allows 

for greater flexibility in modeling. While neural networks can 

adjust to quirks and noise in the data, the symbolic component 

can act as a regulator, ensuring that predictions and 

conclusions are consistent with established biological 

knowledge. In this way, the DSL is positioned as a robust and 

cutting-edge tool to face the intrinsic challenges of the Variant 

Calling phase and of genomics in general. 

Application of DSL in NGS 

Next-generation sequencing (NGS) has revolutionized the 

field of genomics, allowing large volumes of genomic data to 

be obtained in significantly reduced times and costs compared 

to traditional techniques. These advances, while providing an 

unprecedented wealth of information, also present significant 

challenges in terms of data processing, analysis and 

interpretation. It is in this context where Deep Symbolic 

Learning (DSL) emerges as a potential solution to address and 

overcome such challenges. 

Advantages of your application 

 

The union of symbolic learning and deep learning in the 

context of next generation sequencing (NGS) offers a range of 

advantages that capitalize on the strengths of both approaches: 

• Interpretability and Transparency: One of the main 

challenges of Deep Learning is its “black box” 

nature, which means that although the model may 

have high performance, it can be difficult to 

understand how it arrives at a particular decision. By 

integrating symbolic learning, a layer of transparency 

and explainability is introduced to the model. 

Decisions based on symbolic rules can be inspected, 

tracked and justified, facilitating the understanding 

and validation of results in the context of NGS. 
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• Incorporation of Prior Knowledge: In genomics, 

there is a vast body of accumulated knowledge about 

genetics, mutations, and genomic relationships. 

Symbolic learning allows the explicit incorporation 

of this knowledge in the form of rules and 

relationships. This not only informs and guides the 

model, but can also increase accuracy and robustness 

by ensuring that the system does not contradict well-

established genomic principles. 

• Generalization and Adaptability: While Deep 

Learning is excellent for detecting and learning 

patterns in large data sets, symbolic learning gives 

the system the ability to generalize from specific 

examples and adapt to new data or contexts. This is 

essential in NGS, where data can vary depending on 

the sequencing technique, the organism studied, or 

the experimental conditions. 

• Robustness to Noise: NGS data can be noisy due to 

sequencing errors or biological variations. While 

deep neural networks may be susceptible to 

overfitting to this noise, the structured and logical 

nature of symbolic learning can act as a moderator, 

preventing hasty conclusions based on noisy or 

atypical information. 

• Computational Optimization: The integration of 

symbolic knowledge can direct and focus the 

learning process, potentially reducing the need for 

computationally expensive iterations. By having a 

guiding structure based on known rules and 

relationships, the system can converge more quickly 

to optimal solutions, saving time and computational 

resources. 

Multi-Modality Integration: In genomics, different types of 

data are often combined, such as genomic sequences, gene 

expression, and proteomics data. While deep learning can 

efficiently handle the integration of multiple data modalities, 

symbolic learning can provide a coherent and structured 

framework for understanding and reasoning about how these 

different types of data relate to each other. 

Applicability in the phases of a pipeline 

The interpretation of genetic sequences is a critical task in 

genomics and bioinformatics, as it involves the identification 

and understanding of variants and mutations that may have 

clinical, evolutionary or functional implications. Deep 

Symbolic Learning (DSL), by combining deep learning and 

symbolic learning, has significant potential to improve and 

enrich this interpretation. Some specific applications of DSL 

in the area of genomic interpretation are explored here: 

• Variant Identification: One of the main tasks in 

genomic interpretation is to identify variants, such as 

SNPs and structural mutations, from NGS sequences. 

The DSL can be particularly useful here, as neural 

networks can identify complex patterns in the data, 

while the symbolic component can validate these 

identifications against previously established rules 

and knowledge. This combination can significantly 

reduce false positives and negatives. 

• Functional Analysis: Not all identified variants have 

a functional impact. DSL can help predict the impact 

of a variant, combining machine learning based on 

data from gene expression, protein structure, and 

other modalities, with symbolic rules that encode 

prior knowledge about functional sites, protein 

domains, and biological pathways. 

• Clinical Interpretation: For variants with potential 

clinical importance, it is essential to interpret their 

meaning in terms of diseases, phenotypes or response 

to treatments. Here, the symbolic component of DSL 

can leverage databases of clinical variants and 

scientific literature, while deep learning can identify 

subtle patterns in the data that correlate specific 

variants with clinical outcomes. 

• Evolutionary Understanding: DSL can also be 

applied to understand the evolutionary implications 

of variants, combining the ability of deep learning to 

analyze large genomic data sets from different 

species, with symbolically encoded evolutionary 

rules and theories. 

• Multi-Omics Data Integration: Modern genomics 

goes beyond just DNA sequences, also incorporating 

transcriptomic, proteomic and metabolomic data. 

The DSL is especially well suited for this integrative 

task, as it can learn unified representations of 

different types of data while reasoning about them in 

a coherent symbolic framework. 

• Automation and Scalability: As the amount of 

genomic data grows exponentially, it is essential that 

interpretation systems are automatic and scalable. 

DSL, by combining the computational efficiency of 

deep learning with the structure and coherence of 

symbolic learning, offers a solution that can process 

large volumes of data efficiently and accurately. 

Current proposals for DSL architectures 

Recently, researchers from IBM Research Zürich and ETH 

Zürich designed an architecture that combines deep neural 

networks and vector-symbolic models, known as neuro-

vector-symbolic architecture (NVSA). This architecture 

overcomes previous limitations, providing a unified 

framework for solving tasks involving high-level perception 

and reasoning. NVSA has proven effective in solving Raven's 

progressive matrices, an abstract reasoning task, with 

remarkable efficiency and accuracy compared to other 

architectures. 
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The neuro-vector-symbolic architecture (NVSA) proposed 

by researchers at IBM Research Zürich and ETH Zürich 

represents an innovative step in the evolution of artificial 

intelligence systems. Below is a more detailed description of 

how it works and what makes it special. 

 

Deep neural networks (DNNs) are a subclass of neural 

networks that have multiple hidden layers between the input 

and output. These layers allow DNNs to model and learn 

complex, non-linear patterns. They have been used 

successfully in a wide variety of tasks, especially those related 

to perception, such as image recognition and speech 

processing. 

 

On the other hand, vector-symbolic models are based on 

symbolic representations, which means they work with 

abstract concepts and relationships between them rather than 

direct patterns of data. These models are especially useful for 

tasks that require reasoning and manipulation of symbols, 

since they can represent and work with logical and semantic 

structures. 

 

The NVSA architecture combines the power of DNNs and 

vector-symbolic models. While DNNs deal with perception 

and feature extraction from input data, vector-symbolic 

models deal with high-level reasoning and symbolic 

manipulation. 

 

This hybrid design allows NVSA to overcome previous 

limitations by providing a unified framework. Instead of 

relying solely on DNNs for all tasks or relying only on 

symbolic systems, this architecture uses the strengths of both 

approaches where they are most relevant. 

 

A good example of its effectiveness is Raven's progressive 

matrix solver. These matrices are psychometric tests designed 

to evaluate an individual's abstract reasoning. They require 

both perception (identifying visual patterns) and logical 

reasoning (deducing the relationship between different 

elements and predicting the next in the sequence). The NVSA 

has proven to be remarkably efficient and accurate in this task, 

outperforming other architectures that only use one of the two 

approaches. 

 

The neuro-vector-symbolic architecture represents a 

promising integration of DNN-based perception and 

reasoning based on vector-symbolic models. Its ability to 

address tasks that combine both needs shows its potential to 

take artificial intelligence to new horizons in terms of 

versatility and efficiency. 
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