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ABSTRACT

Graphics Processing Units (GPUs) have emerged as a highly attractive architecture for general-

purpose computing due to their numerous programmable cores, low-latency memory units, and

efficient thread context switching capabilities. However, theoretical research on parallel algorithms

for GPUs is challenging due to the multitude of interdependent factors influencing overall runtime.

Computational models are commonly employed to provide simplified abstractions of computing

system architectures. However, developing a computational model that is both simple and accurate,

encompassing all performance-affecting aspects of GPU algorithms, is a seemingly impossible task.

Existing GPU models often incorporate numerous variables to account for specific performance

factors, rendering them less accessible to researchers.

This dissertation obviates the lack of a widely accepted model of computation for GPUs by

instead employing multiple classical parallel models to capture both parallel computational com-

plexity and cache-efficiency. Namely, we leverage existing knowledge and algorithmic techniques

from the Parallel Random Access Machine (PRAM), Parallel External Memory (PEM), and Dis-

tributed Memory Machine (DMM) models to aid in the design and analysis of GPU algorithms

at various levels of detail. We validate and demonstrate our approach through case studies on

specific problems (e.g., sorting, searching, and single source shortest paths), providing both the-

oretical analysis and corresponding empirical results. Our results highlights the applicability of

the selected parallel models of computation to GPUs and illustrates how theoretical research can

expose valuable insights into the performance of GPU algorithms in practice.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 GPU Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 GPU Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Discrete Memory Machine (DMM) and Unified Memory Machine (UMM) . . 5
1.2.2 Hierarchical Memory Machine (HMM) . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Threaded Many-core Memory (TMM) . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Abstract GPU (AGPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Abstract Transferring GPU (ATGPU) . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Parallel Models of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Parallel Random Access Machine (PRAM) . . . . . . . . . . . . . . . . . . . 9
1.3.2 Parallel External Memory (PEM) . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Distributed Memory Machine (DMM) . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Parallel In-place Construction of Implicit Search Tree Layouts . . . . . . . . . . 12

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Memory Layouts of Static Search Trees . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Previous Work on Permutations . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Parallel In-place Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Involution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 BST Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 B-tree Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 van Emde Boas Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Cycle-leader Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 van Emde Boas Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 B-tree Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 BST Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 I/O Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Involution-based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 vEB Cycle-leader Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 B-tree Cycle-leader Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Extensions to non-perfect trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Experimental Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.1 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.2 Hybrid BST Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.3 Modified van Emde Boas Layout . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



2.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A Parallel Priority Queue for Single-Source Shortest Paths . . . . . . . . . . . . 49
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Single-Source Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Priority Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Bucket Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Sequential Bucket Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Parallel Bucket Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 PRAM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 I/O Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Runtime Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 Worst-Case Inputs for Pairwise Merge Sort . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.1 GPU Pairwise Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Worst-Case Bank Conflict Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Bank Conflict Free Divide-and-Conquer Algorithms . . . . . . . . . . . . . . . . . 80

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Load-Balanced Dual Subsequence Gather . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Coprime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Not Coprime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3 Thread Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



LIST OF TABLES

2.1 Asymptotic time and I/O complexity bounds of each of our in-place algorithms for
permuting a sorted array into a particular search tree layout. . . . . . . . . . . . . . 17

2.2 Number of queries needed for it to be beneficial (compared to an equal number of
binary search queries) to perform each of the search tree layout permutations on
each of our GPU platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Comparison of priority queue operations in different sequential and parallel models. 53

5.1 Descriptions of the main parameters for the load-balanced dual subsequence gather. 84

vi



LIST OF FIGURES

2.1 BST layout for N = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Level-order B-tree layout for N = 26 and B = 2. . . . . . . . . . . . . . . . . . . . . 13
2.3 van Emde Boas (vEB) layout for N = 15. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Illustration of the series of swaps needed to sequentially perform the equidistant

gather operation for r = l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Illustration of the distinct cycles of the equidistant gather operation for r = l. . . . . 29
2.6 Average time to permute a sorted array using each permutation algorithm on the

NVIDIA K40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Average time to permute a sorted array using each permutation algorithm on the

NVIDIA Quadro M4000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Average time to permute a sorted array using each permutation algorithm on the

NVIDIA GeForce RTX 2080 Ti. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Average time to perform 1 million queries on each search tree layout and binary

search on a sorted array on the NVIDIA K40. . . . . . . . . . . . . . . . . . . . . . . 40
2.10 Average time to perform 1 million queries on each search tree layout and binary

search on a sorted array on the NVIDIA K40. . . . . . . . . . . . . . . . . . . . . . . 40
2.11 Average time to perform 1 million queries on each search tree layout and binary

search on a sorted array on the NVIDIA Quadro M4000. . . . . . . . . . . . . . . . . 41
2.12 Average time to perform 1 million queries on each search tree layout and binary

search on a sorted array on the NVIDIA Quadro M4000. . . . . . . . . . . . . . . . . 41
2.13 Average time to perform 1 million queries on each search tree layout and binary

search on a sorted array on the NVIDIA GeForce RTX 2080 Ti. . . . . . . . . . . . . 42
2.14 Average time to perform 1 million queries on each search tree layout and binary

search on a sorted array on the NVIDIA GeForce RTX 2080 Ti. . . . . . . . . . . . . 42
2.15 Combined time to permute and query each layout on the NVIDIA K40 with N = 100

million elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.16 Combined time to permute and query each layout on the NVIDIA Quadro M4000

with N = 100 million elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.17 Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with

N = 100 million elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.18 Combined time to permute and query each layout on the NVIDIA K40 with N =

229 − 1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.19 Combined time to permute and query each layout on the NVIDIA Quadro M4000

with N = 229 − 1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.20 Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with

N = 229 − 1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.21 Combined time to permute and query each layout on the NVIDIA K40 with N = 1

billion elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.22 Combined time to permute and query each layout on the NVIDIA Quadro M4000

with N = 1 billion elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



2.23 Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with
N = 1 billion elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.24 Combined time to permute and query each layout on the NVIDIA K40 with N =
230 − 1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.25 Combined time to permute and query each layout on the NVIDIA Quadro M4000
with N = 230 − 1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.26 Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with
N = 230 − 1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Illustration of the sequential bucket heap structure of Brodal et al. [15]. . . . . . . . 54
3.2 Illustration of the dependencies when performing a series of operations. . . . . . . . 57
3.3 Average runtime (in seconds) on the generated random DAGs on a RTX 2080 Ti . . 63
3.4 Average runtime (in seconds) on the generated random DAGs on a Quadro M4000 . 64

4.1 Visualization of the constructed worst case inputs for a single warp for w = 12. . . . 74
4.2 Throughput results for both Thrust and Modern GPU on the Quadro M4000. . . . . 76
4.3 Throughput results for Thrust on the RTX 2080 Ti. . . . . . . . . . . . . . . . . . . 77
4.4 Throughput results for Modern GPU on the RTX 2080 Ti. . . . . . . . . . . . . . . 78
4.5 Runtime (in nanoseconds) per element and bank conflicts per element for Thrust on

the RTX 2080 Ti. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Visualization of strided accesses in shared memory with w = 12 . . . . . . . . . . . . 82
5.2 Depiction of the read stalls caused by threads in a warp accessing up to 2 elements

per round for w = 12, E = 5, and d = 1 (i.e., coprime) on arbitrary input. . . . . . 85
5.3 Shared memory accesses performed by a warp in the load-balanced dual subsequence

gather for w = 12, E = 5, and d = 1 (i.e., coprime) on an arbitrary example input. . 86
5.4 Shared memory accesses performed by a warp in the load-balanced dual subsequence

gather for w = 9, E = 6, and d = 3 (i.e., not coprime) on an arbitrary example input. 88
5.5 Shared memory accesses performed by a thread block in the load-balanced dual

subsequence gather for u = 18, w = 6, E = 4, and d = 2 (i.e., not coprime) on an
arbitrary example input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Throughput results (elements per microsecond) for Thrust and CF-Merge on a NVIDIA
RTX 2080 Ti using the constructed worst-case inputs. . . . . . . . . . . . . . . . . . 91

5.7 Throughput results (elements per microsecond) for Thrust and CF-Merge on a NVIDIA
RTX 2080 Ti using parameters E = 15 and u = 512. . . . . . . . . . . . . . . . . . . 92

5.8 Throughput results (elements per microsecond) for Thrust and CF-Merge on a NVIDIA
RTX 2080 Ti using parameters E = 17 and u = 256. . . . . . . . . . . . . . . . . . . 93

viii



CHAPTER 1
INTRODUCTION

Within the past decade, graphics processing units (GPUs) have become an increasingly popu-

lar and powerful numerical coprocessor. Modern day GPUs provide thousands of physical cores,

lightweight context switching between virtual threads, and low-latency memory units. However,

due to the complexity of the GPU architecture, leveraging the full computational power of GPUs

is a challenging task. In general, a high performance GPU algorithm must be both highly parallel

and cache-efficient. In addition, various interdependent factors must be considered such as: the

hierarchical organization of threads, the allocation of hardware resources (e.g., the number of reg-

isters used per thread), and the maximum number of active threads scheduled onto the hardware

(known as occupancy).

Across various scientific disciplines, models are used to facilitate the understanding of a par-

ticular system and/or phenomena. For traditional parallel central processing unit (CPU) systems,

numerous parallel computational models have been developed that provide a simplified, but rel-

atively accurate, abstract view of a modern multi-core CPU architecture. These models allow

theoretical researchers to design and analyze provably efficient parallel algorithms that can then

be implemented and optimized on CPU systems by experimental researchers. In contrast, while

several computational models for GPUs have been developed, none have been widely used yet.

One reason for this is the complexity of the GPU architecture, which makes it a difficult task to

provide a simple and accurate abstract model of the GPU. This generally leads to GPU models

that contain a plethora of variables to account for the various factors that can impact the overall

runtime. Without a widely accepted model of computation for GPUs, there currently does not

exist a standard approach on how to theoretically develop and analyze algorithms for GPUs.

Rather than utilizing a single GPU model that aims to provide a single overall runtime, in this

dissertation, the approach is to use several parallel models to provide a set of complexity measures

that captures both parallel computational complexity and parallel cache-efficiency. This approach

has the additional advantage of leveraging past knowledge and algorithmic techniques that have

already been developed in these parallel models. Furthermore, if an overall runtime measure is

needed, the resulting set of complexity measures can generally be reused in more accurate and

elaborate GPU models (either algorithmic or performance models). For example, I/O-complexity

metrics are typically considered with other factors such as bandwidth and latency to the specific

memory unit.

The remainder of this chapter is organized as follows: in Section 1.1 we provide an overview

of the GPU; in Section 1.2 we review models of computation developed for GPUs; in Section 1.3

we review the parallel models of computation that we adpot for the GPU; and in Section 1.4 we

present an overview of the problems considered in this dissertation.
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1.1 GPU Overview

CUDA (Compute Unified Device Architecture) [85, 86] is a parallel software platform that allows

NVIDIA GPUs to be programmed for general purpose computing (e.g., using high-level languages

such as C++). As each new generation of NVIDIA GPUs feature architectural improvements over

previous generations, a compute capability number is assigned to each GPU model that identifies

specific architectural features that the particular GPU has. We say a compute capability number

x.y, has a major number of x and a minor number of y. As a rule, significant architectural changes

results in an increase in the major number; and smaller architectural changes results in an increase

in the minor number. Thus, newer GPU models always have a compute capability number greater

than or equal to older GPU models.

From a high-level perspective, a GPU program is composed of a sequence of special procedures

that execute on a GPU, called kernels. Each kernel is executed in parallel by a set of virtual threads,

called a grid. A grid is organized into equal sized groups of threads, called thread blocks; and threads

in a thread block are partitioned into groups of w threads, called warps. (For NVIDIA GPUs,

w = 32.) Similarly, a GPU consists of hardware units called streaming multiprocessors (SMs),

where each SM contains a set of programmable cores. These cores are additionally divided into

partitions, called SM processing blocks, where each partition has a corresponding warp scheduler.

Therefore when a grid is launched onto the GPU, the thread blocks of the grid are distributed to

available SMs; and warps within each thread block are distributed to SM processing blocks.

All SMs on a GPU are connected to a large and slow memory space, called global memory ;

a hardware managed L2 cache; and two read-only memory spaces, constant memory and texture

memory. All cores on a SM are connected to a fast and small memory space, called shared mem-

ory ; a hardware managed L1 cache; and two read-only hardware managed caches for accesses to

constant and texture memory, called constant cache and texture cache respectively. Lastly, each

SM processing block contains a very fast and small register memory space, a warp scheduler, a

dispatch unit, and a hardware managed L0 instruction cache.

Global memory: If threads in a warp concurrently access contiguous global memory locations,

then these accesses can be coalesced together into as few global memory transactions as possible

(depending on the cache-line size and size of data elements accessed). In contrast, accessing global

memory locations that are strided by w locations will maximize the number of global memory trans-

actions. For example, for 4-byte data elements, performing coalesced global memory access results

in O(1) number of global memory transactions compared to O(w) global memory transactions for

uncoalesced global memory accesses.

Constant and Texture memory: Constant and texture memory are both read-only memory

units that have corresponding caches within each SM, however, they differ in their optimal access

2



patterns. Texture memory is optimized for 2D spatial locality, i.e., if we lay out the memory space

as a 2D array then to achieve peak bandwidth we want threads in a warp to concurrently access

“nearby” elements. For constant memory, peak bandwidth is achieved when threads in a warp

concurrently access the same memory location. If distinct memory locations are accessed, then the

requests are serialized.

Shared memory: Shared memory is organized into w memory modules, also known as memory

banks. Each 128-byte aligned contiguous memory segment is distributed across w = 32 memory

banks, so that each bank holds a 4-byte word. (For GPUs with compute capability strictly less

than 5.0, memory banks can be configured to hold 8-byte words from a 256-byte aligned contiguous

memory segment.) If all active threads in a warp concurrently access shared memory addresses that

map to distinct memory banks, then each bank can serve the requests in parallel, known as bank

conflict free access. However, if there exists a bank with k memory requests, then a k-way bank

conflict occurs and the bank must serve the k memory requests in a serial manner. One exception

is that threads are allowed to access the same shared memory location in the same memory bank

without causing a bank conflict.

Local memory: In certain situations, the compiler may store data, whose scope is local to an

individual thread, in local memory instead of register space. In particular, local memory will be used

if there is insufficient space in registers or for arrays/data structures that the compiler determines

may be accessed dynamically. It is important to note that the cost of accessing local memory is

comparable to the cost of accessing global memory.

L1 and L2 cache: For GPU models with compute capability strictly less than 6.0, by default

the L1 cache is used to cache accesses to local memory and the L2 cache is used to cache accesses

to global memory. Using a compiler flag or inline PTX assembly code, the caching policy can be

modified to additionally allow the caching of global memory accesses in L1 cache. (The compiler

flag will change the caching policy for all accesses in the compiled program, while inline PTX

assembly code allows for the caching policy to change on a per access basis.) However, changing

the caching policy will also result in a change to the cache-line size to global memory. If only the

L2 cache is used to cache accesses to global memory, then the cache-line size used is 32 bytes. On

the other hand, if both the L2 and L1 cache are used to cache accesses to global memory, then the

cache-line size used is increased to 128 bytes. For GPUs with compute capability 6.0 and higher,

the default policy is to have global memory cached in both L1 and L2 cache; and a compiler flag

or inline PTX assembly code can be used to change the policy to global memory cached in only

L2 cache. Regardless of the cache setting used, the cache-line size to global memory is 32 bytes for

these GPUs.

3



Synchronization primitives: A synchronization primitive syncthreads is provided to allow

threads in the same thread block to synchronize with each other. For compute capability 7.0 and

above, intra-warp synchronizations need to be additionally managed via a syncwarp primitive.

Warp scheduler: Each warp scheduler handles a static set of warps, where in each instruction

time step, a warp scheduler can issue a single instruction for one of its active warps. Therefore,

threads within a warp executing the same instruction are executed concurrently; this behavior

is called Single-Instruction Multiple-Threads (SIMT). Prior to compute capability 7.0, if threads

within a warp diverge in code (e.g., from a conditional statement), then each branch is executed

serially. Hence, the execution of threads could be correctly viewed as Single-Instruction Multiple-

Data (SIMD), i.e., lockstep execution of threads. Starting with compute capability 7.0, the warp

scheduler maintains a program counter for each thread in a warp (rather than a single program

counter for all threads in a warp). This allows for greater flexibility with branch divergence in code,

as branches are no longer executed in a serial manner. Due to this, the behavior of threads is no

longer restricted to lockstep execution.

Latency hiding: In order to keep the GPU hardware as busy as possible (i.e., minimize the

amount of time that processors on the GPU are idle), GPUs are able to perform fast context

switching between warps scheduled on the SM processing block. This effectively allows for the

pipelining of memory accesses, either through having a sufficient number of warps available to

be scheduled onto a SM processing block or by utilizing instruction-level parallelism (ILP), i.e.,

pipelining independent instructions by a single thread. The ratio of the number of active warps to

the maximum number of possible active warps (hardware imposed), called occupancy, is a typical

metric that is used to measure how well an algorithm allows the GPU hardware to hide latency

via context switching. Achieving high occupancy is not as simple as launching a large number of

threads, as each thread may require additional hardware resources (e.g., register or shared memory

space) which are limited.

Warp-communication intrinsics: Starting with the introduction of the Kepler architecture

(compute capability 3.0) in 2012, NVIDIA GPUs include warp-communication intrinsics that allow

for data transfer and communication between threads in a warp.

� shuffle(variable, i) reads the value of variable from the i-th threads register space. Requires

compute capability 3.0 and higher.

� vote(predicate) returns a bitstring of length w, where the i-th bit is set to 1 if the i-th thread

in the warp evaluates the predicate to be true. Requires compute capability 3.0 and higher.

– vote all(predicate) returns true if all threads evaluates predicate to be true; otherwise

returns false (i.e., reduction-and-broadcast).
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– vote any(predicate) returns true if any thread evaluates predicate to be true; otherwise

returns false (i.e., reduction-and-broadcast).

� match(variable) returns a bitstring of length w, where the i-th bit is set to 1 if the variable

stored in the i-th threads register space is equal to the current threads value of variable; and

0 otherwise (i.e., broadcast-and-compare). Requires compute capability 7.0 and higher.

� reduce(variable, destination) performs a warp wide reduction operation (add, min, max, or,

xor) on variable for each thread in the warp and stores the result in destination. Requires

compute capability 8.0 and higher.

Additionally, certain bit-level primitives are provided:

� brev(x) reverses the bit order of x.

� clz(x) returns the number of consecutive high-order bits set to 0 in x.

� ffs(x) returns the index of the first least-significant bit set to 1 in x.

� popc(x) returns the number of bits set to 1 in x.

1.2 GPU Models

In this section, we provide a literature review of computational models designed directly for GPUs.

Note that we present only computational models (i.e., algorithmic models), rather than performance

models that rely on benchmark suites to calibrate variables (e.g., the number of clock cycles to

perform an operation or memory access).

1.2.1 Discrete Memory Machine (DMM) and Unified Memory Machine (UMM)

The Discrete Memory Machine (DMM) and Unified Memory Machine (UMM) models focus on

memory access to shared memory and global memory, respectively [82]. In both models, p threads

are connected to w memory banks through a common memory management unit (MMU). Addition-

ally, each thread has access to r local registers. Threads are partitioned into groups of w threads,

called warps, and operate in lock-step. Warps are scheduled in a round robin manner, where each

thread in the active warp is able to request a single memory access. Threads are restricted to a

single active memory request, i.e., a thread cannot send another memory request until the previous

request finishes. Data is stored across the w memory banks in a strided manner, i.e., data stored

at memory address i is located in memory bank i (mod w). The latency of a memory access is

denoted l (i.e., time for a memory request to complete). Note that w memory banks implies a

bandwidth of w, since each memory bank can only processes a single memory request at a time.
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The difference between the DMM and UMM models is the way that the MMU is connected to the

w memory banks. In the DMM, each memory bank has its own dedicated address line connecting

to the MMU; and in the UMM, all memory banks share the same address line. Therefore, in the

DMM, memory cells in different memory banks can be accessed in a single time step (analogous to

bank conflict free access in shared memory). While in the UMM, groups of w consecutive memory

cells, called address groups, can be accessed in a single time step (analogous to coalesced access in

global memory).

1.2.2 Hierarchical Memory Machine (HMM)

The Hierarchical Memory Machine (HMM) model aims to model a whole GPU by combining a

single UMM with multiple DMMs (Section 1.2.1) [83]. The HMM consists of d DMMs, each with

d/p threads, and a single UMM of p threads (same threads used in the d DMMs). Each of the d

DMMs execute independently, hence, are analogous to a streaming multiprocessor on a GPU. The

latency of each of the DMMs are considered to be constant and the latency of the UMM is defined

as l. The remaining parameters are the same as in Section 1.2.1.

1.2.3 Threaded Many-core Memory (TMM)

The Threaded Many-core Memory (TMM) model reflects the architecture of machines that are

characterized by a large number of threads which are able to hide latency to memory by taking

advantage of fast context switching of threads [75]. The authors argue that the number of memory

accesses does not matter, as long as a sufficient number of threads are available to hide latency.

Thus, the TMM model aims to bound the number of threads needed in order to sufficiently hide

latency.

The TMM model consists of a 2-level memory hierarchy: a slow global memory and a fast local

memory of size Z shared by a group of Q threads, called core groups. All threads in a core group

execute in lock-step. Data elements in slow global memory are transferred to fast local memory in

chunks of C contiguous elements with latency L. P is the total number of processors and X is the

hardware maximum number of threads that can be scheduled onto a single core (due to various

resource constraints such as number of registers).

The performance metrics in this model are: work, denoted T1; span, denoted T∞; total number

of global memory chunk transfers (i.e., global memory transactions), denoted M ; number of threads

per core, denoted τ ; and the amount of local memory used per thread, denoted S. Let TE be the

effective work (considers both computation and memory accesses), TP be the runtime using P

processors, and SP be the speedup using P processors.

TE = O

(
max

(
T1,

M · L
τ

))
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TP = O

(
max

(
TE
P
, T∞

))
= O

(
max

(
T1
P
, T∞,

M · L
τ · P

))
SP =

T1
TP

= Ω

(
min

(
P,

T1
T∞

,
P · T1 · τ
M · L

))

1.2.4 Abstract GPU (AGPU)

The Abstract GPU (AGPU) model consists of a host (CPU), which allows for the execution of

device programs (i.e., kernels), and a device (GPU) [72]. The device (GPU) is composed of p

processors, each capable of running a single thread. Processors are partitioned into groups of size

b, called a multiprocessor, hence, there are a total of k = p/b total multiprocessors. All processors

in a multiprocessor executes in lock-step.

Each multiprocessor is connected to a large and slow global memory unit, which can be accessed

by every multiprocessor and the host. The global memory unit is divided into blocks of b contiguous

cells. Thus, when accessing a particular global memory location, all b elements of the particular

block must be transferred. Additionally, each multiprocessor has its own small and fast shared

memory unit of size M . Shared memory is divided into b banks, where all b processors can accesses

a distinct bank in a single step. If multiple processors access the same bank, then the accesses are

serialized, which is analogous to bank conflicts.

For an AGPU algorithm, the time complexity is the number of instructions executed per mul-

tiprocessor and the I/O complexity is the number of global memory accesses across all multipro-

cessors. Let m be the amount of shared memory used by a single multiprocessor. The efficiency of

multithreading, called multiplicity, is defined as M = M/m.

The AGPU model assumes that the number of threads and number of processors are equal.

However, the authors provide a theorem to account for v virtual processors.

Theorem 1. Let v > p.

AGPUI/O(p, b,M) = AGPUI/O(v, b,M)

AGPU(p, b,M) ≤
⌈
v

p

⌉
AGPU(v, b,M)

where AGPUI/O(...) is the I/O complexity and AGPU(...) is the time complexity.

1.2.5 Abstract Transferring GPU (ATGPU)

The Abstract Transferring GPU (ATGPU) model extends the AGPU model (Section 1.2.4) by

considering the the cost of data transfer between the host (CPU) and device (GPU) [19]. Thus,

the ATGPU model uses the same parameters as in the AGPU model in addition to G, which is the

size of global memory.
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An algorithm in the ATGPU model is divided into rounds. A round starts with data transferred

from the host to the device, then the kernel is executed on the device, and finally the round ends

with data transferred from the device to the host (and additional synchronization overhead). Let

R be the total number of rounds of a particular algorithm, ti be the maximum number of executed

operations across all multiprocessors in round i, qi be the total number of global memory accesses

across all multiprocessors in round i, Ii be the number of words transferred from the host to device

in round i, and Oi be the number of words transferred from the device to host in round i.

Different cost functions are defined in order to factor in the cost needed to perform various

hardware instructions. Let γ be the cost for a multiprocessor to execute an instruction (e.g., clock

rate), λ be the cost to access a global memory block, and σ be the cost to synchronize (at the end

of each round). The cost function for host and device data transfer involves additional parameters.

Let α be the initial overhead cost of data transfer transaction and β be the cost of sending a single

word. Let Îi be the number of data transfer transactions from the host to device in round i and Ôi

be the number of data transfer transactions from the device to host in round i. Let TI(i) = Îiα+Iiβ

be the cost of data transfer from host to device in round i and TO(i) = Ôiα + Oiβ be the cost of

data transfer from host to device in round i.

Therefore, the cost of the whole algorithm is defined as:

R∑
i=1

TI(i) +
ti + λqi

γ
+ TO(i) + σ

Similar to the AGPU model, the ATGPU model also has a theorem to account for different

number of processors.

Theorem 2. Let k′ < k
R∑
i=1

TI(i) +

⌈
k
k′`

⌉
ti + λqi

γ
+ TO(i) + σ

where ` = min
(⌊

M
m

⌋
, H
)

is the maximum number of concurrent blocks on a multiprocessor (H

represents the hardware imposed limit).

1.3 Parallel Models of Computation

In this section, we provide a review of parallel models that we propose to use for developing and

analyzing GPU algorithms. The Parallel Random Access Machine (PRAM) model (Section 1.3.1)

models the overall parallelism and computational efficiency; the Parallel External Memory (PEM)

model (Section 1.3.2) models the number of parallel coalesced accesses to global memory; and the

Distributed Memory Machine (DMM) model (Section 1.3.3) models the number of parallel accesses

to shared memory.
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1.3.1 Parallel Random Access Machine (PRAM)

The Parallel Random Access Machine (PRAM) model [62] is a parallel extension of the well-known

sequential RAM model. It consists of p processors connected to a shared memory space. Each pro-

cessor is viewed as a sequential RAM machine and all processors execute in a synchronous manner

(i.e., an implicit global synchronization is performed after every operation). All communication

between processors are performed by reading from and writing into the shared memory space.

For an input of size n, there are two performance metrics in this model: (1) work, denoted W (n),

which is the total number of operations performed by all processors; and (2) depth, denoted D(n),

which is the maximum number of operations performed by any single processor if the algorithm is

executed using infinite processors (also known as span or critical path length). The runtime using

p processors can then be computed as O
(
W (n)
p +D(n)

)
, which is known as Brent’s Scheduling

Principle [13].

The PRAM model has 3 standard variants, based on the allowed shared memory mechanisms:

EREW (Exclusive Read Exclusive Write), CREW (Concurrent Read Exclusive Write), and CRCW

(Concurrent Read Concurrent Write). In the EREW PRAM, both concurrent read and write

access is not allowed; in the CREW PRAM, concurrent read access is allowed and concurrent write

access is not allowed; and in the CRCW PRAM, both concurrent read and write access is allowed.

Additional CRCW PRAM models have been defined based on various concurrent write access

mechanisms (i.e., how to resolve write conflicts). For example, in the common-CRCW PRAM,

concurrent writes are only allowed if all processors are writing the same value to the same memory

location; and in the arbitrary-CRCW PRAM, only a single arbitrary processor succeeds in writing

its value and the remaining processors fail (i.e., do not write its value to the memory location).

As concurrent writes are undefined on GPUs, we utilize the CREW PRAM model to analyze the

available parallelism and computational complexity of GPU algorithms.

Historical Note: The PRAM model was formalized as early as 1978 by Fortune and Wyllie

[45]. They denote the model as P-RAM and it is defined to be an unbounded set of processors

connected to an unbounded shared memory space. One major difference in the models is that in

the P-RAM model, processors can execute a fork instruction, which allows the processor to start

an inactive processor. A P-RAM algorithm is then defined to start initially on a single processor

and parallelism is invoked via calling fork. Therefore, in the P-RAM model, it takes O(log p) time

to initialize p processors; while in the PRAM model, all p processors are active from the start of

the algorithms.

1.3.2 Parallel External Memory (PEM)

The Parallel External Memory (PEM) model [4] is a parallel extension of the sequential External

Memory model [2]. In the EM model, a processor contains fast internal memory of size M and
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data initially resides in a large and slow external memory. To perform computation on data,

that data must be transferred from external memory into the processors internal memory, using

contiguous blocks of B data elements. The complexity metric of the EM model, I/O complexity,

is the number of such blocks transferred during the algorithm. Similarly, in the PEM model,

each of the P processors contains a private memory space of size M . However, external memory

is now shared among all P processors. When performing computation on data, the data is still

transferred between external memory and an individual processor’s internal memory in blocks of

size B. The performance metric in the PEM model is the parallel I/O complexity, which is the

maximum number of blocks transferred by any one of the processors throughout the algorithm.

On a GPU, w contiguous global memory locations are able to be transferred to a group of w

threads, called a warp. This behavior is equivalent to a single PEM processor accessing a block of

w contiguous elements in global memory. In other words, by using B = w, each thread in a warp

will accesses consecutive memory locations resulting in O(1) global memory transactions. Thus, by

mapping each PEM processor to a warp and setting B = Θ (w), we can utilize the PEM model to

analyze the number of parallel coalesced global memory accesses on a GPU.

1.3.3 Distributed Memory Machine (DMM)

The Distributed Memory Machine (DMM) model (originally called the Module Parallel Machine

model) considers data to be stored across a set of memory modules, rather than in a single shared

memory space [76]. The motivation for this model was to reflect the architecture of the Ultra-

computer, which featured p processors connected to p memory modules [53]; and to study the

granularity of parallel memories problem. This problem studies the simulation of shared memory

models on distributed models (e.g., the simulation of PRAM algorithms on the DMM).

The DMM model consists of p synchronous processors and p memory modules with a complete

interconnection network between processors and memory modules. In each step of a DMM algo-

rithm, processors are able to send a memory request to any of the p memory modules. However,

each memory module is only able to respond to a single memory request at a time. Thus, multiple

memory requests to a single memory module results in these memory requests being queued in

an arbitrary order and processed sequentially. The cost of each step is the maximum number of

requests across all memory modules.

In the DMM model, when and where each processor sends its memory request to is called the

access schedule. An access schedule is called simple if it does not make “complicated” decisions and

does not redistribute memory requests among the processors before sending them to memory mod-

ules. Furthermore, an access schedule is called oblivious if processors communicate independently

of input keys and non-oblivious otherwise.

The DMM model has been mostly overlooked by the GPU community and has been reinvented

with minor variations to model accesses in shared memory. Dotsenko et al. [36] visualized shared
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memory as a 2-dimensional matrix; and Nakano [83] formalized this approach with the Discrete

Memory Machine model (see Section 1.2.1). Afshani and Sitchinava [1] simplified the Discrete

Memory Machine model by removing the latency parameter and considering a single warp. This

simplification of the Discrete Memory Machine model is equivalent to the DMM model (with p being

equal to the number of threads in a warp). These minor variations of the DMM have been used to

analyze various algorithms such as: scanning [36], sorting [1, 67], searching [66], transposition [20],

and permuting [1, 68].

Automatic Conflict Resolution: Historically, the DMM model has been used to study the

granularity of parallel memories problem [26, 27, 28, 34, 63, 76, 81, 103]: given p arbitrary access

to memory, the problem is to find the access schedule that results in the least amount of memory

requests to any single memory module on a p processor DMM. In other words, this problem considers

the simulation of an arbitrary PRAM algorithm step on the DMM. The current best solution is a

non-oblivious access schedule that results in O(log log log p log∗ p) cost with high probability [27].

This approach relies on redundancy of data elements and universal hashing in order to reduce the

expected number of requests to any single memory module.

1.4 Organization

In this dissertation, we use the PRAM model (Section 1.3.1), PEM model (Section 1.3.2), and

DMM model (Section 1.3.3) to analyze and develop GPU algorithms. In Chapter 2, we study the

problem of searching and use the PRAM and PEM models to analyze and develop parallel in-place

permutations for constructing various implicit search tree layouts, which provide improved cache-

efficiency when compared to binary search. We measure experimentally the cost of performing

these permutations and a batch of queries, compared to binary search on a sorted array. Next

in Chapter 3, we use the PRAM and PEM models and present a parallel priority queue, denoted

parBucketHeap, and use it in a parallel variant of Dijkstra’s algorithm for finding single source

shortest paths (SSSP). We compare the performance of our SSSP implementation against the state-

of-the-art GPU implementations for SSSP. In Chapter 4, we study the problem of pairwise merge

on GPUs, which is the current fastest approach for comparison-based sorting on GPUs, and use the

DMM model to prove that there exists inputs that cause the asymptotic worst-case number of bank

conflicts in shared memory. Moreover, we show in practice that the bank conflicts incurred from

our constructed worst-case inputs results in significant slowdown. Lastly, in Chapter 5, we present

a bank conflict free algorithm for loading elements from shared memory into registers for balanced

two-way divide-and-conquer algorithms. We experimentally show, via pairwise mergesort, that our

bank conflict free approach eliminates the slowdown due to bank conflicts in practice.
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CHAPTER 2
PARALLEL IN-PLACE CONSTRUCTION OF IMPLICIT

SEARCH TREE LAYOUTS

Searching is a fundamental computational problem that arises in many applications. When

many queries are expected to be performed, data is often stored in a data structure that is conducive

to efficient searching. One such example are pointer-based search trees, e.g., a binary search tree

(BST) is a binary tree such that for every vertex v, the key stored at v is greater than all the keys

stored in the subtree rooted at v’s left child and smaller than all the keys stored in the subtree

rooted at v’s right child. Pointer-based data structures, however, use at least a constant factor more

space than the data itself, which can be prohibitive in limited-memory environments. In contrast,

if the data is stored in sorted order, efficient search can be performed using binary search without

using any extra space. The advantage of search trees lies in their efficient updates (insertions and

deletions of elements). However, in the case of static data (i.e., data which will not change in

the future), storing data in sorted order and performing binary search seems to be the preferred

approach [69].

In this chapter, we study efficient parallel transformations of a static sorted array into various

implicit search tree layouts (defined in Section 2.1.1) and the minimum number of queries needed

to justify the extra time to perform such transformations in practice. Moreover, since binary search

on already sorted data does not require any additional space, we require that these transformations

be performed in-place.

2.1 Preliminaries

2.1.1 Memory Layouts of Static Search Trees

The BST layout is defined by the breadth-first left-to-right traversal of a complete binary search

tree. Given the index i of a node v in the BST layout, the indices of the left and right children of

v can be computed in O(1) time as 2i + 1 and 2i + 2 (using 0-indexing), respectively. Figure 2.1

depicts an example 15-node BST layout.

A complete B-tree [8] is a complete multi-way search tree, where each node (except possibly the

last leaf node) contains exactly B elements and every internal node (except possibly the last one)

has exactly B+1 children. The Level-order B-tree layout is defined by the breadth-first left-to-right

traversal of a complete B-tree. Figure 2.2 depicts the B-tree layout for N = 26 and B = 2.

The van Emde Boas (vEB) layout [92] is defined recursively as follows. The vEB layout of

a tree with a single vertex is the vertex itself. Given a complete binary search tree T with N

vertices and height h = blogNc > 0, consider the top subtree T0 of height b(h− 1)/2c containing

r = 2b(h−1)/2c−1 vertices, and r+1 bottom subtrees T1, T2, . . . , Tr+1, each of height d(h− 1)/2e and
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Figure 2.1: BST layout for N = 15.
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Figure 2.2: Level-order B-tree layout for N = 26 and B = 2.

each rooted at the children of the (r+ 1)/2 leaves of T0. The vEB layout of T is defined recursively

as the vEB layout of T0, followed by the vEB layouts of each T1, T2, . . . , Tr+1. Figure 2.3 depicts

an example vEB layout with 15 nodes.

The above definition of the vEB layout for N 6= 2h+1−1 complicates the permutation algorithms

described in Sections 2.3.3 and 2.4.1 because the number of vertices in each bottom subtree may

be different. Instead, in this work, we modify the definition of the vEB layout for N 6= 2h+1 − 1

as follows. Let r = 2b(h−1)/2c − 1 and l = 2d(h−1)/2e − 1. The top subtree T0 of the vEB layout

will always contain r vertices and the remaining N − r elements will form x = d(N − r)/le bottom

subtrees, T1, T2, . . . , Tx. Each of the first y = b(N − r)/lc bottom subtrees, T1, T2, . . . , Ty, will

consist of exactly l vertices. If N − r is not a multiple of l, i.e., x = y + 1, then the last bottom

subtree, Tx, will contain 1 ≤ l′ < l vertices. As in the standard definition, the vEB layout consists

of T0, immediately followed by T1, T2, . . . , Tx, with each subtree laid out recursively (T0, T1, . . . , Ty
uses the standard vEB layout and if x = y + 1, then Tx uses this modified approach).

In our definition of the vEB layout, at each recursive level, there is at most one bottom subtree

that contains a different number of vertices than all other bottom subtrees and if it exists, is
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always located at the end of the layout. This observation allows us to easily adapt the permutation

algorithms described in Sections 2.3.3 and 2.4.1 and query optimizations described in Section 2.7.1

to work with arrays of sizes N 6= 2h+1 − 1, without affecting the asymptotic analysis.

4 12 2 1 3 5 7 9 11 13 158 6 10 14
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2 6

1 3 5 7 9 11 13 15

10 14

Figure 2.3: van Emde Boas (vEB) layout for N = 15.

The I/O complexity of performing a search query on an array of size N in the BST layout

is O(log(N/B)), and Θ(logB N) in the B-tree and vEB layouts [14, 92]. In theory, because the

definition of the vEB layout does not make use of the parameter B, i.e., it is cache-oblivious [49],

querying the vEB layout on architectures with multiple levels of cache will result in the asymptot-

ically optimal number of accesses at every level of the memory hierarchy [92].

2.1.2 Previous Work on Permutations

The transformation from sorted order to an implicit search tree layout is a special case of permuting

an array of N elements. Let π : [N ] → [N ] be an arbitrary permutation. For the purpose of this

paper, we assume that π is given as a function that can be described concisely in O(1) space (e.g.,

not as a table that explicitly gives π(i) for each i). Let τπ be the time it takes to evaluate π(i).

For example, while τπ = O(1) for the BST and B-tree layouts, it is not obvious how to compute

π(i) faster than O(log logN) time for the vEB layout.

Note that for the problem of permuting N elements using P processors, Ω((N/P ) · τπ) is the

trivial lower bound in the PRAM model. If there is no in-place requirement, any permutation π

can be implemented in O (dN/P e · τπ) time in parallel: each entry A[i] can be copied to B[π(i)]

independently of each other. Thus, the BST and B-tree layouts can be constructed from sorted

data in O (dN/P e) time and the vEB layout can be constructed in O (dN/P e log logN) time.

It is well known that every permutation can be decomposed into disjoint cycles. A cyclic

permutation can be implemented sequentially in-place trivially by starting at a single vertex and

following the cycle. However, for a general permutation this approach still needs additional space

to mark the elements that have already been permuted, unless it can identify all disjoint cycles up
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front.

When it comes to in-place permutations, Fich et al. [43] showed that every permutation π can

be implemented sequentially in-place in O ((N logN) · τπ) time. For a special case when the data

is permuted from a sorted order, they observed that they can check if an element has already been

moved by computing the inverse permutation π−1 to determine if the element is not in its original

sorted order. Thus, for this special case, the time can be reduced to O (N · (τπ + τπ−1)). However,

it is not obvious how to parallelize their algorithm, nor is it trivial to compute π−1 for the vEB

layout.

Yang et al. [111] observed that every permutation is the product of two involutions. A permu-

tation π is an involution if it is its own inverse, i.e., π(π(i)) = i for all i. Moreover, every involution

is composed of disjoint cycles of length at most 2, i.e., can be implemented in parallel and in-place

by swapping pairs of elements. Thus, if the two involutions of a permutation are known, this per-

mutation can be implemented in parallel and in-place. This result is non-constructive, i.e., given an

arbitrary permutation π it is not clear how to determine the two involutions that define π; however,

the authors show how to determine the involutions of a cyclic permutation.

One permutation of particular interest for this work is the perfect shuffle [33]: a permutation in

which two lists of equal length are interleaved perfectly. A generalization is the k-way perfect shuffle,

where k equal-length lists are interleaved perfectly [93]. These permutations have many applications

(e.g., parallel processing [99], Fast Fourier Transforms (FFT) [30, 99], Kronecker products [30, 32],

encryption [101], sorting [99], and merging [29, 41, 42]). Ellis et al. [39, 40] use a number-theoretic

approach to compute representative elements of the disjoint cycles of the perfect shuffle and the k-

way perfect shuffle, thus making a sequential in-place approach possible. Jain [61] relies on the fact

that 2 is primitive root of 3k for any k ≥ 1, which makes it possible to compute the representative

elements of the disjoint cycles recursively for any N . Finally, Yang et al. [111] use the product

of involutions approach and describe the involutions for the k-way perfect shuffle for two cases:

(i) N = kd and (ii) N = kd for some integer d > 1. For (i), the involutions involve reversing

the base-k representation of element indices. For (ii), the involutions involve computing modular

inverses of element indices and finding greatest common divisors. We use these results of Yang et

al. [111] for designing our involution-based permutation algorithms.

2.1.3 Parallel In-place Computations

There is a bit of ambiguity in the literature when it comes to the definition of in-place algorithms.

Strictly speaking, a (sequential) algorithm is said to be in-place if it uses at most Θ(1) additional

space (a processor needs at least one register to perform any useful work) [42]. However, for a

recursive algorithm, at least Ω(logN) additional space is needed to implement the recursion stack

of a balanced recursion. Therefore, it is reasonable for an in-place algorithm to use up to O(logN)

additional space, although often such algorithms are called in-situ [41, 71]. When it comes to
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parallel algorithms, there is an additional complication. Each of the P processors needs to have

Ω(1) space to perform any meaningful work. Moreover, for asynchronous recursion, Ω(logN) space

is needed per processor, i.e., a total of Ω(P logN) additional space. Therefore, if P = N
logN , the

total additional space becomes Ω(N) and trivially non-in-place algorithms could be viewed as being

in-place. To avoid this situation, we define in-place parallel computation as follows:

Definition 3. A parallel algorithm running on P processors each having an internal memory of

size M is called in-place if it uses at most O(P (M + logN)) additional space and works correctly

for any P ≥ 1 processors.

In the PRAM model, M = O(1) is the number of registers per processor so it reduces to

O(P logN); while in the PEM model, M is the size of each processor’s internal memory. Note that

the requirement for an algorithm to work correctly for any P ≥ 1 precludes the view of trivially

non-in-place algorithms designed for large P as being in-place.

2.2 Contributions

We present parallel algorithms for the in-place permutation of a sorted array into the BST, B-tree,

and vEB layouts, and analyze their time and I/O complexities. We propose two types of algorithms:

1. Building on the work of Yang et al. [111] and Fich et al. [43], we determine the pairs of

involutions required to permute a sorted array into the BST layout. We also determine the

logB+1N pairs of involutions required to permute a sorted array into the B-tree layout. The

B-tree involutions can be used in order to permute a sorted array into the vEB layout.

2. Using a cycle-leader approach, we develop an efficient parallel in-place algorithm to permute

a sorted array into the vEB layout. By recursively applying this approach, we are able to

design algorithms for permuting a sorted array into the B-tree layout. The B-tree layout

algorithm can be used to obtain the BST layout by setting B = 1.

The involution-based approach entails reversing a subset of the digits of numbers represented in

an arbitrary base-k (for BST k = 2, for B-tree k = B + 1). If implemented in software, the worst-

case complexity of this operation is linear with the number of digits in the base-k representation of

the integer N being reversed, i.e., O(logkN). Some architectures provide it as a built-in hardware

primitive (i.e., it takes O(1) time), in particular, NVIDIA GPUs implement this operation in

hardware for k = 2. We parameterize the time of this operation as TREVk(N).

To the best of our knowledge, our algorithms are the first parallel in-place algorithms for

permuting a sorted array into the considered search tree layouts. The time and I/O complexities

of our algorithms are summarized in Table 2.1. Our cycle-leader algorithms exhibit better I/O

complexity, while our involution-based algorithms are much simpler and trivial to parallelize. We
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Table 2.1: Asymptotic time and I/O complexity bounds of each of our algorithms. N is the input
size, P is the number of processors, M and B are the sizes of the internal memory and the transfer
block, respectively, in the PEM model. K = min(NP ,M) and TREVk(N) is the time complexity of
reversing the digits of number N in the base-k representation.

Algorithm Time complexity I/O complexity

Involution BST O
(
N
P · TREV2(N)

)
O
(
N
P

)
Involution B-tree O

((
N
P + logB+1N

)
logN

)
O
(
N
P +B logB+1

N
K

)
Involution vEB O

(
N
P logN

)
O
(
N
P log logK N

)
Cycle-leader BST O

((
N
P + logN

)
logN

)
O
((

N
PB + log N

K

)
log N

K

)
Cycle-leader B-tree O

((
N
P + logB+1N

)
logB+1N

)
O
((

N
PB + logB+1

N
K

)
logB+1

N
K

)
Cycle-leader vEB O

(
N
P log logN

)
O
(
N
PB log logK N

)
evaluate these algorithms experimentally and find that, compared to a binary search on non-

permuted input, the permutation overhead of our permutation algorithms is offset by the query

time for as few as 0.013N on a NVIDIA GPU.

The remainder of this chapter is organized as follows. Section 2.3 presents our involution-

based algorithms and Section 2.4 presents our cycle-leader algorithms, each section analyzing the

time complexity of these algorithms. For ease of exposition, in Sections 2.3 and 2.4 we consider

only perfect trees, i.e., complete trees in which every level is full. Section 2.5 analyzes the I/O

complexity of our algorithms. Section 2.6 discusses extensions of our algorithms to non-perfect

trees. Section 2.7 goes over experimental optimizations and Section 2.8 presents experimental

results. Finally, Section 2.9 concludes with a summary.

2.3 Involution Approach

2.3.1 BST Layout

A perfect BST contains N = 2d−1 vertices. Fich et al. [43] propose a sequential in-place algorithm

to permute a sorted array into the BST layout. They note that the permutation satisfies the

property that for a given index i = (x10j)2 in binary representation, the index of that element in

the BST layout is π(i) = (0j1x)2. Let revk(b, i) be the operation that reverses the b least significant

digits of the base-k representation of the integer i. The previously mentioned permutation can be

computed as π(i) = rev2(d− (j+ 1), (rev2(d, i)). Since rev2 is an involution [43], we can perform

the permutation π in parallel in just two rounds of O(N) independent swaps.

The time to compute π(i) depends on the time to perform the rev2 operation. Thus, this

algorithm has depth D(N) = O(Trev2(N)) and work W (N) = O(N · Trev2(N)).

17



2.3.2 B-tree Layout

The B-tree layout algorithm relies on the k-way perfect shuffle involution approach developed by

Yang et al. [111]. Let us first review their results.

Let Jr(i) = g · (r · ( ig )−1 (mod N−1
g )) where g is the greatest common divisor of i and N − 1.

Yang et al. [111] show that for N = kd and N = kd the k-way perfect shuffle can be implemented

as Ξ1(i) = revk(d,revk(d − 1, i)) and Ξ2(i) = Jk(J1(i)), respectively, for any integer d > 1. We

note that the k-way “un-shuffle”, which we use, can be performed by simply reversing the order in

which the involutions are performed.

A perfect B-tree has N = (B + 1)d − 1 elements, for some d > 1. Since each leaf node contains

B contiguous elements from the sorted array, every (B + 1)-th element is stored in a non-leaf (i.e.,

internal) node. Let Si, for i ∈ {0, 1, 2, ..., B}, denote the list of elements at locations i+ j(B + 1),

for j ∈ {0, 1, ...,
⌊

N
(B+1)

⌋
}. In other words, each Si is comprised of the elements starting at i, strided

by B + 1. By this definition, SB contains all internal elements and Sl, for 0 ≤ l ≤ B − 1, contains

the l-th element of each leaf node. We first perform the (B+1)-way perfect un-shuffle (via Ξ1 while

using or simulating 1-indexing), which will gather each Si into contiguous space and lay them out

in sequence. We then apply the B-way perfect shuffle (via Ξ2 while using or simulating 0-indexing)

on all Sl lists to interleave the leaf elements back into their corresponding leaf nodes, i.e., into their

correct positions. All leaf elements are thus correctly permuted and we recurse on SB.

Recall that revk can take up to O(logkN) time. Finding the modular inverse, however, requires

using the extended Euclidean algorithm [111], which takes O(logN) time. The latter dominates

the running time, resulting in O(logN) time for both operations. The work and depth complexities

of our B-tree permutation algorithm are given in Proposition 4 and 5, respectively.

Proposition 4.

W (N) = W

(
N

B + 1

)
+O(N logN)

= O(N logN) .

Proof. Guess: W (N) = c
(
B+1
B

)
N logN − c

(
B+1
B2

)
N log (B + 1).

W

(
N

B + 1

)
= c

(
B + 1

B

)(
N

B + 1

)
log

N

B + 1
− c

(
B + 1

B2

)(
N

B + 1

)
log (B + 1)

= c

(
1

B

)
N logN − c

(
1

B

)
N log (B + 1)− c

(
1

B2

)
N log (B + 1)

= c

(
1

B

)
N logN − c

(
1

B
+

1

B2

)
N log (B + 1)

= c

(
1

B

)
N logN − c

(
B

B2
+

1

B2

)
N log (B + 1)
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= c

(
1

B

)
N logN − c

(
B + 1

B2

)
N log (B + 1) ,

W (N) = W

(
N

B + 1

)
+ cN logN

= c

(
1

B

)
N logN − c

(
B + 1

B2

)
N log (B + 1) + cN logN

= c

(
1

B
+ 1

)
N logN − c

(
B + 1

B2

)
N log (B + 1)

= c

(
1

B
+
B

B

)
N logN − c

(
B + 1

B2

)
N log (B + 1)

= c

(
B + 1

B

)
N logN − c

(
B + 1

B2

)
N log (B + 1) .

Therefore, W (N) = O(N logN).

Proposition 5.

D(N) = D

(
N

B + 1

)
+O(logN)

= O(logB+1N · logN) .

Proof. Let h = logB+1N .

Guess: D(N) = c(h+ 1) logN − c
2h

2 log (B + 1)− c
2h log (B + 1).

D(N) = D

(
N

B + 1

)
+ c logN

= ch(logN − log (B + 1))− c

2
(h− 1)2 log (B + 1)− c

2
(h− 1) log (B + 1) + c logN

= c(h+ 1) logN − ch log (B + 1)− c

2
(h2 − 2h+ 1) log (B + 1)− c

2
h log (B + 1) +

c

2
log (B + 1)

= c(h+ 1) logN − c

2
h2 log (B + 1)− c

2
h log (B + 1) .

Therefore, D(N) = O(logB+1N logN).

2.3.3 van Emde Boas Layout

We are able to apply the B-tree layout algorithm for the vEB layout of height h, by using B =

2d(h−1)/2e − 1 and recursing on each subtree of the vEB layout. The resulting work and depth

complexities are:

Proposition 6.

W (N) =
√
N ·W

(√
N
)

+O(N logN)
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= O(N logN) .

Proof. Guess: W (N) = 2cN logN

W (N) =
√
N(2c

√
N log

√
N) + cN logN

= cN logN + cN logN

= 2cN logN .

Therefore, W (N) = O(N logN).

Proposition 7.

D(N) = D
(√

N
)

+O(logN)

= O(logN) .

Proof. Guess: D(N) = 2c logN

D(N) = 2c log
√
N + c logN

= c logN + c logN

= 2c logN .

Therefore, D(N) = O(logN).

2.4 Cycle-leader Approach

2.4.1 van Emde Boas Layout

Recall from Section 2.1.1 that we define Ti as the i-th subtree of size O(
√
N): T0 is the “root”

subtree consisting of r = 2b(h−1)/2c− 1 vertices of the upper
⌊
h−1
2

⌋
levels, where h = blogNc, while

T1, . . . , Tr+1 are “leaf” subtrees consisting of l = 2d(h−1)/2e − 1 vertices each. Let A[ai : bi] be the

interval within the input array where the elements of Ti should be moved to. In particular, a0 = 1,

b0 = r and for all 1 ≤ j ≤ r + 1, aj = r + (j − 1)l + 1 and bj = r + jl. Our algorithm first moves

each Ti into A[ai : bi], which we call the equidistant gather operation, then recursively permutes

each A[ai : bi] into the vEB layout. (Our equidistant gather operation is general enough to work

for any r ≤ l.)
We use Ti[a : b] to denote the subset of nodes of Ti from the a-th smallest to the b-th smallest

in the sorted order. E.g., Ti[1 : k] represents the first k smallest elements of Ti.
The following proposition bounds the range in the input array, where the elements of the leaf

subtrees Tj , for j ≥ 1, are initially located:

20



Proposition 8. For all i = r−j+2, 1 ≤ j ≤ r+1, Tj [i : l] are already in their destination interval

A[aj : bj ]. If i > l, then no elements of Tj are in their destination interval.

Proof. Since the input is in sorted order, for all 1 ≤ i, j ≤ l, Tj [i] is initially located at index

iorig = (j − 1)(l + 1) + i. Hence, we check if iorig ≥ aj = r + (j − 1)l + 1. Solving for i results in

i ≥ r − j + 2.

From the above proposition, we know that T1[r + 1 : l], T2[r : l], ..., Tr+1[1 : l] are already in

their destination intervals and only T1[1 : r], ..., Tr[1] need to be moved.

T1 T2 Tr+1

T0

1 2 3 41 2 3 4 1 2 3 4

T0 T2 Tr+1

1 2 3 41 2 3 4 1 2 3 4

T0 T1 Tr+1

2 31 2 3 4 41 2 3 4 1

T0 T1 Tr+1T2

1 2 3 4 41 2 3 4 14 1 2 3

Figure 2.4: Illustration of the series of swaps needed to sequentially perform the equidistant gather
operation for r = l.

We first consider a sequential strategy to perform the equidistant gather in-place: we perform r

rounds of swapping, where after round i, all elements in the subtree Ti are in A[ai : bi]. Figure 2.4

illustrates the first few rounds of swapping for r = l. We see that, initially, all elements of T0
are distributed throughout the array. After the first round, T0 is in A[a0 : b0] and T1 becomes

distributed throughout the array. After repeating this process r times, each Ti is in A[ai : bi],

however, the elements in each Ti may not be in sorted order. Specifically, we need to perform a

circular shift to the right by r + 1− i places (or equivalently l− (r + 1− i) to the left) on each Ti.
We can parallelize this algorithm by unrolling the r sequential swap rounds and identifying the

resulting disjoint cycles. We identify r disjoint cycles of the following form:

T0[1] 7→ T1[1] ,

T0[2] 7→ T1[2] 7→ T2[1] ,

T0[3] 7→ T1[3] 7→ T2[2] 7→ T3[1] ,

...
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T0[r] 7→ T1[r] 7→ ... 7→ Tr−1[2] 7→ Tr[1] .

Since we can identify each element in each disjoint cycle, its position in the cycle, and the length

of the cycle, as mentioned in Section 2.1.2, we can implement circular shifts in parallel and in-place

in O(1) depth and O(N) work using the involutions of Yang et al. [111]. Therefore, since both

stages of our algorithm are comprised of disjoint circular shifts, we can perform the equidistant

gather in O(1) time and O(N) work. The work and depth complexities of this algorithm are:

Proposition 9.

W (N) =
√
N ·W (

√
N) +O(N)

= O(N log logN) .

Proof. Guess: W (N) = cN log logN .

W (
√
N) = c

√
N log log

√
N

= c
√
N log

(
1

2
logN

)
= c
√
N log(2−1) + c

√
N log logN

= −c
√
N + c

√
N log logN ,

W (N) =
√
N ·W (

√
N) + cN

=
√
N(−c

√
N + c

√
N log logN) + cN

= −cN + cN log logN + cN

= cN log logN .

Therefore, W (N) = O(N log logN)

Proposition 10.

D(N) = D(
√
N) +O(1)

= O(log logN) .

Proof. Guess: D(N) = c log logN .

D(
√
N) = c log log

√
N

= c log

(
1

2
logN

)
= c log 2−1 + c log logN

= −c+ c log logN ,
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D(N) = D(
√
N) + c

= −c+ c log logN + c

= c log logN .

Therefore, D(N) = O(log logN).

2.4.2 B-tree Layout

The idea is similar to the above vEB cycle-leader approach, except we have r =
⌊

N
(B+1)

⌋
and l = B.

Therefore, we need to extend the equidistant gather operation for r > l. We call this version the

extended equidistant gather operation.

In a perfect B-tree of height h, N = (B+1)h+1−1. Let C =
⌈

N
(B+1)2

⌉
. To perform the extended

equidistant gather, we partition the array into (B+ 1) partitions, where each partition will contain

C internal elements (except for the first one, which will contain C − 1 internal elements) and BC

leaf elements. We move the internal elements of each partition to the front of that partition by

applying the extended equidistant gather recursively on each partition. We then move the internal

elements to the front of the whole array by applying the equidistant gather while treating each

chunk of C elements as a single unit, and while ignoring the first C − 1 internal elements of the

first partition. At the base case of the recursion C = 1 and we can apply the equidistant gather

directly to bring the internal elements to the front.

Since the equidistant gather takes O(N) work and O(1) depth, the extended equidistant gather

takes:

Proposition 11.

W ′(N) = (B + 1) ·W ′
(

N

B + 1

)
+O(N)

= O(N logB+1N)

Proof. Let h = logB+1N .

Guess: W ′(N) = cNh.

W ′
(

N

B + 1

)
=

cN

B + 1
(h− 1)

=
cNh

B + 1
− cN

B + 1
,

W ′(N) = (B + 1) ·W ′
(

N

B + 1

)
+ cN

= (B + 1)

(
cNh

B + 1
− cN

B + 1

)
+ cN
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= cNh− cN + ch

= cNh .

Therefore, W ′(N) = O(Nh) = O(N logB+1N).

Proposition 12.

D′(N) = D′
(

N

B + 1

)
+O(1)

= O(logB+1N)

Proof. Let h = logB+1N .

Guess: D′(N) = ch.

D′(N) = D′
(

N

B + 1

)
+ c

= c(h− 1) + c

= ch .

Therefore, D′(N) = O(h) = O(logB+1N).

Once all the internal elements are gathered to the front of the array, we recursive on the internal

elements, resulting in the following complexities:

Proposition 13.

W (N) = W

(
N

B + 1

)
+W ′(N)

= W

(
N

B + 1

)
+O(N logB+1N)

= O(N logB+1N)

Proof. Guess: W (N) = c(B+1)
B N logB+1N −

c(B+1)
B2 N .

W

(
N

B + 1

)
=

c(B + 1)

B
· N

B + 1
· logB+1

N

B + 1
− c(B + 1)

B2
· N

B + 1

=
c

B
N(logB+1N − 1)− c

B2
N

=
c

B
N logB+1N −

c

B
N − c

B2
N

=
c

B
N logB+1N −Nc

(
1

B
+

1

B2

)
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=
c

B
N logB+1N −Nc

B + 1

B2
,

W (N) = W

(
N

B + 1

)
+ cN logB+1N

=
c

B
N logB+1N −N

c(B + 1)

B2
+ cN logB+1N

=
c(B + 1)

B
N logB+1N −N

c(B + 1)

B2
.

Therefore, W (N) = O(N logB+1N).

Proposition 14.

D(N) = D

(
N

B + 1

)
+D′(N)

= D

(
N

B + 1

)
+O(logB+1N)

= O(log2B+1N)

Proof. Let h = logB+1N .

Guess: D(N) = c
2h

2 + c
2h.

D

(
N

B + 1

)
=
c

2
(h− 1)2 +

c

2
(h− 1)

=
c

2
(h2 − 2h+ 1) +

c

2
h− c

2

=
c

2
h2 − ch+

c

2
+
c

2
h− c

2

=
c

2
h2 − c

2
h ,

D(N) = D

(
N

B + 1

)
+ ch

=
c

2
h2 − c

2
h+ ch

=
c

2
h2 +

c

2
h .

Therefore, D(N) = O(h2) = O(log2B+1N).

2.4.3 BST Layout

We can apply the B-tree cycle leader algorithm (Section 2.4.2) to the BST layout by setting B = 1,

resulting in O(N logN) work and O(log2N) depth. Although this is worse than the involution-

based algorithm from Section 2.3.1, the cycle-leader algorithm exhibits better spatial locality, which
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we analyze in the next section.

2.5 I/O Optimizations

In this section, we analyze the I/O complexity of our proposed algorithms in the parallel external

memory (PEM) model [4] – a parallel extension of the EM model. When applicable, we present

additional modifications to the algorithms to improve the I/O efficiency.

Let K = min
(
N
P ,M

)
and assume that P ≤ N

B , i.e., each processor processes at least one block,

and M ≥ 2B+O(1), i.e., each processor can swap at least two blocks. In Section 2.5.2, we increase

this assumption to M ≥ B2 (standard tall-cache assumption) and consequently P ≤ N
B2 .

2.5.1 Involution-based Algorithms

We first consider the involution-based algorithms described in Section 2.3. The swaps performed

by these algorithms can be an arbitrary distance away from each other. Hence, in the worst case

these algorithms will perform O(1) I/Os per swap. Thus, each iteration of an involution performs

O(NP ) I/Os. For the B-tree and vEB layouts, however, once the subproblem is of size M or less, it

will fit in internal memory. Proposition 15 and 16 provides the I/O complexity of the B-tree layout

and vEB layout, respectively.

Proposition 15.

Q(N,P ) =

O (N/B) if N ≤M and P = 1

Q
(

N
B+1 ,min

(
P, N

B(B+1)

))
+O

(
N
P

)
otherwise

= O

(
N

P
+B logB+1

N

K

)
,

Proof. Case 1: Suppose P < N
B(B+1) .

Guess: Q(N,P ) = c
(
B+1
B

)
N
P .

Q(N,P ) = Q

(
N

B + 1
, P

)
+
cN

P

= c

(
B + 1

B

)(
N

P (B + 1)

)
+
cN

P

=
cN

PB
+
cN

P

=
cN

P

(
1

B
+ 1

)
=
cN

P

(
B + 1

B

)
.
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For this case, the I/O’s performed at the current level of recursion dominates, thus, Q(N,P ) =

O
(
cN
P

)
.

Case 2: Suppose P ≥ N
B(B+1) .

Guess: Q(N,P ) = N
P + cB logB+1N .

Q(N,P ) = Q

(
N

B + 1
,

N

B(B + 1)

)
+
cN

P

=
cN

B + 1
· B(B + 1)

N
+ cB(logB+1N − 1) +

cN

P

= cB + cB logB+1N − cB +
cN

P

= cB logB+1N +
cN

P

Since P ≥ N
B(B+1) , Q(N,P ) = O(B logB+1N). Additonally, we know that the recursion stops at a

base case of size K, therefore we have Q(N,P ) = O(B logB+1
N
K ).

Therefore, combining both cases results in Q(N,P ) = O
(
N
P +B logB+1

N
K

)
.

Proposition 16.

Q(N,P ) =

O (N/B) if N ≤M and P = 1⌈√
N
P

⌉
Q
(√

N,
⌈
P√
N

⌉)
+O

(
N
P

)
otherwise

= O

(
N

P
log logK N

)
.

Proof. Guess: Q(N,P ) = cN
P log logN .

Case 1: Suppose P <
√
N . Note that

⌈
P√
N

⌉
= 1.

Q(N,P ) =

√
N

P
Q(
√
N, 1) +

cN

P

=

√
N

P
(c
√
N log log

√
N) +

cN

P

=
cN

P
log

(
1

2
logN

)
+
cN

P

=
cN

P
log 2−1 +

cN

P
log logN +

cN

P

= −cN
P

+
cN

P
log logN +

cN

P

=
cN

P
log logN .
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Case 2: Suppose P ≥
√
N . Note that

⌈√
N
P

⌉
= 1.

Q(N,P ) = Q

(√
N,

P√
N

)
+
cN

P

= c
√
N ·
√
N

P
· log log

√
N +

cN

P

=
cN

P
log

(
1

2
logN

)
+
cN

P

=
cN

P
log 2−1 +

cN

P
log logN +

cN

P

= −cN
P

+
cN

P
log logN +

cN

P

=
cN

P
log logN .

Additonally, we know that the recursion stops at a base case of size K, therefore we have Q(N,P ) =

O(NP log logK N).

2.5.2 vEB Cycle-leader Algorithm

For the cycle-leader approach, we rely on performing parallel circular shifts of elements. We perform

the circular shifts using the technique presented by Yang et al. [111], which involves two rounds of

array reversals. We can reverse k elements in-place and in parallel by performing
⌊
k
2

⌋
independent

swaps. Specifically, index i swaps with index k − i − 1 (using 0-indexing). Thus, to optimize for

I/Os, we can swap elements in groups of B, provided that every group of B elements are located in

contiguous memory locations. Therefore, we can perform a circular shift of N elements in O( N
PB )

I/Os. For the remainder of the section, assume every circular shift uses this optimization.

The vEB cycle-leader approach, described in Section 2.4.1, employs the equidistant gather

operation, which relies on circular shifts. However, the equidistant gather performs a circular shift

on elements strided by distance O(
√
N) and are thus not in contiguous memory. To avoid the I/O

inefficiency of such an access pattern, we propose an initial transposition phase to block elements

in each disjoint cycle together.

We can view the sorted array as an (r + 1) × (l + 1) row-major matrix with the bottom-right

element removed. We can ignore the last row, which contains Tr+1, since these elements do not

move during the cycles. We also ignore the last column of the matrix, which contains the r elements

of T0. Additionally for r < l, we ignore the remaining right-most (l− r) columns, as these elements

do not participate in any cycles.

Thus, we consider a square matrix of size r × r. Figure 2.5 illustrates this representation for

r = l, how each subtree is contained therein, and what elements are contained in each disjoint cycle

of the gather. To improve I/O efficiency, we perform a circular shift on each row i by i positions
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to the right, which aligns the elements in each disjoint cycle into columns. We then transpose the

square matrix to align the elements in each cycle into rows, placing all elements of each cycle into

contiguous memory.

T1
T2
T3
T4

Tr
Tr+1

T0

...

Figure 2.5: Illustration of the distinct cycles of the equidistant gather operation for r = l. We
consider memory as an (r + 1)× (l+ 1) matrix. Shifting each row and transposing the inner r × r
matrix lets us perform each cycle I/O efficiently.

Shifting r rows of r elements requires O( r2

PB ) I/Os. Assuming that P ≤ N/B2 and M ≥ B2,

we can perform matrix transposition in O( r2

PB ) I/Os by tiling the matrix into sub-matrices of size

B × B [2, 104]. With each disjoint cycle in contiguous memory, we can now permute the first

set of cycles of the equidistant gather I/O efficiently and in parallel. Thus for r = O(
√
N), this

permutation takes 1
P

∑r
i=1

(
1 +O

(
i
B

))
= O

(√
N
P + N

PB

)
= O

(
N
PB

)
I/Os, assuming that B ≤

√
N .

After performing the first set of disjoint cycles, we perform the inverse of the above transposition

to permute the elements back into their original order (this places each Ti into contiguous memory).

To do this, we transpose the r×r matrix and perform a left circular shift on each row i by i positions.

We complete the equidistant gather operation by performing a left circular shift on each subtree

Ti by i − 1 positions. As outlined in Section 2.4.2, the equidistant gather operation is applied

recursively to perform the vEB layout permutation. The I/O complexity of this algorithm is:

Proposition 17.

Q(N,P ) =

O(N/B) if N ≤M and P = 1⌈√
N
P

⌉
Q
(√

N,
⌈
P√
N

⌉)
+O

(
N
PB

)
otherwise

= O

(
N

PB
log logK N

)
.

Proof. Guess: Q(N,P ) = cN
PB log logN .
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Case 1: Suppose P <
√
N . Note that

⌈
P√
N

⌉
= 1.

Q(N,P ) =

√
N

P
Q(
√
N, 1) +

cN

PB

=

√
N

P

(
c

√
N

B
log log

√
N

)
+
cN

PB

=
cN

PB
log

(
1

2
logN

)
+
cN

PB

=
cN

PB
log 2−1 +

cN

PB
log logN +

cN

PB

= − cN
PB

+
cN

PB
log logN +

cN

PB

=
cN

PB
log logN .

Case 2: Suppose P ≥
√
N . Note that

⌈√
N
P

⌉
= 1.

Q(N,P ) = Q

(√
N,

P√
N

)
+
cN

PB

= c

√
N

B
·
√
N

P
· log log

√
N +

cN

PB

=
cN

PB
log

(
1

2
logN

)
+
cN

PB

=
cN

PB
log 2−1 +

cN

PB
log logN +

cN

PB

= − cN
PB

+
cN

PB
log logN +

cN

PB

=
cN

PB
log logN .

Additonally, we know that the recursion stops at a base case of size K, therefore we have Q(N,P ) =

O( N
PB log logK N).

Alternatively, a simpler solution would be to forgo the above described transposition phase

and assign each processor a group of O(B) cycles to permute sequentially. This can be done I/O

efficiently since B consecutive elements will always contain elements from the same B cycles. The

resulting I/O complexity is O
((

N
PB +

√
N
B

)
log logK N

)
. Although not as asymptotically efficient

for large values of P , in practice for most architectures P ≤
√
N and the first term will dominate,

resulting in the same asymptotic complexity.
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2.5.3 B-tree Cycle-leader Algorithm

Recall from Section 2.4.2 that the B-tree cycle-leader algorithm is recursive, performing the equidis-

tant gather operation while considering chunks of C elements as single units. Thus, as long as

C ≥ B, every swap of C elements will be I/O-efficient. Since C =
⌈

N
(B+1)2

⌉
for N = (B+1)h+1−1,

only the base case (C = 1) will have a chunk size less than B. However, assuming that M ≥
(B + 1)2 − 1 = Θ(B2), we can simply load the base case into internal memory to perform the

permutation in O(B) I/Os. All other recursive levels are performed I/O efficiently, thus:

Proposition 18.

Q′(N,P ) =

O(N/B) if N ≤M and P = 1⌈
B+1
P

⌉
Q′
(

N
B+1 ,

⌈
P
B+1

⌉)
+O

(
N
PB

)
otherwise

= O

(
N

PB
logB+1

N

K

)
.

Proof. Guess: Q′(N,P ) = cN
PB logB+1N .

Case 1: Suppose P < B + 1. Note that
⌈

P
B+1

⌉
= 1.

Q′(N,P ) =
B + 1

P
·Q′

(
N

B + 1
, 1

)
+
cN

PB

=
B + 1

P

(
cN

B(B + 1)

(
logB+1N − 1

))
+
cN

PB

=
cN

PB
logB+1N −

cN

PB
+
cN

PB

=
cN

PB
logB+1N .

Case 2: Suppose P ≥ B + 1. Note that
⌈
B+1
P

⌉
= 1.

Q′(N,P ) = Q′
(

N

B + 1
,

P

B + 1

)
+
cN

PB

=
cN

B(B + 1)
· B + 1

P

(
logB+1N − 1

)
+
cN

PB

=
cN

PB
logB+1N −

cN

PB
+
cN

PB

=
cN

PB
logB+1N .

Additonally, we know that the recursion stops at a base case of size K, therefore Q′(N,P ) =

O( N
PB logB+1

N
K ).
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Proposition 19.

Q(N,P ) =

O(N/B) if N ≤M and P = 1

Q
(

N
B+1 ,min(P, N

B(B+1))
)

+Q′(N,P ) otherwise

= O

((
N

PB
+ logB+1

N

K

)
logB+1

N

K

)
.

Proof. Let h = logB+1N .

Case 1: Suppose P < N
N(B+1) .

Guess: Q(N,P ) =
(
B+1
B

)
cN
PBh−

(
B+1
B2

)
cN
PB .

Q(N,P ) = Q

(
N

B + 1
, P

)
+
cN

PB
h

=

(
B + 1

B

)
cN

PB(B + 1)
(h− 1)−

(
B + 1

B2

)
cN

PB(B + 1)
+
cN

PB
h

=

(
1

B

)
cN

PB
h−

(
1

B

)
cN

PB
−
(

1

B2

)
cN

PB
+
cN

PB
h

=

(
1

B
+ 1

)
cN

PB
h−

(
1

B
+

1

B2

)
cN

PB

=

(
1

B
+
B

B

)
cN

PB
h−

(
B

B2
+

1

B2

)
cN

PB

=

(
B + 1

B

)
cN

PB
h−

(
B + 1

B2

)
cN

PB
.

Case 2: Suppose P ≥ N
N(B+1) .

Guess: Q(N,P ) = cN
PBh+ c

2h
2 − c

2h.

Q(N,P ) = Q

(
N

B + 1
,

N

B(B + 1)

)
+
cN

PB
h

=
cN

B(B + 1)
· B(B + 1)

N
· (h− 1) +

c

2
(h− 1)2 − c

2
(h− 1) +

cN

PB
h

= ch− c+
c

2
(h2 − 2h+ 1)− c

2
h+

c

2
+
cN

PB
h

=
c

2
h− c

2
+
c

2
h2 − ch+

c

2
+
cN

PB
h

=
c

2
h2 − c

2
h+

cN

PB
h .

Since P ≥ N
N(B+1) , this case simplifies to Q(N,P ) = O(log2B+1N).

Combining both cases results in Q(N,P ) = O
((

N
PB + logB+1N

)
logB+1N

)
. Additionally, we know

that the recursion stops at a base case of sizeK, thereforeQ(N,P ) = O
((

N
PB + logB+1

N
K

)
logB+1

N
K

)
.
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Recall from Section 2.4.3 that the BST algorithm is a special case of the B-tree algorithm

where the node size is a single element. In this case, the last Θ(logB) rounds will have a chunk

size less than B. Thus, once N = O (B), we load the array into internal memory which results in

O
((

N
PB + log N

K

)
log N

K

)
I/Os.

2.6 Extensions to non-perfect trees

Since the array is given in sorted order, any arbitrary size BST or B-tree will be complete (though

not necessarily perfect). Hence for BSTs and B-trees, we can first permute the non-full level of

leaves to the end of the array. For a tree of height h, the number of full elements, i.e., the elements

in the full levels, in a BST is I = 2h − 1, and in a B-tree I = (B + 1)h − 1. The number of

non-full elements, i.e., the elements in the non-full level, is L = N − I. In both trees, the parents

of non-full elements are initially located in the array such that they partition the non-full elements.

We gather them to the front of the array and shift the non-full elements to the end of the array

via a circular shift. To perform this gather, we apply a (B + 1)-way un-shuffle (and additionally

a B-way shuffle on the non-full elements for B-trees) as seen in Section 2.3.2. Alternatively, we

can apply the extended equidistant gather operation described in Section 2.4.2. This process takes

D(N) = O(TREV2(L)) depth and W (N) = O(L · TREV2(L) + N) work for BSTs (via 2-way un-

shuffle); and D(N) = O(logB+1 L) depth and W (N) = O(L(B + 1) · logB+1 L + N) work for

B-trees (via extended equidistant gather). After applying this initial stage, we can proceed with

the algorithm on the full elements which form a perfect tree of height h− 1.

Recall from Section 2.1.1 that r = 2b(h−1)/2c − 1 is the size of the top subtree, T0, and l =

2d(h−1)/2e−1 is the size of each of the first y = b(N − r)/lc bottom subtrees, T1, T2, . . . , Ty. We first

gather the first y elements of T0, which are initially located at every (l+1)-th array location, to the

front of the array. Then we shift the remaining r− y elements of T0, which reside at the end of the

array, to the front of the array after the first y elements of T0. To perform this gather, we can either

perform the equidistant gather operation described in Section 2.4.1; or we can apply an (l+ 1)-way

un-shuffle followed by an l-way shuffle on the elements in T1, T2, . . . , Ty. The resulting work and

depth of this process using the equidistant gather is W (N) = O (N) and D(N) = O (1). After this

initial permutation, we recurse on subtrees T0, T1, . . . , Ty using the algorithm for the perfect vEB

layout. If x = d(N − r)/le = y+ 1, then we additionally recurse on the last non-perfect subtree Tx
using the algorithm just described for the non-perfect vEB layout.
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2.7 Experimental Optimizations

2.7.1 Query Optimization

Brodal et al. [14] describe a vEB query approach that utilizes a precomputed table of size O (logN).

Consider an arbitrary node in the vEB located at depth d and unfold the vEB recursion such that

the considered node is the root of a vEB bottom tree. The precomputed table stores at index d

the number of nodes in the corresponding bottom tree, the number of nodes in the corresponding

top tree, and the depth of the root of the corresponding top tree. Thus, when performing a vEB

query, the precomputed table can be used to calculate the index of the next node in O (1) time.

For non-perfect vEBs, the last leaf subtree may contain fewer elements than other leaf subtrees and

thus, may have a different subtree height. Due to this, an additional table is needed to be able to

query the non-perfect leaf subtree. This is needed for all non-perfect leaf subtrees for all recursive

levels of the vEB. In the worst case, this requires
∑log logN

i=0
logN
2i

= O (logN) space. This query

optimization using the precomputed table(s) is used throughout Section 2.8.

2.7.2 Hybrid BST Layout

For permuting non-perfect BSTs, we must perform an initial permutation to gather and shift the

non-full elements to the end of the array (as described in Section 2.6). To do this, we can either use

the equidistant gather operation (i.e., cycle-leader approach) or a 2-way un-shuffle (i.e., involution

approach).

In the conference version of this work, we found that the involution approach performs bet-

ter than the cycle-leader approach for perfect BSTs. However, recall from Section 2.3.1 that the

BST involution approach uses a pair of involutions to permute the sorted array into the BST lay-

out, which does not require the use of any shuffles or un-shuffles. In comparison, the involution

approaches that do use shuffles and un-shuffles (e.g. the B-tree involution permutation) do not

perform well. Therefore, we additionally consider the BST hybrid approach, which uses the ex-

tended equidistant gather for the initial permutation to gather the non-full elements, then uses the

pair of involutions to permute the full elements into the BST layout. The BST hybrid approach is

additionally used in Section 2.8.

2.7.3 Modified van Emde Boas Layout

In the conference version of this work, results on the vEB permutation algorithms showed poor

performance on GPUs [10]. This slowdown is attributed to the recursive implementation of these

algorithms, which is known to degrade performance on GPUs. However, developing iterative ver-

sions of these algorithms on the GPU is challenging, due to the potentially uneven size of the top

and bottom trees in the vEB layout. Instead, we define a variant of the vEB layout, which we call

the modified van Emde Boas layout (mvEB).
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In the mvEB layout, the height of the bottom trees are rounded up to the nearest power of two

(at the expense of the top subtree’s height being shortened by the same change in height as the leaf

subtrees). In this way, the bottom subtrees are guaranteed to always be perfectly balanced, i.e., all

of the top and bottom trees in the following recursive divisions always contain the same number of

nodes. This makes developing an iterative version for the perfectly balanced subtrees possible in a

single GPU kernel, for each recursive division. In Section 2.8.2, the mvEB layout is used instead

of the recursively implemented vEB layout.

2.8 Experiments

2.8.1 Methodology

We evaluate the performance of our search tree permutation algorithms on 3 NVIDIA GPUS: (1)

a NVIDIA Tesla K40 with 2,880 compute cores, 12 GB of GDDR5 type global memory with a

theoretical bandwidth of 288 GB/s, and compute capability 3.5; (2) a NVIDIA Quadro M4000

with 1,664 compute cores, 8 GB of GDDR5 type global memory with a theoretical bandwidth

of 192 GB/s, and compute capability 5.2; and (3) a NVIDIA GeForce RTX 2080 Ti with 4,352

compute cores, 11 GB of GDDR6 type global memory with a theoretical bandwidth of 616 GB/s,

and compute capability 7.5. We use the CUDA 10.1 compiler [84] with the -O3 and -use fast math

flags.

Experiments are conducted on arrays of 32-bit integer values (B = 32) on our GPU plat-

forms. Permutation experiments are conducted on both perfect trees (powers of 2 minus 1 for

BSTs and vEBs; and powers of (B + 1) minus 1 for B-trees) and non-perfect trees (powers of

10 for all trees; and additionally powers of 2 minus 1 for B-trees). All experimental results are

averages over 10 trials and queries are randomly sampled from a uniform distribution of 1, 2, . . . n,

making all the searches 100% successful. The code used in these experiments can be found at:

https://github.com/algoparc/Tree-Layouts.

2.8.2 Results

Two key features of the GPU architecture make it compelling for this work: (1) GPUs have a

relatively small memory, making the in-place feature of our permutation algorithms crucial; and

(2) GPUs have high memory throughput and many compute cores, making them effective for a

large number of independent search queries. We note that when accessing global memory, coalesced

accesses are recommended to minimize the number of memory transactions. Thus by using B = 32,

each thread in a warp will accesses consecutive memory locations resulting in O(1) global memory

transactions.

Recall that we use our modified van Emde Boas layout (Section 2.7.3), rather than the van Emde

Boas layout. While each of our algorithms provides a high degree of parallelism, synchronization
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and communication overheads can significantly degrade GPU performance. Due to this reason,

we assign each thread to a query and have threads execute independently of each other. For the

B-tree layout, in order to access each node of B = 32 elements in a coalesced manner, each warp is

assigned to a query and warp-level communication primitives are utilized to coordinate the search.

Figure 2.6 (respectively Figure 2.7 and Figure 2.8) plots the average permutation time versus

the input size, for the K40 (respectively Quadro M4000 and RTX 2080 Ti). For all three GPU

platforms, the general consensus is that the modified van Emde Boas cycle-leader approach is

the fastest permutation algorithm. This is expected since the vEB algorithm has the lowest I/O

complexity. On the K40 and Quadro M4000 GPUs, both the B-tree cycle-leader and BST involution

approaches are competitive until the BST involution algorithm shows a sharp increase in runtime

for N > 229 − 1 elements. Similar to our CPU platform, the BST involutions and BST hybrid

permutations show a significant runtime increase for non-perfect trees.

Figure 2.9 (respectively Figure 2.11 and Figure 2.13) shows the average time to perform 1

million queries on each search tree layout and binary search on a sorted array versus the input size,

for the K40 (respectively Quadro M4000 and RTX 2080 Ti). It is interesting to see that the query

performance varies depending on the GPU platform used. On all GPU platforms, B-tree querying

results in the fastest runtime for N > 228−1 on the K40 and Quadro M400 and N > 223−1 on the

RTX 2080 Ti. On the K40 and Quadro M4000, BST querying outperforms mvEB querying; however

on the RTX 2080 Ti, mvEB querying outperforms BST querying for N ≥ 224 − 1. Furthermore,

on the K40 and Quadro M4000 GPUs, a large increase in runtime is observed for N > 229− 1. For

this reason, we measure the total runtime of permuting and performing Q queries on one perfect

tree and one non-perfect tree for N ≤ 229 − 1 and similarly for N > 229 − 1.

Figure 2.15, Figure 2.16, and Figure 2.17 shows the combined runtime of permuting and querying

each search tree layout with N = 100 million elements on the K40, Quadro M4000, and RTX 2080

Ti, respectively. Figure 2.18, Figure 2.19, and Figure 2.20 shows the combined runtime of permuting

and querying each search tree layout with N = 229 − 1 elements on the K40, Quadro M4000, and

RTX 2080 Ti, respectively. Figure 2.21, Figure 2.22, and Figure 2.23 shows the combined runtime of

permuting and querying each search tree layout with N = 100 million elements on the K40, Quadro

M4000, and RTX 2080 Ti, respectively. And lastly, Figure 2.24, Figure 2.25, and Figure 2.26 plot

the combined runtime for N = 230 − 1 elements on the K40, Quadro M4000, and RTX 2080 Ti,

respectively. Table 2.8.2 summarizes the number of queries for which it becomes worthwhile to

permute and query on the respective search tree layout (compared to an equal number of binary

search queries). For non-perfect trees (N = 100 million and N = 1 billion), we see a significant

increase in the percentage of queries needed for the BST layout, mainly due to the high cost

of permutation. For N = 100 million on the K40, the mvEB layout is never worth the cost of

permuting because binary search is faster than querying the mvEB layout until N ≥ 227 − 1.

Overall, for all input sizes, the B-tree layout results in the lowest number of queries needed on
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the K40 and Quadro M4000 GPUs, as it has both the fastest permutation and query runtimes.

However, on the RTX 2080 Ti, the mvEB is the best performing layout, due to it having the fastest

permutation runtime and second fastest query runtime. We note that for a large number of queries

on the RTX 2080 Ti, we expect the better query performance of the B-tree layout to eventually

overcome the faster permutation runtime of the mvEB layout.

Layout K40 Quadro M4000 RTX 2080 Ti

BST 34 million (34% of N) 47 million (47% of N) 83 million (83% of N)

B-tree 13 million (13% of N) 20 million (20% of N) 23 million (23% of N)

mvEB — 44 million (44% of N) 13 million (13% of N)

Layout K40 Quadro M4000 RTX 2080 Ti

BST 62 million (11.55% of N) 65 million (12.11% of N) 293 million (54.58% of N)

B-tree 45 million (8.38% of N) 55 million (10.24% of N) 119 million (22.17% of N)

mvEB 127 million (23.66% of N) 106 million (19.74% of N) 50 million (9.31% of N)

Layout K40 Quadro M4000 RTX 2080 Ti

BST 71 million (7.1% of N) 53 million (5.3% of N) 936 million (93.6% of N)

B-tree 14 million (1.4% of N) 14 million (1.4% of N) 194 million (19.4% of N)

mvEB 20 million (2% of N) 32 million (3.2% of N) 103 million (10.3% of N)

Layout K40 Quadro M4000 RTX 2080 Ti

BST 62 million (5.77% of N) 62 million (5.77% of N) 596 million (55.51% of N)

B-tree 14 million (1.3% of N) 15 million (1.4% of N) 217 million (20.21% of N)

mvEB 19 million (1.77% of N) 32 million (2.98% of N) 96 million (8.94% of N)

Table 2.2: Number of queries needed for it to be beneficial (compared to an equal number of
binary search queries) to perform each of the search tree layout permutations on each of our GPU
platforms with N = 100 million (first table), N = 229 − 1 (second table), N = 1 billion (third
table), and N = 230 − 1 (fourth table). On the K40 and Quadro M4000, the B-tree layout has the
lowest number of queries needed; while on the RTX 2080 Ti, the modified van Emde Boas (mvEB)
layout beats both the B-tree and BST layouts.

2.9 Conclusion

Implicit search tree layouts can improve search query performance by exploiting locality of reference

and, consequently, cache efficiency. However, given initially sorted input, permuting it into a search

tree layout requires extra space and can be costly, thereby bringing into question the usefulness of
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Figure 2.6: Average time to permute a sorted array using each permutation algorithm on the
NVIDIA K40. The graph is displayed on a log-log scale.

implicit search tree layouts in memory-constrained environments and/or when few search queries

need to be performed.

In this chapter we present parallel in-place algorithms for permuting a sorted array into popular

search tree layouts. Our algorithms exhibit the following features which make them exceptionally

practical: 1) they operate in-place, making it possible to permute inputs that occupy all available

space; 2) they are efficient in parallel, allowing the use of many-core architectures; and 3) our

cycle-leader algorithms are I/O-efficient, resulting in implementations that utilize the cache hier-

archy effectively. This work underscores the importance of I/O-efficiency when designing parallel

algorithms for modern manycore hardware, such as GPUs. The development of efficient memory

layouts, beyond searching, provides fertile ground for future research.
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Figure 2.7: Average time to permute a sorted array using each permutation algorithm on the
NVIDIA Quadro M4000. The graph is displayed on a log-log scale.

Figure 2.8: Average time to permute a sorted array using each permutation algorithm on the
NVIDIA GeForce RTX 2080 Ti. The graph is displayed on a log-log scale.
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Figure 2.9: Average time to perform 1 million queries on each search tree layout and binary search
on a sorted array on the NVIDIA K40. The graph is displayed on a linear scale to emphasize the
logarithmic shape of the querying.

Figure 2.10: Average time to perform 1 million queries on each search tree layout and binary
search on a sorted array on the NVIDIA K40. The graph is displayed on a log-log scale to see the
comparison of results between different array layouts.
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Figure 2.11: Average time to perform 1 million queries on each search tree layout and binary
search on a sorted array on the NVIDIA Quadro M4000. The graph is displayed on a linear scale
to emphasize the logarithmic shape of the querying.

Figure 2.12: Average time to perform 1 million queries on each search tree layout and binary search
on a sorted array on the NVIDIA Quadro M4000. The graph is displayed on a log-log scale to see
the comparison of results between different array layouts.
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Figure 2.13: Average time to perform 1 million queries on each search tree layout and binary search
on a sorted array on the NVIDIA GeForce RTX 2080 Ti. The graph is displayed on a linear scale
to emphasize the logarithmic shape of the querying.

Figure 2.14: Average time to perform 1 million queries on each search tree layout and binary search
on a sorted array on the NVIDIA GeForce RTX 2080 Ti. The graph is displayed on a log-log scale
to see the comparison of results between different array layouts.
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Figure 2.15: Combined time to permute and query each layout on the NVIDIA K40 with N = 100
million elements. The fastest permutation algorithm is used for each tree layout.

Figure 2.16: Combined time to permute and query each layout on the NVIDIA Quadro M4000
with N = 100 million elements. The fastest permutation algorithm is used for each tree layout.
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Figure 2.17: Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with
N = 100 million elements. The fastest permutation algorithm is used for each tree layout.

Figure 2.18: Combined time to permute and query each layout on the NVIDIA K40 with N = 229−1
elements. The fastest permutation algorithm is used for each tree layout.
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Figure 2.19: Combined time to permute and query each layout on the NVIDIA Quadro M4000
with N = 229 − 1 elements. The fastest permutation algorithm is used for each tree layout.

Figure 2.20: Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with
N = 229 − 1 elements. The fastest permutation algorithm is used for each tree layout.
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Figure 2.21: Combined time to permute and query each layout on the NVIDIA K40 with N = 1
billion elements. The fastest permutation algorithm is used for each tree layout.

Figure 2.22: Combined time to permute and query each layout on the NVIDIA Quadro M4000
with N = 1 billion elements. The fastest permutation algorithm is used for each tree layout.
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Figure 2.23: Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with
N = 1 billion elements. The fastest permutation algorithm is used for each tree layout.

Figure 2.24: Combined time to permute and query each layout on the NVIDIA K40 with N = 230−1
elements. The fastest permutation algorithm is used for each tree layout.
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Figure 2.25: Combined time to permute and query each layout on the NVIDIA Quadro M4000
with N = 230 − 1 elements. The fastest permutation algorithm is used for each tree layout.

Figure 2.26: Combined time to permute and query each layout on the NVIDIA RTX 2080 Ti with
N = 230 − 1 elements. The fastest permutation algorithm is used for each tree layout.
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CHAPTER 3
A PARALLEL PRIORITY QUEUE FOR SINGLE-SOURCE

SHORTEST PATHS

Single-source shortest paths (SSSP) is a fundamental graph problem that has applications in

many domains. Let G = (V,E) be a directed graph consisting of |V | = n vertices and |E| = m non-

negative weighted edges. Given a source vertex v ∈ V , the SSSP problem asks to find the minimum

weight path from v to all other reachable vertices u ∈ V . In the sequential setting, the two classical

solutions are Dijkstra’s algorithm [35] and Bellman-Ford [9, 44]. Both take an iterative approach,

where vertices are labeled with a tentative distance from the source vertex (initially set to −∞)

and are iteratively updated throughout execution. The difference in the algorithms comes in the

order in which edges are processed. In each iteration of Dijkstra’s algorithm, the outgoing edges

of the minimum distance vertex, which has not been visited yet, are processed. Hence, Dijkstra’s

algorithm (using a Fibonacci heap) uses O(m + n log n) total operations. In contrast, Bellman-

Ford performs O(nm) total operations as all edges are processed in each iteration. Consequently,

Bellman-Ford is easily parallelizable and is able to additionally compute shortest paths on graphs

with negative edge weights.

In the parallel setting, a work-efficient algorithm with fast parallel runtime (e.g., o(n)) is yet

to be developed. Instead, numerous parallel algorithms have been proposed that sacrifice work-

efficiency for increased parallelism. Typically, these algorithms are designed to take advantage of

specific properties of a particular class of graphs (e.g., random graphs, planar graphs, etc.).

The current state-of-the-art implementations of SSSP on GPUs are variations of the Delta-

stepping algorithm of Meyer et al. [80], which has been proven to run well on graphs with random

edge weights, “small” maximum vertex degrees, and “small” maximum shortest path lengths. In

this work, we focus on graphs with sufficiently large diameter and degrees. We present a paral-

lelization of the cache-oblivious bucket heap of Brodal et al. [15] and buffer heap of Chowdhury

and Ramachandran [22] and adopt it for GPU architectures. Using the resulting heap, we imple-

ment a parallel variant of Dijkstra’s algorithm and compare it to the state-of-the-art GPU SSSP

implementations.

3.1 Preliminaries

3.1.1 Single-Source Shortest Paths

In the parallel setting, the Single-Source Shortest Paths (SSSP) problem suffers from the transi-

tive closure bottleneck [64]. Thus, finding an algorithm that is work-efficient (i.e., the same work

complexity as Dijkstra’s algorithm) with o(n) runtime on an arbitrary graph remains an important

open problem. As a result, many alternative parallel SSSP algorithms have been proposed for
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specific classes of graphs.

For planar graphs with integer edge weights between 0 and k, Klein and Subramanian [70]

solve SSSP in O(polylog n log k) parallel time using n processors. Subramanian et al. [100] show

that planar layered directed graphs can be decomposed using one-way separators that results in

an SSSP algorithm with O(log3 n) parallel runtime using n processors. Träff and Zaroliagis [102]

use a region decomposition of a planar directed graph and show that for 0 < ε < 1
2 , their SSSP

algorithm has O((n2ε + n1−ε) log n) depth and O(n1+ε) work. Atallah et al. [5] present a O(log2 n)

depth and O(n log n) work SSSP algorithm for planar layered directed graphs.

Chaudhuri and Zaroliagis [21] consider directed graphs with constant treewidth (a measure

of how “close” the graph is to a tree) and use a O(log2 n) depth and O(n) work preprocessing

stage that allows the computation of the SSSP with path length ` in O(α(n) log n) depth and

O(`+ α(n) log n) work1.

For directed graphs with negative integer weights lower bounded by some integer −k, Cao et

al. [18] present a parallelization of Goldberg’s algorithm [52] that solves SSSP in n5/4+o(1) log k

depth and Õ(m
√
n log k) work, with high probability2.

Crauser et al. [25] divide Dijkstra’s algorithm into phases and show that on random graphs

with random edge weights, the algorithm has O(n
1
3 log n) depth and O(m+n log n) work with high

probability3 on a CRCW PRAM. Meyer et al. [80] introduce the Delta-stepping algorithm, where in

each iteration, the outgoing edges of vertices within a distance interval of width ∆ are processed. For

an arbitrary graph with random edge weights, maximum degree d, maximum shortest path distance

L, and ∆ = Θ
(
1
d

)
; the Delta-stepping algorithm has a parallel depth of O(dL log n + log2 n) and

total work of O(n+m+ dL log n) on average.

For undirected graphs, Spencer and Shi [97] first compute the k nearest neighbors of every

vertex in O(log n log k) depth and O(nk2 log n log k + m) work and use this information to solve

SSSP in O(nk log n) depth and O((m+nk) log n) work. Blelloch et al. [12] combine the approaches of

Spencer and Shi [97] and Meyer et al. [80] for undirected (k, ρ)-graphs, which are graphs where every

vertex can reach its ρ closest neighbors in k or fewer edges traversed. Their SSSP algorithm has

O(knρ log n log ρL) depth and O(km logm) work. The authors additionally provide a preprocessing

stage that transforms any undirected graph into a (1, ρ)-graph with at most nρ additional edges in

O(ρ log ρ) depth and O(m log n+ nρ2) work.

Considering approximate solutions on undirected graphs, Cohen [23] defines a (d, ε)-hop set

of a graph, which augments the graph with new edges such that the shortest path, consisting

of at most d edges, in the new graph has a distance within (1 + ε) of the shortest path in the

original graph. Let ε0 > 0 be a fixed constant, Cohen presents a randomized algorithm that

constructs a (O(polylog n), O(1/polylog n))-hop set with O(n1+ε0) edges and uses it to solve the

1α(n) is the inverse Ackermann function
2Õ hides polylogarithmic factors that may be present in the standard O notation
3For some constant c > 0, the probability is at least 1− n−c
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approximate shortest path problem from s different sources using O(mnε0 + s(m + n1+ε0)) work

and polylogarithmic parallel runtime. Building on this work, Elkin and Neiman [37] devise an

alternate randomized construction of a (O(1), O(1/polylog n))-hop set with O(n1+ε0 log n) edges

that is used to improve the parallel runtime of the approximate shortest path problem. And in

2019, Elkin and Neiman [38] present a randomized construction of a (O(1), O(1/polylog n))-hop

set with O(n1+ε0 log∗ n) edges.

Within the context of GPUs, Harish et al. [57] showed that a GPU implementation of Bellman-

Ford outperforms a sequential CPU approach. More recently in 2014, Davidson et al. [31] exper-

imentally evaluated several GPU implementations of SSSP. Notably, a variation of Bellman-Ford,

called Workfront Sweep, and an implementation of the Delta-stepping algorithm of Meyer et al. [80],

called Near-Far. Workfront Sweep uses a heuristic that seeks to reduce the amount of work per-

formed in each iteration of Bellman-Ford by only processing edges outgoing from vertices whose

tentative distances were updated in the previous iteration. Let W be the average weight of edges

in the graph, d′ be the average degree in the graph, and w be the number of threads in a warp of

a GPU. The Near-Far implementation uses ∆ = W ·w
d′ and only two buckets (the “near” and “far”

buckets). Experiments were conducted on 8 different graphs and results showed that the Near-Far

implementation provides performance gains on 6 graphs with low diameter and degree (5 out of

the 6 graphs have random edge weights). Building on the Workfont Sweep approach, Busato and

Bombieri [17] provide a variation of Bellman-Ford that additionally classifies edges based on the

operations needed to process the edge (e.g., whether an atomic operation is needed). In 2016,

Wang et al. [107] introduced the Gunrock library that contains an implementation of the Near-Far

approach and showed that on graphs with low degree and random edge weights between 1 and 64,

their implementation outperforms both CPU and GPU libraries for SSSP. Lastly in 2021, Wang

et al. [105] improved on the Near-Far approach by using a heuristic that periodically changes the

∆ value, adding a dynamic memory allocator to allow for the use of multiple buckets, and using a

designated group of threads to manage the coordination of work.

3.1.2 Priority Queue

Dijkstra’s algorithm for solving SSSP relies on an efficient priority queue to find the vertex with

the minimum tentative distance that has not been visited yet. Formally, the priority queue ADT

is defined over a collection of elements, Q, where each element e consists of a value and priority,

i.e., e ∈ Q = (val, p). For each element e, we define e.val and e.p to be the value and priority,

respectively. The ADT supports the following operations:

� extractMin removes and returns the element in Q with the smallest priority, i.e., e ∈ Q
such that e.p = min

ei∈Q
ei.p

� update(e) adds new element e = (val, p) to Q, and if there exists an e′ = (val, p′) with the
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same value in Q, then remove e′ (so that it is replaced by e)4

� delete(e) removes e from Q if it is contained in Q

There are many data structures defined that implement the priority queue ADT, including

various types of heaps [15, 16, 22, 24, 34, 47, 48]. We note that many other data structures, including

binary search trees or sorted arrays, can be used as priority queues, though they provide additional

functionality and are therefore not as efficient when performing only the above operations. Though

not considered part of the standard priority queue ADT, in this work we additionally consider the

BulkUpdate(U) operation that, given a set of elements U , performs Update(e) for each e ∈ U . In

each iteration of Dijkstra’s algorithm, all outgoing edges of the current minimum distance vertex are

processed, resulting in a set of new (shorter) tentative distances. The BulkUpdate(U) operation

is used to update the tentative distances of these vertices in a single efficient operation, thereby

allowing efficient processing of graphs with large degrees.

Several fundamental priority queue data structures provide tradeoffs between simplicity and

performance (e.g., binary heaps, Fibonacci heaps [48], pairing heaps [47], etc.). However, these

heaps are inherently sequential and operations on heaps cannot be easily parallelized. Thus, several

priority queues have been developed to expose parallelism [16, 34, 59, 60, 95]. Brodal et al. [16]

presents a structure that performs all standard priority queue operations in constant time and

logarithmic work in the PRAM model. Hübschle-Schneider et al. [59] design a randomized parallel

priority queue that supports BulkUpdate on up to d elements in O(1 + log d) parallel time, in a

parallel distributed memory model (i.e., processors communicate over an interconnection network).

To our knowledge, all existing parallel priority queue data structures are not cache-efficient, and

as such may not perform well on GPUs or other parallel systems that rely on locality of reference

to achieve peak performance. While not inherently parallel, in the context of the External Memory

or cache-oblivious models, the cache-oblivious bucket heap [15] and buffer heap [22] structures

achieve sub-constant amortized time operations when the block size, B, is sufficiently large (see

Section 1.3.2 for a definition). Since there are no parallel, cache-efficient priority queue structures,

few works have considered using priority queues on GPUs: He et al. [58] present a priority queue

that achieves a speed up factor of 30 over sequential execution; and Baudis et al. [6] demonstrate

that for small queues of up to 500 items, simple circular buffers outperform tree-based queues when

evaluated on discrete event simulation and A∗ search.
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Time I/O Complexity Total I/Os
Data structure ExtractMin BulkUpdate ExtractMin BulkUpdate n

d
BulkUpdates

Seq. Bucket
Heap [15]

O(logn) O(d logn) O
(

1
B

log n
B

)
O
(

d
B

log n
B

)
O
(

n
B

log n
B

)
Parallel Prio.
Queue [16]

O(1) O(1) O(1) O(1) O(n log n
d

)

Bulk Parallel
Prio. Queue [59]

O(1 + log d) O(1 + log d) - - -

This work O(1 + log d) O(1 + log d) O
(

log (n/d)
pB

+ 1
B

)
O
(

d log (n/d)
pB

+ d
B

)
O
(

n
B

log n
d

)
Table 3.1: Comparison of priority queue operations in different sequential and parallel models:
n is the number of input elements, d ≤ n is then maximum number of elements supported by
BulkUpdate, p is the number of processors, and B is the width of data transfers to external
memory. The right-most column shows the total number of I/Os when performing n

d BulkUpdate
operations, each consisting of d updates. (We note that the Bulk Parallel Priority Queue [59] is
designed in a parallel distributed memory model, hence, does not include I/Os to external memory.)

3.2 Contributions

We present the parallel bucket heap, denoted parBucketHeap, an I/O efficient parallel pri-

ority queue designed for GPU architectures supporting the BulkUpdate operation. Using the

parBucketHeap, the number of I/Os performed for a sequence of BulkUpdate operations is

significantly reduced compared to the current best data structures (see Table 3.2). The BulkUp-

date operation is particularly useful when the parBucketHeap is used to solve the SSSP problem

using Dijkstra’s algorithm, as batches of update operations are performed when the vertex being

processed has multiple outgoing edges.

We use the parBucketHeap to implement a parallel version of Dijkstra’s algorithm, de-

noted parDijsktra. Both parBucketHeap and parDijsktra are implemented using CUDA

C/C++ [87]. Experiments are conducted on 2 NVIDIA GPUs: an RTX 2080 Ti and a Quadro

M4000. We compare the performance of parDijsktra to the current state-of-the-art SSSP GPU

implementations: Gunrock [107] and Asynchronous Dynamic Delta-Stepping (ADDS) [105]. Our

results show that for sufficiently dense graphs with large diameter (n = 30, 000 vertices and diam-

eter n − 1), parDijsktra using the parBucketHeap has a peak speed up of 2.8 and 12 over

Gunrock and ADDS, respectively, on the RTX 2080 Ti; and a peak speed up of 5.4 over Gunrock

on the Quadro M4000 (ADDS does not support the Quadro M4000).

The paper is organized as follows: in Section 3.3 we provide an overview of the sequential bucket

heap and present our parBucketHeap data structure; in Section 3.4 we analyze the parBuck-

etHeap in the CREW PRAM and PEM models; in Section 3.5 we provide implementation details

and experimental results; and lastly, in Section 3.6 we conclude with a brief summary.

4In this work, we assume that updates only decrease priority. However, this assumption can be removed by adding
a timestamp to each element when it is inserted into the structure; and when deleting duplicate entries, the most
recent timestamp is kept.
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· · ·

· · · · · ·

B0 S0

B1 S1

S2B2

Below are all ≥ p0

update/deleteextractMin

Fill(B1)

|Bi| = 22i+1 |Si| = 22i

· · ·
Empty(S1)

Figure 3.1: Illustration of the sequential bucket heap structure of Brodal et al. [15]. updates and
deletes are inserted into S0, while extractMins are removed from B0. Empty(Si) empties Si
into Si+1, Fill(Bi) fills Bi from Bi+1, while pi is maintained at each level to ensure the heap
property between levels.

3.3 Bucket Heap

The parallel bucket heap is a parallelization of the cache-oblivious bucket heap of Brodal et al. [15]

and buffer heap of Chowdhury and Ramachandran [22]. In this work, we follow the naming conven-

tions and presentation of the bucket heap, thus, we first provide a general overview of the sequential

bucket heap.

3.3.1 Sequential Bucket Heap

The bucket heap is a hierarchical data structure, where each level consists of a bucket and a signal

buffer. We note that elements are always stored in sorted order by value (not priority) in each

bucket and signal buffer. Figure 3.1 illustrates the sequential bucket heap structure and shows the

relationship between elements stored at each level. Elements inserted into the bucket heap (via

Update operations) are moved into the top level’s signal buffer; and elements removed from the

bucket heap (via ExtractMin operations) are taken from the top level’s bucket. For any given

level, if its signal buffer becomes sufficiently full (e.g., at least half full), then it is emptied into

the bucket on the same level and overflow elements are merged into the next (lower) level’s signal

buffer. And if the bucket becomes too empty (e.g., at least half empty), then it is filled with the

smallest priority elements from the next (lower) level’s bucket and signal buffer.

Formally, a bucket heap storing n elements has q = dlog4 ne + 1 levels, where for each level

i ∈ {0, 1, . . . , q−1}, the maximum capacity of the i-th level’s bucket, denoted Bi, and signal buffer,

denoted Si, is 22i+1 and 22i, respectively. The bucket heap maintains the invariant that for all j > i,

all elements in Bi have a smaller (or equal) priority than all elements in Bj . This ensures that if B0

is non-empty and S0 is empty, then B0 will contain the minimum priority element in the structure.

Therefore, if this condition is satisfied, ExtractMin can simply remove and return the minimum
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priority element in B0. Furthermore, as long as S0 is kept non-full, Update(e) can simply insert e

into S0. Delete operates similar to Update using an element with a special priority value, DEL,

that moves down the structure, removing elements with matching key values.

The bucket heap transfers elements between levels via the Empty and Fill operations. The

Empty(Si) operates as follows: (1) scan Bi to find the element with maximum priority, denoted

pi; (2) merge elements in Si with Bi; (3) for any elements with duplicate values, remove those with

larger priority; and (4) all elements e such that e.p > pi are merged into Si+1. If the resulting

number of elements in Bi is too full (i.e., there are too many elements with e.p ≤ pi) then pi is

updated so that |Bi| = 22i+1 and the elements with priorities larger than pi are merged into Si+1.

Updating the priority of an existing element is accomplished when elements with duplicate values

are found and the element with larger priority is removed (elements with special delete priorities,

DEL, are also applied this way). Since lists are stored sorted by value, elements with duplicate

values are stored next to each other and can be removed with a scan. If the number of elements in

a bucket Bi fall under the minimum size (e.g., half full), Fill(Bi) is called, which empties Si into

Bi and fills any remaining space in Bi with elements from level (i+1). This is accomplished by: (1)

calling Empty(Si); (2) if Bi is non-full and Si+1 is non-empty, then Empty(Si+1) is called; and (3)

if Bi is non-full, then Bi is filled with the smallest priority elements in Bi+1. All of these operations

are performed via scans of contiguous arrays, leading to O
(
1
B log n

B

)
amortized I/O complexity of

the ExtractMin, Update, and Delete operations of the sequential bucket heap.

3.3.2 Parallel Bucket Heap

We parallelize the sequential bucket heap by using parallel variants of Empty and Fill; and

allowing non-adjacent levels to execute in parallel. Additionally, we increase the maximum capacity

of every bucket and signal buffer by a factor of d, hence, |Bi| = d · 22i+1 and |Si| = d · 22i. When U

is sorted by value, a BulkUpdate(U) of up to d elements can be efficiently performed by simply

inserting all updates into S0. By increasing the capacity of all buckets and signal buffers, we

decrease the total number of levels of the bucket heap to q =
⌈
log4

n
d

⌉
+ 1.

For ease of exposition, we combine the Empty and Fill operations into a single operation,

Resolve (Algorithm 1). Let ` be the maximum non-empty level of the parallel bucket heap. The

Resolve(i) operation empties Si and fills Bi, leaving Si empty and Bi full (unless i = `). Our

description of the Resolve operation in Algorithm 1 is high-level and the subroutines Merge,

DeleteDuplicates, and Select can be implemented in different ways, depending on the desired

level of parallelism, which we discuss in our analysis in the subsequent sections.

Parallel Execution Sequence

Consider a series ofN operations, defined as Op1,Op2, . . . ,OpN , where each operation is ExtractMin,

Update, Delete, or BulkUpdate. In the sequential setting, the bucket heap empties signal
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Algorithm 1 Resolve(i)

Precondition: if i < `, then |Bi| ≥ d · 22i
Precondition: |Si| ≤ d · 22i
Precondition: if i+ 1 < `, then |Bi+1| ≥ d · 22(i+1) + d · 22i
Precondition: |Si+1| ≤ d · 22(i+1) − d · 22i
Postcondition: if i < `, |Bi| = d · 22i+1

Postcondition: |Si| = 0
1: if |Si| > 0 . Empty Si if needed
2: Bi ← Merge(Si, Bi); Si = ∅
3: Bi ← DeleteDuplicates(Bi)
4: num← |{e : e ∈ Bi and e.p ≤ pi}| . Count elements with small priority
5: if num > 22i+1 . Update pi if needed
6: pi ← Select(Bi, 2

2i+1)

7: B′i = {e : e ∈ Bi and e.p > pi} . Move large priority elements to Si+1

8: Bi = {e : e ∈ Bi and e.p ≤ pi}
9: Si+1 ←Merge(Si+1, B

′
i)

10: if |Bi| < 22i+1 and i is not largest non-empty level . Fill Bi if needed
11: Bi+1 ←Merge(Bi+1, Si+1); Si+1 ← ∅
12: Bi+1 ← DeleteDuplicates(Bi+1)
13: pi ← Select(Bi+1, 2

2i+1−|Bi|)
14: B′i+1 ← {e : e ∈ Bi+1 and e.p ≤ pi} . Pull elements up to fill Bi
15: Bi+1 ← {e : e ∈ Bi+1 and e.p > pi}
16: Bi ← Merge(Bi, B

′
i+1)

17: Si+1 ← {e : e ∈ Bi+1 and e.p > pi+1} . Move large priority elements back to Si+1
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Figure 3.2: Illustration of the dependencies when performing a series of operations. Small green
boxes represent operations (extractMin, update, delete, or bulkUpdate) and the remaining
boxes represent Resolves. Dependencies are shown with arrows between boxes. Since resolving
larger levels takes more time, we represent them by wider boxes which are scaled to show that, if
Resolve(0) takes d time then Resolve(i) can take d · 22i time without delaying any operations
(which occur every 5d parallel memory accesses).

buffers and fills buckets as needed. While in the parallel setting, we can proactively perform Re-

solve on different levels of the bucket heap in parallel. Let Resi(k) be the k-th execution of

Resolve(i) during the series of operations.

We define A → B to denote that task B depends on task A being completed in order for

the preconditions of task B to be satisfied. Intuitively, we view the execution of Resolves as a

directed acyclic graph (DAG) where each vertex represents a Resolve operation and each edge is

a dependency. Figure 3.2 illustrates this DAG, where green boxes represent operations, other color

boxes represent Resolves, and the width of each box is the amount of time needed to perform it.

Theorem 20. Let i > 0 and k ≥ 1. If, for every level i, we perform Resolve(i) after every fourth

Resolve(i− 1), then all preconditions are always satisfied, i.e.,

Resi−1(4k)→ Resi(k)

Proof. After Resolve(i) completes, |Si| = 0 and |Bi| = d ·22i+1. Each call to Resolve(i−1) adds

at most d · 22(i−1) elements to Si and removes at most d · 22(i−1) elements from Bi. Hence, after 4

executions of Resolve(i− 1), |Si| ≤ 4d · 22(i−1) = d · 22i and |Bi| ≥ d · 22i+1 − 4d · 22(i−1) = d · 22i.
A similar argument is made for the preconditions on Bi+1 and Si+1.

After each operation, we must perform a Resolve(0) to ensure that the preconditions (S0

is empty and B0 is non-empty) are met for the next operation. Thus, each Opk depends on

Res0(k − 1), i.e., Res0(k − 1) → Opk → Res0(k) ⇒ Res0(k − 1) → Res0(k). Furthermore, recall

that Resolve(i) can modify Bi, Si, Bi+1, and Si+1, therefore, concurrent access to these arrays

need to be avoided during parallel executions of Resolve. In other words, no two consecutive

levels can execute Resolve concurrently, i.e., Resi(k)→ Resi−1(4k + 1).
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3.4 Analysis

3.4.1 PRAM Analysis

Lemma 21. Let D(Ri) be the depth and W (Ri) be the work of Resolve(i). For all i ≥ 0 and

d ≥ 1, D(Ri) = O (max(1, i+ log d)) and W (Ri) = O
(
d · 22i

)
.

Proof. The Resolve operation relies on performing Merge, Select, and DeleteDuplicates on

elements in levels i and i+1. DeleteDuplicates involves identifying and deleting duplicate entries

and compressing the remaining elements into contiguous space, which can be accomplished via a

parallel scan and prefix sum. Hence, Merge, Select, and DeleteDuplicates on n total elements

can be performed with D(n) = O (log n) depth and W (n) = O (n) work [62]. Therefore, D(Ri) =

O (log (|Bi+1|+ |Si+1|)) = O (i+ log d) and W (Ri) = O (|Bi+1|+ |Si+1|) = O
(
d · 22i

)
.

Lemma 22. Let c > 0 be some constant, T (R0) be the time it takes to execute Op(k) and

Resolve(0), and T (Ri) be the time it takes to execute Resolve(i). For any T (Ri) ≤ cd · 22i,
Resi(k) completes execution before time(

5k · 4i − 5 +
1

3
(4i − 1)

)
· T (R0) + T (Ri)

Proof. We know from the dependencies that for k (mod 4) 6≡ 1, Resi(k) cannot start untilResi−1(4k)

finishes execution; and for k (mod 4) ≡ 1, Resi(k) cannot start until Resi−1(4k) and Resi+1((k −
1)/4) finishes execution. Using induction, Resi−1(4k) completes execution before time(

5(4k) · 4i−1 − 5 +
1

3
(4i−1 − 1)

)
· T (R0) + T (Ri−1)

≤
(

5k · 4i − 5 +
1

3
(4i−1 − 1)

)
· cd+

(
cd · 22(i−1)

)
=

(
5k · 4i − 5 +

1

3
(4i−1 − 1) + 22(i−1)

)
· cd

=

(
5k · 4i − 5 +

1

3
(4i − 1)

)
· T (R0)

and Resi+1((k − 1)/4) completes execution before time(
5 ((k − 1)/4) · 4i+1 − 5 +

1

3
(4i+1 − 1)

)
· T (R0) + T (Ri+1)

≤
(

5k · 4i − 5 · 4i − 5 +
1

3
(4i+1 − 1)

)
· cd+

(
cd · 22(i+1)

)
=

(
5k · 4i − 5 · 4i − 5 +

1

3
(4i+1 − 1) + 22(i+1)

)
· cd
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=

(
5k · 4i − 5 +

1

3
(4i − 1)

)
· T (R0)

Therefore, Resi(k) completes execution before time
(
5k · 4i − 5 + 1

3(4i − 1)
)
· T (R0) + T (Ri).

Theorem 23. extractMin, update, delete, and bulkUpdate on up to d elements, has an

amortized parallel depth of O(1 + log d) and O
(
d log4

n
d

)
work.

Proof. From Lemma 22, N operations complete execution before time (5N − 4) · T (R0). On a

machine with infinite processors, T (R0) = D(R0) = O(1 + log d), and the depth is O(N log d) or an

amortized O(1+log d) per operation. Since the parBucketHeap has a total of
⌈
log4

n
d

⌉
+1 levels,

O(log4
n
d ) levels may be active in each step. Hence, for a single processor, T (R0) = W (R0) = O(d),

and the parBucketHeap performs a total of O
(
Nd log4

n
d

)
work or an amortized O

(
d log4

n
d

)
per

operation.

3.4.2 I/O Analysis

To optimize the I/O performance of the parBucketHeap, we set d = O(M), so that S0, B0, and

an additional buffer of size d can always be maintained in a single processor’s internal memory

space. For a single processor, Resolve(i) can be performed using scans of contiguous memory,

hence, Resolve(i) performs O
(
d·22i
B

)
I/Os.

Theorem 24. For 1 ≤ p ≤
⌈
log4

n
d

⌉
+ 1, the parBucketHeap can perform ExtractMin,

Delete and Update using

O

(
log4 n/d

pB
+

1

B

)
amortized parallel I/Os.

Proof. Let p =
⌈
log4

n
d

⌉
+ 1. We assign processor pi to level i of the parBucketHeap. In

particular, processor p0 is assigned to the first level of the heap and it always maintains S0, B0,

and the auxiliary buffer of size d in internal memory. This additional buffer of size d is used as

an intermediate storage space for elements that will be merged into S1 during the next call to

Resolve(0). Hence, the first level of the heap is able to process Θ(d) ExtractMin, Delete

and Update operations in internal memory before calling Resolve(0). We apply the resolution

schedule described in Section 3.4.1, where T (R0) ≤ cd
B is the number of parallel I/Os performed by

Resolve(0). As we perform Θ(d) operations for each Resolve(0), N operations can be performed

using N/d calls to Resolve(0). Thus, Res0(N/d) finishes execution before time
(
5N
d − 4

)
· T (R0).

Therefore, performingN operations takesO
(
N
d ·

d
B

)
= O

(
N
B

)
parallel I/Os; orO

(
1
B

)
per operation.

Let 1 ≤ p <
⌈
log4

n
d

⌉
+ 1. Similar to the first case, we assign processor p0 to the first level

of the heap. The remaining levels are divided equally across the remaining processors, so that

each processor (except p0) maintains O
(
log4 n/d

p

)
levels. In the resolution schedule, each processor
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performs all of the work associated with the levels it is assigned. Therefore, performingN operations

takes O
(
N
d ·

d
B ·

log4 n/d
p

)
= O

(
N
pB · log4

n
d

)
parallel I/Os; or O

(
log4 n/d
pB

)
per operation.

Theorem 25. For 1 ≤ p ≤
⌈
log4

n
d

⌉
+ 1, the parBucketHeap can perform BulkUpdate(U) on

up to d elements using

O

(
d

pB
· log4 n/d+

d

B

)
amortized parallel I/Os.

Proof. From Theorem 24, it follows that N BulkUpdate(U) and Resolve(0) operations finishes

execution before time (5N − 4) · T (R0). Therefore, for p =
⌈
log4

n
d

⌉
+ 1, performing N operations

takes O
(
Nd
B

)
parallel I/Os; or O

(
d
B

)
per operation. And for 1 ≤ p <

⌈
log4

n
d

⌉
+ 1, performing

N operations takes O
(
Nd
B ·

log4 n/d
p

)
= O

(
Nd
pB · log4 n/d

)
parallel I/Os; or O

(
d
pB · log4 n/d

)
per

operation.

3.5 Experiments

3.5.1 Implementation Details

From the analysis performed in Section 3.4.1, the parBucketHeap is able to support a large

number of threads in the PRAM model. However, the parallel I/O performance (in Section 3.4.2)

relies on a relatively small number of processors, 1 ≤ p ≤
⌈
log4

n
d

⌉
+ 1 (i.e., at most 1 processor

per level of the parBucketHeap), due to a single processor needing to maintain the first level

of the heap in internal memory. This restriction of processors in the PEM model can be an issue

in traditional many-core architectures (e.g., multi-core CPU systems), however, the thread and

memory hierarchy of GPUs allows us to harness both the parallelism shown in the PRAM analysis

and I/O efficiency shown in the PEM analysis. As all I/Os performed in the parBucketHeap are

scans of contiguous memory locations, we are able to schedule warps such that warps belonging to

the same thread block access contiguous blocks of w elements. Hence, we map each thread block

consisting of tw threads (or t warps) to a single PEM processor (where shared memory is used as

the internal memory space) and use a block size of B = tw.

At the start of execution, all thread blocks are launched onto the GPU and execute Empty(Si)

and Fill(Bi) as needed throughout the course of the program. Because CUDA C/C++ only pro-

vides hardware synchronization primitives between threads within a thread block (i.e. intra-block

synchronization), synchronization between threads across thread blocks (i.e., inter-block synchro-

nization) can only be performed via software implemented synchronizations. Past implementations

of software synchronizations between thread blocks [50, 108, 109] show that variations of busy-wait

(i.e., spin locks) can be used to communicate synchronization information (e.g. the number of

available resources or the number of thread blocks that have reached the synchronization point).
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We use a similar approach, where each thread block (i.e., level of the parBucketHeap) has a

designated global memory location that is used to signal the particular thread block to execute

Empty(Si) and/or Fill(Bi). Hence, a single thread per thread block can be used to continuously

check this memory location until it has been set to a particular value. To avoid deadlocks, this

approach requires that all thread blocks are able to be concurrently scheduled onto the GPU. A

simple way to ensure this is to never launch more thread blocks than there are SMs.

As shown in the psuedocode of Resolve(i) (Algorithm 1), implementing Empty(Si) and

Fill(Bi) requires using parallel subroutines: Merge, PrefixSums, and Select. We use the

implementation of Merge provided in the Thrust library [88] and the implementation of Prefix-

Sums provided in the CUB library [89]. We could not find a high-performance GPU implementation

of Select, hence, we instead use the implementation of RadixSort provided in the CUB library

(which trivially allows us to find the k-th smallest priority in an array after it is sorted). These

parallel subroutines are called from each thread block using CUDA dynamic parallelism.

The parBucketHeap is used to solve the SSSP problem using a parallel variant of Dijkstra’s

algorithm, denoted parDijsktra. Given a graph with n total vertices and maximum degree

d, we perform n rounds where in each round: (1) the minimum distance vertex, denoted u, is

extracted from the parBucketHeap; (2) all outgoing edges (u, v) are relaxed in parallel; and (3)

all edges (u, v) that resulted in a shorter distance to v are inserted into the parBucketHeap via a

BulkUpdate operation. This algorithm can be implemented using parallel scans and PrefixSums

(on a maximum of d elements). To reduce the number of BulkUpdate operations, we set the

maximum update batch size to be equal to d.

3.5.2 Methodology

We experimentally compare the performance of parDijsktra to the state-of-the-art SSSP GPU

implementations, Gunrock [107] and Asynchronous Dynamic Delta-Stepping (ADDS)5 [105], both

of which are GPU implementations of the Delta-stepping algorithm. Meyer et al. [80] proved that

for an arbitrary graph with random edge weights, the performance of the Delta-stepping algorithm

is a function of the maximum degree d and maximum shortest path length L of the input graph.

Moreover, past experimental work [17, 31] showed that the performance of previous implementations

of Delta-stepping on GPUs degrade on sufficiently dense graphs with large diameters (i.e., the

number of edges in the maximum shortest path). In this work, we demonstrate that using the

parallel cache-efficient parBucketHeap in a parallel variant of Dijkstra’s algorithm provides a

suitable implementation for solving SSSP on GPUs for such graphs. Therefore, our experiments

are conducted on graphs with sufficiently large degrees and diameter.

We generate 5 random directed acyclic graphs (DAGs) containing n = 30,000 vertices with

diameter and maximum shortest path distance of L = n − 1. For 1-indexed vertices (i.e., vertices

5The ADDS library does not support compute capability 5.2
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are identified via integers 1, 2, . . ., n), we generate the random graphs with m ≥ n − 1 edges in

two stages. In the first stage, the shortest paths (and diameter) are created such that for each

i ∈ {1, 2, . . . , n − 1}, edge (i, i + 1) with weight 1 is inserted into the graph. Afterwards, the

remaining (m − n + 1) edges are generated randomly with the following constraints: edges are

distributed uniformly across the vertices i ∈ {1, 2, . . . , n − 1}, such that vertex i has a maximum

degree of (n − i); and if edge (u, v) is generated, then its weight is set to (2 · (u − v)) to ensure

that the shortest paths (and diameter) of the graph remains unchanged. Using these generated

random graphs, the depth and work of the Delta-stepping algorithm becomes O(dn log n+ log2 n)

and O(n+m+dn log n), respectively, in the average case. In comparison, parDijsktra (using the

parBucketHeap) has a parallel depth of O(n(1 + log d)) and O
(
n+m+ dn log n

d

)
work, when

running on the generated random graphs.

All code is compiled using CUDA C/C++ 11 and experiments are performed on 2 NVIDIA

GPUs: an RTX 2080 Ti (compute capability 7.5), containing 4,352 physical processors distributed

across 68 SMs, 11 GB of global memory, and 96 KiB of unified L1 cache and shared memory per

SM; and a Quadro M4000 (compute capability 5.2), containing 1,664 physical processors distributed

across 13 SMs, 8 GB of global memory, and 96 KiB of shared memory per SM. All runtime

experiments are conducted on each of the generated input graphs, where for each graph, 10 trials

are conducted. The average runtime across all trials (for all input graphs) are reported.

3.5.3 Runtime Results

Figure 3.5.3 and Figure 3.5.3 plots the average runtime of each of the SSSP algorithms across

all generated random DAGs, compared to the number of edges in the input graph. Since edges

are distributed uniformly in the generated random DAGs, as the number of edges increase, the

maximum (and average) degree of the input graph also increases. Additionally, as the impact of

I/O efficiency on overall runtime is pronounced on large input sizes (i.e., a large number of edges),

we expect the parDijsktra using the I/O efficient parBucketHeap to perform well on these

inputs.

Results show that on the RTX 2080 Ti, parDijsktra is faster than Gunrock and ADDS

once the number of edges in the input graph exceeds 80 million edges and 100 million edges,

respectively. And on the Quadro M4000, parDijsktra is faster than Gunrock once the the number

of edges in the input graph exceeds 40 million edges. Furthermore, we find that while the ADDS

implementation is faster than Gunrock for less than 80 million edges, its performance degrades

significantly compared to Gunrock for graphs with a larger number of edges. On the RTX 2080

Ti, we observe a peak speedup of 2.8 compared to Gunrock and a peak speedup of 12 compared to

ADDS, on the graphs with 300 million edges and 450 million edges, respectively. The peak speedup

of parDijsktra compared to Gunrock on the Quadro M4000 is 5.4, occurring at 200 million edges.

We note that on the Quadro M4000, Gunrock was unable to run on the graphs with 450 million
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Figure 3.3: Average runtime (in seconds) on the generated random DAGs with n = 30 thousand
vertices and diameter L = n on a RTX 2080 Ti.

edges, due to an out-of-memory error.

3.6 Conclusion

In this chapter, we present the parallel bucket heap, denoted parBucketHeap, a parallel variant

of the cache-oblivious bucket heap [15] and buffer heap [22]. The parallel bucket heap supports

standard priority queue operations: Update, Delete, and ExtractMin, as well as BulkUpdate

of up to d elements. For a maximum of n elements in the parBucketHeap, all operations can

be performed with an amortized depth of O(1 + log d) and O(d log4
n
d ) work in the CREW PRAM

model. To optimize for I/O efficiency, d is bounded by the internal memory size of a processor

(i.e., d = O(M)), resulting in O
(
log4 n/d
pB + 1

B

)
amortized parallel I/Os per Update, Delete,

or ExtractMin operation; and O
(
d
pB · log4

n
d + d

B

)
amortized parallel I/Os per BulkUpdate

operation, in the PEM model.

We implement the parBucketHeap on the GPU using CUDA C/C++ and use it in a parallel

variant of Dijkstra’s algorithm for solving the SSSP problem, denoted parDijsktra. Experimental

results show that on an NVIDIA RTX 2080 Ti and Quadro M4000, the parDijsktra outperforms

the current state-of-the-art SSSP GPU implementations, Gunrock [107] and ADDS [105], on our
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Figure 3.4: Average runtime (in seconds) on the generated random DAGs with n = 30 thousand
vertices and diameter L = n on a Quadro M4000.

generated random DAGs with n = 30, 000 vertices and diameter n − 1. On the RTX 2080 Ti,

we observe a peak speed up of 2.8 and 12 compared to Gunrock and ADDS, respectively; and on

the Quadro M4000, parDijsktra provides a peak speed up of 5.4 compared to Gunrock. This

work highlights the unique architecture of GPUs and how the thread and memory hierarchy can

be leveraged to obtain both I/O efficiency per thread block and a high degree of parallelism.
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CHAPTER 4
WORST-CASE INPUTS FOR PAIRWISE MERGE SORT

The current fastest comparison-based sorting implementation on GPUs is a parallel pairwise

merge sort algorithm (provided in the Thrust library [88]). To achieve fast runtimes, the number

of threads t to sort the input of N elements is fine-tuned experimentally for each generation of

NVIDIA GPUs in such a way that the number of elements E = N/t that each thread accesses in

each merging round results in a small (empirically measured) number of bank conflicts in shared

memory, while balancing the number of global memory accesses and latency-hiding through thread

oversubscription/occupancy.

While some metrics, such as global memory accesses, can significantly dominate the overall

performance of an algorithm (due to its larger latency compared to other memory accesses), for

algorithms that heavily utilize other levels of the memory hierarchy, the corresponding metrics

cannot always be ignored nor should be hidden in the asymptotic analysis. In particular, it has

been shown that for some algorithms, there is a strong correlation between the number of bank

conflicts in the shared memory and the overall runtime of GPU implementations [54, 67, 98].

Unfortunately, analyzing bank conflicts in shared memory can be difficult, especially for algo-

rithms with data-dependent accesses. One approach taken in the past is to design algorithms that

eliminate bank conflicts altogether, known as bank conflict free algorithms [1, 20, 66, 68, 98]. As a

simple example, Dotsenko et. al [36] observed that for a simple parallel scan it is sufficient to pad

the input in shared memory, such that the number of elements that each thread scans is co-prime

with the total number of memory banks. In general, the following result is easy to prove using the

pigeonhole principle:

Lemma 26. Consider a warp of w threads accessing data stored in k consecutive addresses of

memory organized into w memory banks, such that bank i contains all addresses x ≡ i (mod w).

Then there is a set of w (distinct) addresses, access to which will result in min
{⌈

k
w

⌉
, w
}

bank

conflicts.

Lemma 26 provides a simple worst-case bound on the number of bank conflicts for every parallel

access to shared memory. However, depending on the particular algorithm’s access pattern in shared

memory, this bound may be too pessimistic. In particular, the above result does not consider

any dependence between various accesses, which could preclude simultaneous access to the set of

addresses defined by Lemma 26. Instead, a tighter analysis of specific algorithms needs to be

performed to accurately analyze its performance in shared memory.

The work presented in this chapter takes a step in the direction of addressing this lack of

theoretical analysis of bank conflicts in existing algorithms by showing that in the case of the GPU

pairwise merge sort algorithm, the bound of Lemma 26 is indeed asymptotically tight. We show
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that for every choice of E ≤ w, there exists an input permutation on which every warp of w threads

of the pairwise merge sort algorithm is effectively reduced to using at most dw/Ee threads due to

sequentialization of shared memory accesses due to bank conflicts. Our proof is constructive, i.e.,

we are able to automatically construct such permutation for every value of E. Additionally, we

show that such constructed inputs result in up to ≈ 50% slowdown, compared to the performance

on random inputs, on modern GPU hardware.

4.1 Preliminaries

4.1.1 GPU Pairwise Merge Sort

The GPU pairwise merge sort algorithm is based on the GPU Merge Path algorithm [55], which

is a high-performance implementation of pairwise merging on a GPU. Let A and B be two sorted

lists such that |A|+ |B| = n and let t be the total number of threads. GPU Merge Path is divided

into two stages: a partitioning stage and a merging stage. The idea of the partitioning stage is to

identify for each thread i ∈ {1, 2, ..., t} the i-th quantile (i-th group of n/t smallest elements) to

be merged by the i-th thread during the merging stage independently of other threads. By using

the order-statistics of two sorted lists (via mutual binary search), each thread is able to compute

the starting location of its quantile in the A and B lists. Then, in the merging stage, each thread

performs a sequential merge of n/t elements independently of other threads.

Let N be the number of elements and w be the number of threads per warp. The GPU pairwise

merge sort implementation uses the following tuning parameters, which are chosen empirically:

b is the number of threads per thread block and E is the number of elements that each thread

will work on in each merging round, i.e., the total number of threads is chosen to be N/E. The

parameter b is chosen to be a power of two. The algorithm starts with the base case where chunks

of bE consecutive elements are sorted in shared memory in parallel using b threads per chunk, i.e.,

each thread block sorts an independent partition of bE elements. In order to do this, each thread

first sorts E elements in registers via an odd-even sorting network [56]. Then, each thread block

performs a pairwise merge sort using log b merge rounds, where in each round i ∈ {1, 2, ..., log b},
(b/2i) pairs of lists, each of size 2i−1E, are merged via GPU Merge Path using 2i threads.

Once each chunk of bE elements is sorted,
⌈
log N

bE

⌉
pairwise merge rounds are performed, where

in each round i ∈ {1, 2, ...,
⌈
log N

bE

⌉
}, 2i thread blocks work together to perform a pairwise merge

on 2i−1bE elements per list. Thus, each thread block needs to find its quantile of bE elements in

the two sorted lists. These elements will then be merged by the thread block in shared memory,

independently of other thread blocks. Similar to GPU Merge Path, each thread block computes

the starting addresses of its quantile in the two sorted lists via a mutual binary search in global

memory. Then, the thread block proceeds by performing a single round of GPU Merge Path in

shared memory on its bE elements.
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4.1.2 Related Work

Over the years, various sorting implementations for GPUs have been developed such as: pairwise

merge sort [7, 55, 88, 96, 98], multiway merge sort [67, 72], multiway distribution sort [73], shear

sort [1, 98], bitonic sort [90, 91] and radix sort [89, 96]. Recent empirical studies have shown

that the current state-of-the-art comparison-based sorting implementation on GPUs is the pairwise

merge sort implementations available in the Thrust and Modern GPU libraries [67, 79].

Experimental results show that Thrust and Modern GPU perform well on random inputs [67,

79]. However, typical experiments are performed on at most a dozen random inputs with the average

runtime reported (often without any mention of variance or other statistics). For the problem of

comparison-based sorting, out of n! possible permutations, a random sample of only a dozen inputs

represents no statistical significance.

Karsin et al. [65, 67] perform theoretical analysis of the GPU pairwise merge sort algorithm by

computing the number of parallel coalesced accesses in global memory, denoted Ag, and the number

of parallel shared memory accesses (with the number of bank conflicts parameterized), denoted As.

Let P be the number of physical cores on the GPU, β1 be the average number of bank conflicts per

iteration of the mutual binary search (i.e., the partitioning stage), and β2 be the average number

of bank conflicts per iteration of merging (i.e., merging stage). Then

Ag = O

(
Nw

PbE
log2

(
N

bE

)
+
N

P
log

N

bE

)

As = O

(
N

PE
log

(
N

bE

)
(β1 log bE + β2E)

)
Karsin et al. [67] found empirically that for Modern GPU on random inputs, β1 = 3.1 and β2 = 2.2.

The authors show a strong correlation between the number of bank conflicts and the runtime of

Modern GPU for a fixed input size of 108 integer elements. Furthermore, so-called conflict-heavy

inputs are constructed (i.e., inputs that cause a “large” number of bank conflicts) and showed

that these inputs increase the runtime of Modern GPU and Thrust, compared to random inputs.

Unfortunately, these conflict-heavy inputs were constructed manually for two specific software con-

figuration parameters, the comparison of these conflict-heavy inputs with random inputs is only

shown for the GTX 770 (compute capability 3.0), and theoretical analysis of the number of bank

conflicts incurred was not investigated and was left as an open problem. This work addresses this

open problem.

4.1.3 Our approach

Observe that in the bound for the number of parallel shared memory accesses (As) in Section 4.1.1,

the number of accesses in the merging stage is larger than the number of accesses in the partitioning

stage when E ≥ log bE. In practice, this inequality is satisfied for all values of E and b used in
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Thrust and Modern GPU [7, 88]. Therefore, we focus on constructing the worst-case input for the

merging stage.

We consider the pairwise merge problem, where two sorted lists A and B, each of size bE
2 , are

being merged using b threads of the same thread block. We assume that each thread knows the

addresses within A and B from where it will start the merging process (i.e., the partitioning stage

of GPU Merge Path has been performed) and it will read the E elements that it is assigned in the

increasing order of their values.

Memory alignment

To simplify our task, we restrict our attention to a simpler problem: maximizing bank conflicts that

occur within a fixed set of E contiguous memory banks. This is equivalent to a simpler problem

of finding a permutation that maximizes the number of threads synchronously scanning elements

that are located on the chosen E consecutive memory banks. Since we are generating a worst-case

input, this restriction only strengthens our result.

Let s ∈ Zw be the starting memory bank of the chosen E consecutive memory banks.1 Since

execution within a warp is performed in lock-step, we view each merging round as an execution of

E steps or, equivalently, E accesses to shared memory. We say an input element e is aligned (with

respect to the E banks), if e is read in time step j ∈ ZE and is located in bank (s + j) (mod w).

Since a thread is reading its E elements in increasing order of the values, the alignment is simply

a function of the relative order among the E elements being merged by the thread.

General Strategy

Recall from Section 4.1.1 that in each merge round, each thread block finds its partition of bE

elements to merge across 2 sorted lists, A and B; and each thread finds its E elements to merge,

within the bE elements of its corresponding thread block. Thus, when constructing our worst-case

input, we have the freedom to choose the number of elements in the A and B lists for a thread

block, as long as the total number of elements within a thread block equals to bE and the total

number of elements in the A and B lists across all thread blocks is equal. Additionally, within a

thread block, we have the freedom to choose the number of elements in the A and B lists assigned

to a warp, as long as the total number of elements in the A and B lists across all warps in the

thread block is consistent with the total number of elements given to that particular thread block.

In order to consider each thread block independently, we design our input so that each thread

block is always given bE
2 elements from both the A and B lists. For each warp, we decide to give⌈

E
2

⌉
w elements in one list and

⌊
E
2

⌋
w elements in the other list. This choice allows us to fix the

start of the A and B lists for each warp to the 0-th memory bank, as well as allow us to consider

each warp independently (without loss of generalization).

1For any integer c ≥ 1, Zc = {0, 1, 2, ..., c− 1}.
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Formally, we partition a thread block into 2 disjoint sets L and R, such that L and R both

contain b
2w warps. For every warp l ∈ L, we assign

⌈
E
2

⌉
w elements of the A list and

⌊
E
2

⌋
w elements

of the B list. And for warps r ∈ R, we perform the symmetric assignment of
⌊
E
2

⌋
w elements of

the A list and
⌈
E
2

⌉
w elements of the B list.

Ideally, our goal is to generate an input for each warp such that E threads perform a scan

of E consecutive elements starting at memory bank s. Therefore, we design our input such that

every thread performs a scan of one list then the other list, i.e., for some integer 0 ≤ k ≤ E, the

first k elements merged belong to one list and the remaining (E − k) elements belong to the other

list. Furthermore, our inputs are generated with a strategy that ensures that for each thread, only

elements from a single list will start within the E consecutive banks, which makes it clear which

list to scan first. Thus, we can indirectly describe our input by assigning the number of elements

in each list that a particular thread reads.

4.2 Worst-Case Bank Conflict Analysis

Let 1 < E ≤ w and d = gcd(w,E). We consider an arbitrary warp in the merging stage where

n = wE elements reside in shared memory and each thread has performed merge path to find

its independent partition of E elements to merge. Without loss of generality, we assume that

|A| =
⌈
E
2

⌉
w and |B| =

⌊
E
2

⌋
w. We partition the n elements into d subproblems of n′ = wE

d

elements. Without loss of generality, we consider w
d threads,

⌈
E
2d

⌉
w elements of A, and

⌊
E
2d

⌋
w

elements of B.

From Euclid’s Division Lemma 36, there exists unique positive integers q and r such that

0 ≤ r < E and w = qE + r. For i = 1, 2, . . . , Ed − 1, let

si = i
(r
d

)
(mod E/d)

xi =

(
E

d
− si

)
d

yi = si · d

and let S = (ai, bi) be a sequence such that,

ai =

xi if i is even

yi otherwise

bi =

xi if i is odd

yi otherwise.
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We note that from Lemma 43,

d = gcd(w,E) = gcd(E, r)

and from Lemma 44,

gcd

(
w

d
,
E

d

)
= 1

gcd

(
E

d
,
r

d

)
= 1 .

Lemma 27. For any i, j ∈ {1, 2, . . . , Ed − 1} such that i 6= j,

si 6= sj .

Proof. From Lemma 53, there exists a unique inverse for
(
r
d

)
modulo

(
E
d

)
, denoted

(
r
d

)−1
. Assume,

for the sake of contradiction, that si = sj .

=⇒ i
(r
d

)
≡ j

(r
d

)
(mod E/d)

=⇒ i
(r
d

)(r
d

)−1
≡ j

(r
d

)(r
d

)−1
(mod E/d)

=⇒ i ≡ j (mod E/d)

=⇒ i = j .

A contradiction. Hence, si 6= sj .

Lemma 28. For i ∈ {1, 2, . . . , Ed − 1},

E

d
− si = sE

d
−i .

Proof.

E

d
− si =

E

d
−
(
i
(r
d

)
(mod E/d)

)
≡
(
E

d
− i
)(r

d

)
(mod E/d)

= sE
d
−i .
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Lemma 29. For i = 1, 2, . . . , Ed − 2

xi + yi+1 =

r if xi < r ⇐⇒ si >
E
d −

r
d

E + r otherwise

Proof. (Note that xi = r ⇐⇒ i = E
d = 1, therefore, there are only two cases.)

Case 1: Assume xi < r ⇐⇒ si >
E
d −

r
d .

=⇒ si +
r

d
>
E

d

=⇒ si+1 = si +
r

d
− E

d
.

Therefore,

xi + yi+1 =

(
E

d
− si

)
d+ si+1 · d

=

(
E

d
− si + si +

r

d
− E

d

)
d

= r .

Case 2: Assume xi > r ⇐⇒ si <
E
d −

r
d .

=⇒ si +
r

d
<
E

d

=⇒ si+1 = si +
r

d
.

Therefore,

xi + yi+1 =

(
E

d
− si

)
d+ si+1 · d

=

(
E

d
− si + si +

r

d

)
d

= E + r .

Intuitively, the goal is to align each column of w elements so that the number of elements that

are assigned to the threads correspond to the structure of Euclid’s Division Lemma 36 for w and

E,

w = qE + r .

The sequence S provides the order of elements to assign to threads to pad the first r or (E + r)
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elements in each column. Afterwards, q or (q−1) scans of E elements can be performed. Formally,

we construct a new sequence T from S as follows:

1. Insert q tuples of (E, 0) after (a1, b1) = (y1, x1) = (r, E − r)

2. For i = 1, 2, . . . , Ed − 2, after every pair (ai+1, bi+1) such that xi + yi+1 = r, insert q tuples(E, 0) if i is even

(0, E) otherwise.

Otherwise, after every pair (ai+1, bi+1) such that xi + yi+1 = E + r, insert (q − 1) tuples(E, 0) if i is even

(0, E) otherwise.

3. After (aE
d
−1, bE

d
−1), insert q tuples of (E, 0) if E

d − 1 is even; otherwise insert q tuples of

(0, E).

In total, we have inserted 2q + q
(
r
d − 1

)
+ (q − 1)

(
E
d −

r
d − 1

)
tuples and hence,

|T | =
(
E

d
− 1

)
+ q

(r
d

+ 1
)

+ (q − 1)

(
E

d
− r

d
− 1

)
=

(
E

d
− 1− E

d
+
r

d
+ 1

)
+ q

(
r

d
+ 1 +

E

d
− r

d
− 1

)
=
r

d
+ q

(
E

d

)
=
w

d
.

Theorem 30. Using the sequence T to assign elements to the w
d threads in the subproblem of

n′ = wE
d elements, we can align accesses that result in a total of

E2

d bank conflicts, if 1 < E ≤ w
2

1
2

(
E2

d + 2Er
d + E − r2

d − r
)

bank conflicts, otherwise.

Proof. Case 1: 1 < E ≤ w
2 ⇐⇒ q > 1.

Since q > 1, every column ends with (at least) a single scan of E elements (in particular, in shared

memory banks w−E,w−E+1, . . . , w−1), thus, resulting in a total of E
(
E
d

)
= E2

d bank conflicts.

Case 2: w
2 < E ≤ w ⇐⇒ q = 1.

From Lemma 29, we know that there are
(
E
d − 1−

(
E
d −

r
d

))
=
(
r
d − 1

)
pairs that sum up to r and(

E
d −

r
d − 1

)
pairs that sum up to E + r = w Hence,

(
r
d − 1

)
columns end with a single scan of E

elements; and
(
E
d −

r
d − 1

)
columns end with a partial scan of elements.
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Recall that for i = 1, 2, . . . , Ed − 2, xi + yi+1 = E + r = w if xi > r ⇐⇒ si <
E
d −

r
d . Thus,

(xi − r) elements are misaligned in the corresponding column. In total, there are

E
d
− r

d
−1∑

i=1

((
E

d
− si

)
d− r

)
=

E
d
− r

d
−1∑

i=1

((
E

d
− r

d
− si

)
d

)
= d+ 2d+ 3d+ . . .+

(
E

d
− r

d
− 1

)
d , since 0 < si <

E

d
− r

d

= d

E
d
− r

d
−1∑

i=1

i

= d

((
E
d −

r
d

) (
E
d −

r
d − 1

)
2

)

=

(
E − r

2

)(
E

d
− r

d
− 1

)
=

1

2

(
E2

d
− Er

d
− E − Er

d
+
r2

d
+ r

)
=

1

2

(
E2

d
− 2Er

d
− E +

r2

d
+ r

)
misaligned elements.

Therefore, there are a total of

E2

d
− 1

2

(
E2

d
− 2Er

d
− E +

r2

d
+ r

)
=

1

2

(
E2

d
+

2Er

d
+ E − r2

d
− r
)

bank conflicts.

(We note that for d = E =⇒ r = 0, we misalign 1
2

(
E2

d −
2Er
d − E + r2

d + r
)

= 1
2 (E − E) = 0

elements.)

For the symmetric case, where the subproblem of n′ = wE
d elements contains

⌊
E
2d

⌋
w elements

of A and
⌈
E
2d

⌉
w elements of B, the symmetric strategy is used where the sequence T is used with

tuple values switched. Therefore, combining all d subproblems together results in a total ofE2 bank conflicts, if 1 < E ≤ w
2

1
2

(
E2 + 2Er + Ed− r2 − rd

)
bank conflicts, otherwise.
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Figure 4.1: Visualization of the constructed worst case inputs for a single warp for w = 12 threads
per warp. The left figure shows the inputs for E = 5 (i.e., coprime) and the right shows E = 9
(i.e., not coprime). Cells are numbered with the thread that accesses the element. In both figures,
the elements residing in the last E memory banks are aligned to cause bank conflicts when threads
load its subsequences into registers. Red cells correspond to the accesses that contribute to the
worst case number of bank conflicts.

4.3 Experimental Results

4.3.1 Methodology

We perform our experiments on 2 NVIDIA GPUs: a Quadro M4000 (compute capability 5.2), which

contains 1664 physical processors across 13 SM’s, 8 GB of global memory, and 96 KiB of shared

memory per SM; and an RTX 2080 Ti (compute capability 7.5), which contains 4352 physical

processors across 68 SM’s, 11 GB of global memory, and 96 KiB of unified L1 cache and shared

memory per SM (configured at runtime to be either 32 KiB of L1 cache and 64 KiB of shared

memory, or vice versa)2.

We use the Thrust library included with the CUDA 10.1 toolkit, which defines the software

parameters of E = 15 and b = 512 for the Quadro M4000. However, the software parameters

are not explicitly defined for the RTX 2080 Ti and by default it uses the parameters defined for

compute capability 6.0, which is E = 17 and b = 256. For these software parameters, each thread

block requires 17 KiB of shared memory space, thus, 3 thread blocks (768 total threads) using a

total of 51 KiB of shared memory space (13 KiB unused) can be resident on each SM. Compared

to E = 15 and b = 512, each thread block uses 30 KiB of shared memory space, which results in

2GB = 109 B and KiB = 210 B
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2 resident thread blocks (1024 total threads) using a total of 60 KiB of shared memory space (4

KiB unused). As the RTX 2080 Ti can support up to 1024 resident threads per SM, the latter

parameters provides 100% theoretical occupancy while the former parameters provides only 75%

theoretical occupancy. Therefore, we expect E = 15 and b = 512 to outperform E = 17 and

b = 256. In our experiments we use both of these parameters for the RTX 2080 Ti.

The Modern GPU library defines E = 15 and b = 128 for the Quadro M4000 and, similar to

Thrust, does not explicitly define parameters for the RTX 2080 Ti. Hence, we run experiments

using the same two sets of parameters as in our Thrust experiments.

All experiments are performed on 4-byte integers with the average over 10 runs being re-

ported. Runtimes are recorded using cudaEventRecord and bank conflict counts are gathered

via NVIDIA’s provided profilers. Specifically, for the Quadro M4000, nvprof is used to record

both shared ld bank conflict and shared st bank conflict with the sum of these two metrics

providing the total number of bank conflicts; and for the RTX 2080 Ti, nv-nsight-cu-cli is used

to record the l1tex data bank conflicts.sum metric. The test harness program for Thrust is

compiled with the -03 optimization flag and the test harness program for Modern GPU is compiled

with its provided Makefile.

4.3.2 Results

Figure 4.2 shows both the Thrust and Modern GPU throughput results for their respectively defined

software parameters on the Quadro M4000. We find that the constructed worst-case inputs cause

a peak slowdown of 50.49% (occurring at 7,864,320 elements) and 33.82% (occurring at 62,914,560

elements) for Thrust and Modern GPU, respectively. Overall, we have an average slowdown of

43.53% and 27.3% for Thrust and Modern GPU, respectively. Moreover, as expected, Thrust

outperforms Modern GPU for both random and constructed worst-case inputs.

Figure 4.3 and Figure 4.4 shows the throughput results for both software parameters in Thrust

and Modern GPU, respectively, on the RTX 2080 Ti. We find that for E = 15 and b = 512, the

constructed worst-case inputs cause a peak slowdown of 42.43% (occurring at 31,457,280 elements)

and 42.62% (occurring at 3,932,160 elements) for Thrust and Modern GPU, respectively. The

average slowdown is 33.31% and 35.25% for Thrust and Modern GPU, respectively. For E =

17 and b = 256, the constructed worst-case inputs cause a peak slowdown of 22.94% (occurring

at 35,651,584 elements) and 20.34% (occurring at 285,212,672 elements) for Thrust and Modern

GPU, respectively. The average slowdown is 16.54% and 12.97% for Thrust and Modern GPU,

respectively.

On the RTX 2080 Ti, results from both Thrust and Modern GPU confirm that for random

inputs, E = 15 and b = 512 provide increased performance over E = 17 and b = 256. However, it

is interesting that for the constructed worst-case inputs, the opposite is true: E = 17 and b = 256

outperforms E = 15 and b = 512. This results in a much larger slowdown for E = 15 and b = 512
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Figure 4.2: Throughput results for both Thrust and Modern GPU on the Quadro M4000. Thrust
results are in blue and Modern GPU results are in yellow. The solid lines represent the constructed
worst-case inputs and the dashed lines represent random inputs. The x-axis is on a logarithmic
scale.

compared to E = 17 and b = 256. To investigate this, we compare the runtime per element and

the bank conflicts per element for both software parameters (Figure 4.5 shows this comparison for

Thrust). We find that the relative performance of the number of bank conflicts per element predicts

the relative performance of the runtime per element. In other words, there is indeed a correlation

between the runtime and the number of bank conflicts. Moreover, as we expect, the number of

bank conflicts per element shows logarithmic growth; and while there is some noise from the base

case, we also see logarithmic growth in the runtime per element.

4.4 Conclusion

In this chapter we showed that for every value of 1 < E ≤ w, there exists an input that reduces the

effective parallelism of each warp on the GPU from w down to dw/Ee due to memory contention in

shared memory. This translates into non-trivial slowdown on such inputs in practice. One natural

question that might arise from this work is: the constructed worst-case input is a very specific

permutation and, thus, is very unlikely to occur with high frequency in real world inputs. So why

should we care about the worst-case performance? This is a philosophical question that can be

addressed from several aspects:

1. Every undergraduate algorithms course teaches that we should analyze algorithm runtimes on
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Figure 4.3: Throughput results for Thrust on the RTX 2080 Ti. The blue lines represent parameters
E = 15 and b = 512 and the yellow lines represent the parameters E = 17 and b = 256. The solid
lines represent the constructed worst-case inputs and the dashed lines represent random inputs.
The x-axis is on a logarithmic scale.

the worst-case inputs. Why should we ignore such analysis for GPU algorithms? Moreover,

such analysis might lead to the discovery of better algorithmic techniques on GPUs.

2. The goal of this paper was to prove the existence of a single permutation that asymptotically

matches the pessimistic bound of Lemma 26 for the parallel pairwise merge sort algorithm.

However, observe that our construction can actually produce a family of permutations, as

many of the elements in the non-aligned w − E memory banks can be permuted without

affecting the total number of bank conflicts.

3. We could relax our requirement for an absolute worst-case and produce a permutation that

has slightly fewer bank conflicts than our constructed permutation. Therefore, there are many

more permutations that still incur a significant number of bank conflicts.

4. Observe that the runtimes on the worst-case inputs represent an extreme end of the possible

runtime variance. With the constructed inputs causing an average slowdown of ≈ 43% and

≈ 33% on a Quadro M4000 and a RTX 2080 Ti, respectively, the possible variance in runtime

is quite significant.

A better question to ask is: can we analyze the expected number of bank conflicts for a given

algorithm, for a specific input distribution? This seems to be a very difficult problem for any non-
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Figure 4.4: Throughput results for Modern GPU on the RTX 2080 Ti. The blue lines represent
parameters E = 15 and b = 512 and the yellow lines represent the parameters E = 17 and b = 256.
The solid lines represent the constructed worst-case inputs and the dashed lines represent random
inputs. The x-axis is on a logarithmic scale.

trivial data-dependent algorithm. Understanding how such data dependencies can be modeled so

we can apply standard randomized analysis techniques is an interesting open problem. We hope

that the analysis presented here will act as the first step in this direction.
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Figure 4.5: Runtime (in nanoseconds) per element and bank conflicts per element for Thrust on
the RTX 2080 Ti. The top figure displays the data with the x-axis on a logarithmic scale, to clearly
show each individual data point. While the bottom figure displays the data without data points
shown and with the x-axis on a linear scale in order to emphasize the resulting logarithmic shape
of the curves. In both figures, the solid lines represent the runtime (in nanoseconds) per element
and the dashed lines represent the bank conflicts per element.
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CHAPTER 5
BANK CONFLICT FREE DIVIDE-AND-CONQUER

ALGORITHMS

In this chapter, we show that we can eliminate all bank conflicts for a large class of algorithms,

known as balanced two-way divide-and-conquer algorithms, with virtually no overhead. Given an

input array of size n, a typical (sequential) divide-and-conquer solution reduces the problem to two

recursive calls on equal-sized subarrays and a scan of the array either to define the two subarrays or

to combine the answers of the recursive call. If the scan of the array can be implemented efficiently

in parallel in T (n) time, such solutions are easily amenable to parallelization by executing the

recursive calls in parallel resulting in O(T (n) log n) overall parallel time. For example, in case

of the classical mergesort, given t threads, merging of two sorted arrays A and B, each of size

n/2, can be implemented in parallel by identifying t pairs of contiguous subarrays Ai and Bi,

|Ai|+ |Bi| = n/t, such that the sorted Ai ∪Bi form a contiguous subarray in the sorted output of

A∪B. The identification of the i-th pair Ai and Bi is an order statistic that can be implemented by

the i-th thread independently of other threads via a mutual binary search on A and B in O(log n)

time and merging of Ai and Bi can be implemented by the i-th thread sequentially in O(n/t)

time. A large number of problems fall into this algorithmic framework, e.g., sorting algorithms

(mergesort, quicksort), median and order statistics, plane sweep in 2 dimensions (e.g., convex hull,

line segment intersections, closest pair), offline construction of augmented tree data structures (e.g.,

k-d trees, interval trees, segment trees), and many more.

In the context of GPUs, balanced two-way divide-and-conquer algorithms have been used to

solve problems such as sorting [55], graph processing [31, 74], sparse matrix multiplication [77,

78, 110], list intersections [46], suffix array construction [106], and join operations for relational

databases [94]. In these implementations, the identification of the i-th pair of subsequences Ai and

Bi is an order statistic that can be found by the i-th thread independently of other threads via a

mutual binary search on A and B in O(log n) time [55]. To reduce the number of global memory

accesses, this procedure is performed in a 2-stage manner: first in global memory, where subse-

quences for each thread block are identified and loaded into contiguous shared memory locations;

and secondly in shared memory, where each thread identifies Ai and Bi. Due to the data-dependent

locations of Ai and Bi in shared memory, naive processing of these elements can result in bank

conflicts. In general, analytically determining the number of bank conflicts on a random input in

this setting is an open problem.

The current state-of-the-art implementation of mergesort on GPUs uses a heuristic of choosing

t such that |Ai| + |Bi| = n/t is coprime with w (the number of banks in shared memory) which

they determined performs better in practice. Once Ai and Bi are identified in shared memory,

the two subarrays are merged from shared memory into registers and transferred back into global
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memory in sorted order. Karsin et al. [67] empirically measured that on randomly chosen inputs,

the average number of bank conflicts per step is a small constant (between 2 and 3). In contrast,

in Chapter 4 we proved the existence of inputs that cause n/t − o(n/t) bank conflicts per step, if

n/t and w are coprime. Note that n/t is the trivial upper bound on the number of bank conflicts.

These inputs were shown to cause a peak slowdown of ≈ 50% in practice, compared to the runtime

on random inputs.

In this chapter, we show that Ai and Bi can be loaded from shared memory into registers,

where elements can then be processed internally, without incurring any bank conflicts and with

minimal overhead. This approach greatly simplifies the shared memory analysis in balanced two-

way divide-and-conquer algorithms, as without bank conflicts, the analysis becomes equivalent to

PRAM. We refer this procedure as the load-balanced dual subsequence gather.1 We demonstrate

experimentally on the case of mergesort, that the runtime using our bank conflict free load-balanced

dual subsequence gather is essentially the same as on random inputs, but holds for all inputs, even

the worst case ones. Therefore, eliminating the slowdowns due to bank conflicts in practice.

5.1 Preliminaries

Memory organized into distributed memory modules are not unique to GPUs, emerging as early

as the 1980s [53]. Such memory design has been modeled using the Distributed Memory Machine

(DMM) [76] and the analysis of the delay, due to congestion on memory modules, of an arbitrary

PRAM algorithm is known as the granularity of parallel memories problem [26, 27, 28, 34, 63, 76,

81, 103]. The DMM can be used to model shared memory accesses on a GPU, because of the natural

mapping of shared memory banks to memory modules of the DMM and threads of a warp to DMM

processors. For a DMM consisting of w memory modules and w synchronous processors, Czumaj

et al. [27] present an access schedule that results in a O(log log logw log∗w) factor delay, with high

probability. In contrast, a naive PRAM implementation can incur a O(w) factor slowdown in the

worst case.

Unfortunately in practice, the overheads associated with the techniques used in these general

approaches, such as universal hashing, randomization, and data replication, make it impractical for

high performance implementations. Alternatively, one can design bank conflict free algorithms [1,

36, 20, 51, 66, 68, 82, 112] directly in the DMM model – dedicated algorithms for specific problems

that guarantee no bank conflicts. Without any bank conflicts, the runtime analysis becomes much

simpler, as it becomes equivalent to PRAM analysis. Compared to standard PRAM approaches,

however, bank conflict free algorithms usually come at a cost of increased overhead, e.g., auxiliary

memory usage [1, 20, 36, 51], increased code complexity [51, 112], higher constant factors [1, 20],

or more overall work [66, 68, 112].

1The inverse procedure can be used to write elements from registers into shared memory in a bank conflict free
manner, i.e., a load-balanced dual subsequence scatter.
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Figure 5.1: Visualization of strided accesses in shared memory with w = 12 (number of shared
memory banks and number of threads in a warp). The left figure depicts bank conflict free accesses
(colored green) resulting from using a coprime stride distance of 5 (gcd(5, 12) = 1). In comparison,
the right figure depicts the worst case number of bank conflicts (colored red) resulting from using
a not coprime stride distance of 6 (gcd(6, 12) = 2). Cells are numbered with its shared memory
index.

The crux of designing bank conflict free algorithms is understanding the mapping of accesses

performed to each of the w shared memory banks. It has been observed in previous work [11, 20,

36, 66] that bank conflicts do not occur when accesses by threads of a warp are separated by a

distance that is coprime with w (i.e., does not share a common divisor with w). Conversely, bank

conflicts do occur when the access stride instead shares a common divisor with w (i.e., not coprime).

Figure 5.1 illustrates this behavior on shared memory with w = 12, using accesses strided by a

distance of 5 (coprime) and 6 (not coprime). Leveraging this observation, researchers have designed

bank conflict free algorithms via padding data, staggering accesses, and/or permuting elements into

an alternate layout. However, in spite of this common design approach, insight into this behavior

has not been fully understood and formalized, leaving researchers to reprove bank conflict free

accesses for each problem considered. As number theory is the perfect tool to discover insights

into integer mappings, we apply this theoretical foundation to clarify and codify this phenomena.

Our analysis in Section 5.2 relies on various number theory results, specifically, we utilize results

related to congruences, the greatest common denominator of two integers (see Definition 39), and

complete residue systems (see Definition 49). For a full review of relevant number theory results,

we refer readers to Appendix A.
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Algorithm 2 Reads |Ai| elements from the A list and |Bi| = E − |Ai| elements from the B list
from shared memory into registers. Let π be a permutation that reverses the order of elements
(described in Section 5.2.1) and ρ performs a circular shift (described in Section 5.2.2).

1: Load-Balanced-Dual-Subsequence-Gather(shmem, items, ai, bi, |Ai|, |Bi|)
2: shmem = ρ(A ∪ π(B)) . Permute elements
3: k = ai (mod E)
4: for j = 0 to E − 1
5: if j − k (mod E) < |Ai|
6: idx = ρ(j − k (mod E) + ai) . Read (j − k (mod E))-th element of Ai
7: else
8: idx = ρ(π(k − j − 1 (mod E) + bi)) . Read (k − j − 1 (mod E))-th element of Bi

9: items[j] = shmem[idx]

5.2 Load-Balanced Dual Subsequence Gather

The load-balanced dual subsequence gather is a bank conflict free algorithm for loading subse-

quences from at most two sequences, from shared memory into register space. Intuitively, it is

a simple algorithm consisting of a permutation and a scan of Ai in ascending order and Bi in

descending order (see Algorithm 2). As mentioned in Section 5.1, we use number theory to prove

bank conflict free accesses, namely we construct complete residue systems modulo w and use various

results related to the greatest common divisor, denoted gcd, of two integers in our proofs.

To explain the basic ideas of our algorithm, in Sections 5.2.1 and 5.2.2, we consider a single

warp with its elements from A and B stored in contiguous shared memory locations. We start

in Section 5.2.1 by considering values of w and E that are coprime and show that by reversing

B and dynamically staggering the scan results in bank conflict free accesses. In Section 5.2.2, we

resolve the bank conflicts caused by strided access using a distance E that is not coprime with w

by performing an additional circular shift of elements in shared memory. Lastly, in Section 5.2.3

we extend our approach to a full thread block, leading to a practical implementation in practice.

Table 5.1 describes the main parameters used throughout this section. We assume that the

number of threads per thread block, u, is a multiple of w, so that there are u
w complete warps in

a thread block. We refer to the subsequences of A and B for a thread block as A and B; and the

offsets of Ai and Bi in A and B as ai and bi, respectively.

5.2.1 Coprime

Accessing elements in shared memory with a stride distance that is coprime, relative to the number

of banks, has been commonly used to obviate bank conflicts. We start by formalizing this pattern

in the context of number theory and show that using a coprime stride distance results in a complete

residue system.
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Table 5.1: Descriptions of the main parameters for the load-balanced dual subsequence gather.

Parameter Description

A Continuous subsequence of A for a thread block
B Continuous subsequence of B for a thread block
Ai Continuous subsequence of A for the i-th thread
Bi Continuous subsequence of B for the i-th thread
ai Offset of Ai in A
bi Offset of Bi in B
u Number of threads per thread block
w Number of banks in shared memory and

the number of threads per warpy
E Number of elements per thread (i.e., |Ai|+ |Bi| = E)
d Greatest common divisor of w and E (denoted gcd(w,E))

Lemma 31. Let j ∈ Z. If d = gcd(w,E) = 1, then Rj = {j + kE : k ∈ Z and 0 ≤ k < w} is a

complete residue system.

Proof. Since |Rj | = w, it suffices to show that for all ra, rb ∈ Rj , if ra 6= rb then ra 6≡ rb (mod w).

(By definition, each element in Z is congruent to some element in Zw = {0, 1, . . . , w−1}. It follows

from ra 6≡ rb (mod w) that there exists a valid mapping between Rj and Zw, and hence, a valid

mapping between Z and Rj .) Assume for the sake of contradiction that ra ≡ rb (mod w). It

follows from Corollary 53, that ra ≡ rb (mod w) =⇒ j + aE ≡ j + bE (mod w) =⇒ a ≡ b

(mod w) =⇒ a = b, since 0 ≤ a, b < w. A contradiction.

Consider an arbitrary warp with its subsequences of A and B stored in contiguous shared

memory locations (A stored first and B stored afterwards). For ease of exposition, we refer to the

local index (and offsets) of elements in shared memory belonging to a warp. Our approach performs

E rounds of shared memory accesses, where in round j ∈ {0, 1, . . . , E − 1}, elements located at

index k ∈ Rj are read into register space. It follows from Proposition 31, that there exists a single

element in Rj that is located in each shared memory bank. To ensure bank conflict free access, it

remains to be shown that in every round j, each thread has exactly a single element to read.

Without loss of generality, consider the elements in A. Since the elements in Rj are separated

by E positions and the number of elements that will be accessed by any single thread in A is at

most E (i.e., |Ai| ≤ E), the elements in Rj that reside in the A list will be read by unique threads.

Accounting for both A and B, at most 2 elements will be read by any single thread in each round

(see Figure 5.2 for an example). To resolve this conflict between A and B, we reverse the order of

the elements in B. Recall that ai + bi = iE and |Ai| + |Bi| = E. The order of elements in the A

list remains unchanged, hence, elements of Ai are read in ascending order in rounds:
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Figure 5.2: Depiction of the read stalls caused by threads in a warp accessing up to 2 elements per
round for w = 12, E = 5, and d = 1 (i.e., coprime) on arbitrary input. Cell numbers correspond to
the thread that performs the access. Elements colored red cause a stall due to threads needing to
access 2 elements in each round.

ai (mod E), ai + 1 (mod E), . . . , ai +Ai − 1 (mod E) .

After reversing the order of elements in the B list, the elements of Bi are now located at indices

{(wE − 1) − bi, (wE − 1) − (bi + 1), . . . , (wE − 1) − (bi + |Bi| − 1)}. Hence, the first element of

Bi is read in round wE − 1 − bi ≡ ai − 1 (mod E) and the last element of Bi is read in round
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Figure 5.3: Shared memory accesses performed by a warp in the load-balanced dual subsequence
gather for w = 12, E = 5, and d = 1 (i.e., coprime) on an arbitrary example input. Elements
belonging to the A list (B list) are colored yellow (blue). Cell numbers correspond to the thread
that performs the access with cells colored green representing bank conflict free accesses.

wE − 1− (bi + |Bi| − 1) ≡ ai +Ai (mod E). Overall, Bi is read in descending order in rounds:

ai +Ai (mod E), ai +Ai + 1 (mod E), . . . , ai − 1 (mod E) .

Therefore, exactly a single element is read in each round by every thread. Figure 5.3 depicts

the accesses performed in each round.
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5.2.2 Not Coprime

In Section 5.2.1 (w and E coprime), Lemma 31 shows that for j ∈ Z, Rj = {j+kE : k ∈ Z and 0 ≤
k < w} is a complete residue system modulo w. However, if d = gcd(w,E) > 1 (w and E are

not coprime), then w/d ∈ Z and every (w/d)-th element in Rj is congruent to each other modulo

w. Let ra, ra+w
d
∈ Rj , ra = j + aE ≡ j + aE (mod w) ≡ j +

(
a+ w

d

)
E = ra+w

d
. Therefore, if E

and w are not coprime then Rj is not a complete residue system modulo w. To solve this issue, we

partition Rj into d disjoint subsets, each consisting of w/d elements. For j ∈ {0, 1, . . . , E − 1} and

` ∈ {0, 1, . . . , d− 1}, let

R
(`)
j =

{
j +

(
`w

d
+ k

)
E : k ∈ Z and 0 ≤ k < w

d

}

and D` =
{
`+ kd : k ∈ Z and 0 ≤ k < w

d

}
.

We show that the elements in each subset R
(`)
j are congruent to the elements in Dj (mod d). Hence,

to construct a complete residue system modulo w, we shift subsets so that each resulting set R′j
contains a single partition that is congruent to a unique D`.

Lemma 32. Let j′ ∈ {0, 1, . . . , d− 1} such that j ≡ j′ (mod d) (i.e., j = qd+ j′ for some q ∈ Z).

Consider the sets R
(`)
j and Dj′.

1. For all ra ∈ R(`)
j , there exists db ∈ Dj′ such that, ra ≡ db (mod w).

2. For all ra, rb ∈ R
(`)
j such that ra 6= rb, ra 6≡ rb (mod w).

Proof. Proof of 1: By definition of the greatest common divisor, Ed ∈ Z. Hence, ra = j+( `wd +a)E =

j + `wE
d + a · Ed · d ≡ j + a · Ed · d (mod w). Thus, there exists a′d ∈ Zw such that 0 ≤ a′ < w

d and

a · Ed ≡ a′ (mod w). If j < d, then ra ≡ j + a′d (mod w) ≡ da′ (mod w). Otherwise, j ≥ d and

there exists q ∈ Z such that j = qd + j′, therefore, ra ≡ qd + j′ + a′d (mod w) ≡ dq+a′ (mod w/d)

(mod w).

Proof of 2: We have that ra = j + ( `wd + a)E ≡ j + a · Ed · d (mod w) ≡ j + a′d (mod w) and

rb = j + ( `wd + b)E ≡ j + b · Ed · d (mod w) ≡ j + b′d (mod w), for some a′, b′ ∈ Zw
d

. Therefore,

it suffices to show that a′ 6≡ b′ (mod w/d). Assume for the sake of contradiction, that a′ ≡ b′

(mod w/d). It follows from Corollary 44, that gcd(wd ,
E
d ) = 1, and hence from Corollary 53, a′ ≡ b′

(mod w/d) =⇒ a
(
E
d

)
≡ b

(
E
d

)
(mod w/d) =⇒ a ≡ b (mod w/d) =⇒ a 6≡ b (mod w/d), since

0 ≤ a, b < w
d . A contradiction.

Observation 33. D =
⋃d−1
`=0 D` is a complete residue system modulo w.

Corollary 34. Let R′j = R
(0)
j +R

(1)
j+1 (mod E)+R

(2)
j+2 (mod E)+. . .+R

(d−1)
j+d−1 (mod E). R

′
j is a complete

residue system modulo w.
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Figure 5.4: Shared memory accesses performed by a warp in the load-balanced dual subsequence
gather for w = 9, E = 6, and d = 3 (i.e., not coprime) on an arbitrary example input. Elements
belonging to the A list (B list) are colored yellow (blue). The red dotted lines seperate partitions
of wE/d = 16 elements, that have been circular shifted by 0, 1, and 2 positions, respectively. Cell
numbers correspond to the thread that performs the access with cells colored green representing
bank conflict free accesses.

Proof. It follows from Lemma 32 that each partition of R′j is congruent to Dj′ . Since R′j is the

union of consecutive indexed partitions (in a circular manner), each partition is congruent to a

unique Dj′ . Therefore, R′j is a complete residue system modulo w.

Lemma 35. Consider the last element in R
(`)
j , denoted a, and the first element in R

(`+1)
j+1 (mod E),

denoted b. The difference (b− a) is (E + 1), if j < (E − 1), and 1 otherwise.

Proof. Case 1 : j < E − 1 =⇒ b− a =
(
j + 1 +

(
(`+1)w

d

)
E
)
−
(
j +

(
(`+1)w

d − 1
)
E
)

= E + 1.

Case 2 : j = E − 1 =⇒ b− a =
((

(`+1)w
d

)
E
)
−
(

(E − 1) +
(
(`+1)w

d − 1
)
E
)

= 1.
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Lemma 35 shows that for 0 ≤ j ≤ E − d, the distance between all elements in R′j is at least E;

and for E − d < j < E, the distance between all elements in R′j is at least E except for a single

pair of neighboring elements (i.e., a distance of 1). Ideally, we want the access pattern to match

the one used in Section 5.2.1, so that the elements in R′j are separated by a distance of exactly E.

By construction of R′j , any element indexed at location k ∈ {0, 1, . . . , wE−1} will be read in round

j ≡ k −
⌊
kd
wE

⌋
(mod E). Notice that for k = ` · wEd , the element indexed at k is read in round

` · wEd −
⌊
` · wEd ·

d
wE

⌋
= ` · wEd − ` ≡ −` (mod E). Furthermore for x ∈ {0, 1, . . . , wEd − 1}, the

element at index (k+x) is read in round x−` (mod E). Intuitively, each partition of
(
wE
d

)
elements

has an access pattern that is circular shifted by ` rounds relative to the access pattern of the 0-th

partition (elements indexed {0, 1, . . . , wEd − 1}). Therefore, we align the accesses to elements in the

`-th partition by performing a circular shift of ` locations. After shifting elements, any element

originally indexed at location k is read in round j ≡ k (mod E). As in Section 5.2.1, to resolve read

conflicts between lists, we additionally reverse the order of the elements in B. Figure 5.4 illustrates

the accesses for values of w and E that are not coprime.

5.2.3 Thread Block

Consider an arbitrary warp v ∈ {0, 1, . . . , uw − 1} in the thread block and let αv and βv be the

index of the first element in the A list and B list for the warp, respectively. Since there are at most

vwE elements from the A list assigned to the previous (v − 1) warps, αv ∈ {0, 1, . . . , vwE − 1}.
We extend the permutation used in Section 5.2.1 to reverse all elements in the B list for the full

thread block. After this reversal, βv = (uwE − 1) − (vwE − αv) = (u − v)wE + αv − 1. Let

|Av|, |Bv| ∈ Z+ be the number of elements in the A and B list assigned to warp v, such that

|Av|+ |Bv| = wE ⇐⇒ |Bv| = wE − |Av|. For warp v, the elements of the A list start in memory

bank αv (mod w) and end in memory bank αv + |Av| − 1 (mod w). And, the elements of the B

list end in memory bank (u−v)wE+αv−1− (|Bv|−1) ≡ αv + |Av| (mod w) and start in memory

bank (u− v)wE + αv − 1 ≡ αv − 1 (mod w).

Therefore, each warp can view the resulting memory layout as wE elements stored in contiguous

memory locations (starting in an arbitrary memory bank). For values of E such that gcd(w,E) > 1

(i.e., not coprime), the permutation ρ is similarly extended where each partition ` ∈ {0, 1, . . . , udw −1}
of
(
wE
d

)
elements are circular shifted by ` (mod d) positions, with accesses in each partition shifted

accordingly. Figure 5.5 illustrates the accesses for a full thread block.

5.3 Experiments

We evaluate the performance of the load-balanced dual subsequence gather by incorporating the

algorithm into the implementation of pairwise mergesort provided in Thrust 1.9.9 [88], which we

refer to as CF-Merge. In our experiments, we compare CF-Merge to the unmodified Thrust merge-
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Figure 5.5: Shared memory accesses performed by a thread block in the load-balanced dual
subsequence gather for u = 18, w = 6, E = 4, and d = 2 (i.e., not coprime) on an arbitrary
example input. Elements belonging to the A list (B list) are colored yellow (blue). The red
dotted lines seperate partitions of wE/d = 12 elements, that have been circular shifted by 0 and 1
positions, respectively. Cell numbers correspond to the thread that performs the access with cells
colored green representing bank conflict free accesses. Note that threads in different warps do not
cause bank conflicts.

sort implementation on both uniform random inputs and the constructed worst-case inputs from

Chapter 4. Recall that in Chapter 4.3, we observed that Thrust uses the software parameters

E = 17 and u = 256, while the parameters E = 15 and u = 512 provides better performance, on

random inputs. This performance difference can be attributed to the corresponding occupancy2,

with E = 15 and u = 512 providing the optimal 100% theoretical occupancy. Likewise, we compare

the performance of these software parameters.

Our implementation of CF-Merge uses the thread block approach described in Section 5.2.3. As

the permutations performed only rely on information on the total size of each list, each thread block

reorders elements during the initial transfer from global memory into shared memory. Furthermore,

because both E = 15 and E = 17 are coprime with w = 32, only the coprime variant is implemented.

Once elements have been read into register space via the load-balanced dual subsequence gather,

2Ratio of active warps to the maximum number of active warps, per SM.
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Figure 5.6: Throughput results (elements per microsecond) for Thrust and CF-Merge on a NVIDIA
RTX 2080 Ti using the constructed worst-case inputs. Thrust results are in yellow and CF-Merge

results are in blue. The short dashed lines represent software parameters E = 15 and u = 512; and
the long dashed lines represent software parameters E = 17 and u = 256. The x-axis is displayed
on a logarithmic scale.

threads process elements internally. In practice, on NVIDIA GPUs using the CUDA compiler,

register memory requires static access as dynamic access to internal data are instead compiled into

local memory space. One solution is to use data-oblivious approaches and in our implementation,

we adopt the odd-even transposition sort [56] provided in Thrust to process elements in register

space.

We conduct experiments using n = {2iE : 16 ≤ i ≤ 26} 4-byte integers on a NVIDIA RTX 2080

Ti featuring 4,352 total physical cores, 11 GB of global memory, and 96 KiB of unified L1 cache and

shared memory (configured to be 32 KiB of L1 cache and 64 KiB of shared memory, or vice versa)

per streaming multiprocessor (SM)3. All code is written using CUDA 11 [87] and compiled with the

-O3 and -use fast math optimization flags. Runtimes are recorded via cudaEventRecord, with

the average across 10 runs being reported. The code used in these experiments can be found at:

https://github.com/algoparc/GPU-CFMerge.
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Figure 5.7: Throughput results (elements per microsecond) for Thrust and CF-Merge on a NVIDIA
RTX 2080 Ti using parameters E = 15 and u = 512. Thrust results are in yellow and CF-Merge

results are in blue. The dashed lines represent the constructed worst-case inputs and the dotted
lines represent uniform random inputs. The x-axis is displayed on a logarithmic scale.

5.3.1 Results

Figure 5.6 shows the throughput results (elements per microsecond) for both software parameters

on the constructed worst-case inputs. Results show that on these inputs, CF-Merge provides an

average, mean, and maximum speedup of 1.37, 1.45, and 1.47 for E = 15 and u = 512; and 1.17,

1.23, and 1.25 for E = 17 and u = 256. This highlights the performance benefits of CF-Merge,

which uses the bank conflict free load-balanced dual subsequence gather, compared to the unmod-

ified Thrust implementation, which on these inputs incurs the asymptotic worst-case number of

bank conflicts. In contrast, on random inputs CF-Merge achieves performance comparable to the

unmodified Thrust, which has been empirically shown previously to incur a small constant number

of bank conflicts (between 2-3) [67]. This illustrates that the runtime overhead associated with

performing the load-balanced dual subsequence gather is insignificant in practice. Overall, these

results validate that CF-Merge obviates the observed slowdown incurred by bank conflicts in shared

memory, thereby providing fast runtimes on all possible inputs. Results for both the constructed

worst-case inputs and random inputs are shown for each software parameter in Figure 5.7 and

Figure 5.8.

3GB = 109 bytes and KiB = 210 bytes.
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Figure 5.8: Throughput results (elements per microsecond) for Thrust and CF-Merge on a NVIDIA
RTX 2080 Ti using parameters E = 17 and u = 256. Thrust results are in yellow and CF-Merge

results are in blue. The dashed lines represent the constructed worst-case inputs and the dotted
lines represent uniform random inputs. The x-axis is displayed on a logarithmic scale.

5.4 Conclusion

In conclusion, this paper addresses the challenges associated with shared memory performance and

the analysis of worst-case scenarios caused by bank conflicts in GPU algorithms. Leveraging the

Distributed Memory Machine and principles from number theory (e.g., Euclid’s Division Lemma,

the greatest common divisor, congruences, and complete residue systems), we demonstrate how to

design bank conflicts free algorithms on GPUs.

Particularly, we showed that it is possible to eliminate all bank conflicts for a class of algorithms

called balanced two-way divide-and-conquer algorithms. Our proposed approach, the load-balanced

dual subsequence gather, eliminates bank conflicts with minimal overhead by efficiently loading data

from shared memory into registers for processing. This approach greatly simplifies shared memory

analysis for these algorithms, as without bank conflicts, shared memory analysis becomes equivalent

to PRAM. We validated our approach on GPU mergesort, with experimental results showing that

we effectively eliminate the slowdowns caused by bank conflicts in practice.

One avenue of future work is to explore the potential impact of using the load-balanced dual

subsequence gather in other balanced two-way divide-and-conquer algorithms. We acknowledge

that the effectiveness of our approach relies on the fast processing of elements in registers, which on
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GPUs are constrained to static access patterns known at compile time. While our implementation

for mergesort utilizes an odd-even sorting network to sort elements in registers, other algorithms

may require novel or sophisticated approaches. Further investigation into the capabilities of compu-

tation in register space (e.g., oblivious algorithms, circuits, and sorting networks) can yield valuable

insights.

Overall, our findings contribute to a deeper understanding of GPU optimization techniques

in shared memory and emphasize the importance of considering additional performance metrics

beyond parallelism and global memory access. By eliminating bank conflicts, we can further enhance

the efficiency of GPU algorithms, leading to faster and more effective high-performance computing

on GPUs. This research opens up new possibilities for improving GPU performance and underscores

the value of considering shared memory performance and worst-case analysis in the design and

implementation of high-performance algorithms on GPUs.
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CHAPTER 6
CONCLUSION

GPUs are highly parallel architectures, featuring thousands of physical cores and low latency

context switching capabilities, thereby allowing the utilization of hundreds of thousands of threads.

However, due to hierarchy of memory units, each with its own latency, bandwidth, and optimal

access requirements, designing and analyzing algorithms on GPUs that result in fast GPU imple-

mentations, in practice, can be a very challenging task.

In this dissertation, we demonstrated the effective use of various classical parallel models of

computation can be used to analyze and design GPU algorithms at various levels of detail, based

on the specific problem requirements and research goals. In Chapter 2 and Chapter 3, we ex-

amined performance metrics at the highest level of detail on the GPU, the degree of parallelism

and the number of accesses to global memory, and utilized the Parallel Random Access Machine

(PRAM) model [62] and the Parallel External Memory model [4], respectively. Chapters 4 and 5

focused on lower-level details, specifically shared memory accesses and bank conflicts, and showed

how the Distributed Memory Machine (DMM) model [76] combined with various number theory

results (e.g., Euclid’s Division Lemma, congruences, greatest common divisor, and complete residue

systems) can be used to analyze bank conflicts in shared memory and to design bank conflict free

algorithms. Importantly, the theoretical design and analysis performed throughout this dissertation

were all validated through corresponding experimental results on modern GPUs. By performing

both theoretical and experimental research, our work establishes a strong connection between the

highlighted parallel models of computation and practical GPU algorithm development.

In summary, this dissertation showcases how classical parallel models of computation can be

used for the design and analysis of efficient GPU algorithms. This approach provides valuable

insights into the performance of GPU algorithms and guides the identification of optimization op-

portunities. Moreover, the correspondence between theoretical observations in our selected models

and experimental results validates the effectiveness and practical relevance and effectiveness of our

approach. By leveraging these parallel models, a deeper understanding of GPU performance factors

can be gained, enabling the development of parallel cache-efficient algorithms for GPUs.

Moving forward, it may be worthwhile to explore other models of computation for analyzing

additional aspects of the GPU. In particular, investigating parallel models that incorporate syn-

chronization between threads at various levels of the thread hierarchy, as well as models that focus

on efficient computation in register space, present promising avenues for future work. By exploring

these areas, additional insights can be gained to aid in the design of algorithms that can effec-

tively utilize the GPU architecture, hence, further enhancing the understanding and development

of high-performance GPU algorithms.
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APPENDIX A
NUMBER THEORY

In this appendix, the proofs for the following results can be found in Andrews [3], with the exception

of Corollary 43 and Corollary 44, which we provide.

Lemma 36. (Euclid’s Division Lemma) For any integers a and b such that b > 0, there exists

unique integers q and r such that 0 ≤ r < b and

a = qb+ r .

Definition 37. Let a, b ∈ Z, such that b 6= 0. We say “b divides a” or “b is a divisor of a” if
a
b ∈ Z, denoted b | a (or b - a otherwise).

Definition 38. Let a, b, c ∈ Z, such that c 6= 0. If c | a and c | b, then c is a common divisor of a

and b.

Definition 39. Let a, b ∈ Z and d ∈ Z+, such that both a and b are non-zero (note that one of a

or b can be zero). We say d is the greatest common divisor of a and b, denoted gcd(a, b), if

1. d is a common divisor of a and b; and

2. any integer c that is a common divisor of a and b is also a divisor of d (i.e., c | d).

Theorem 40. Let a, b ∈ Z, such that both a and b are non-zero (note that one of a or b can be

zero). gcd(a, b) exists and is unique.

Theorem 41. Let a, b, c, d ∈ Z, such that a 6= 0, b 6= 0, and d = gcd(a, b). There exists x, y ∈ Z,

such that

ax+ by = c

if and only if d | c (i.e., d
c ∈ Z).

Definition 42. Let a, b ∈ Z, such that a 6= 0 and b 6= 0. If gcd(a, b) = 1, then a and b are coprime

(also known as relatively prime or mutually prime).

Corollary 43. Let a, b ∈ Z+, such that a ≥ b. Let q, r ∈ Z such that, a = qb+ r.

gcd(a, b) = gcd(b, r) .

Proof. For ease of notation, let d = gcd(a, b). By definition, d | a and d | b, hence, there exists

positive integers x, y such that a = dx and b = dy.

r = a− qb
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= dx− qdy

= d(x− qy) .

Thus, d = gcd(a, b) | r and gcd(a, b) ≤ gcd(b, r). We use a similar argument to show that

gcd(b, r) | a and gcd(b, r) ≤ gcd(a, b). Therefore, gcd(a, b) = gcd(b, r).

Corollary 44. Let a, b ∈ Z and d = gcd(a, b).

gcd

(
a

d
,
b

d

)
= 1 .

Proof. Assume c is a positive common divisor of a and b such that c | ad and c | bd . In other words,
a/d
c ∈ Z+ and b/d

c ∈ Z+. Hence, there exists x, y ∈ Z+ such that a
d = cx =⇒ a = cdx and

b
d = cy =⇒ b = cdy. Thus, cd is a positive common divisor of a and b. Since d is the greatest

common divisor of a and b, c must be equal to 1. Therefore, c = 1 is the greatest common divisor

of a
d and b

d .

Definition 45. Let a, b ∈ Z and m ∈ Z+. We say “a is congruent to b modulo m” or “b is a

residue of a modulo m”, written

a ≡ b (mod m) ,

if m | (a− b) (i.e., there exists q ∈ Z such that a = qm+ b).

Theorem 46. (Congruences are reflexive, symmetric, and transitive.) Let a, b, c ∈ Z and m ∈ Z+.

1. Reflexive: a ≡ a (mod m)

2. Symmetric: if a ≡ b (mod m) then b ≡ a (mod m)

3. Transitive: if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m)

Theorem 47. (Congruences can be correctly added, subtracted, and multiplied.) Let a, b, a′, b′ ∈ Z
and m ∈ Z+, such that

a ≡ a′ (mod m)

and b ≡ b′ (mod m) .

Then

a± b ≡ a′ ± b′ (mod m)

and ab ≡ a′b′ (mod m) .
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Theorem 48. (Cancellation Law.) Let a, b, c ∈ Z and m ∈ Z+. If

ab ≡ ac (mod m)

and gcd(a,m) = 1, then

b ≡ c (mod m) .

Definition 49. Let m ∈ Z+. The set R = {r0, r1, . . . , rm−1} is a complete residue system modulo

m if the following are satisfied:

1. for each i, j ∈ {0, 1, . . . ,m− 1} such that i 6= j,

ri 6≡ rj (mod m)

2. for each n ∈ Z, there exists ri ∈ R such that n ≡ ri (mod m).

Corollary 50. Let m ∈ Z+. The set Zm = {0, 1, 2, . . . ,m− 1} is a complete residue system.

Theorem 51. Let a, b, d, x ∈ Z and m ∈ Z+, such that d = gcd(a,m). The equation,

ax ≡ b (mod m)

has exactly d unique solutions modulo m if d divides b (i.e., b
d ∈ Z) and does not have any solutions

otherwise.

Definition 52. Let a, b ∈ Z and m ∈ Z+. If ab ≡ 1 (mod m), then b is an inverse of a modulo m.

Corollary 53. Let n ∈ Z and m ∈ Z+. If gcd(n,m) = 1, then n has a single unique inverse

modulo m.
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