See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338991661

Potential of machine learning in linking national airborne radiometric data to soil class mapping

Poster · January 2020

DOI: 10.13140/RG.2.2.28334.87362/1

CITATIONS 0	S	reads 69	
6 autho	rs, including:		
	Dave O'Leary National University of Ireland, Galway 7 PUBLICATIONS 0 CITATIONS SEE PROFILE		Pat Tuohy TEAGASC - The Agriculture and Food Development Authority 28 PUBLICATIONS 90 CITATIONS SEE PROFILE
	Owen Fenton TEAGASC - The Agriculture and Food Development Authority 213 PUBLICATIONS 2,361 CITATIONS SEE PROFILE	14	Colin Brown National University of Ireland, Galway 58 PUBLICATIONS 2,195 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

A Pleistocene deposit preserved in deep karst (iCRAG Geohazards and Geoengineering) View project

The impact of biosolids and dairy processing waste on soil and crop quality View project

Potential of machine learning in linking national airborne radiometric data to soil class mapping

<u>Dave O'Leary¹</u> (d.oleary1@nuigalway.ie), P. Touhy², P. Mellender³, O. Fenton³, C. Brown¹, E. Daly¹

¹ Earth and Ocean Science, Ryan Institute GIS centre, School of Natural Sciences, National University of Ireland Galway, Co. Galway, ² Teagasc, AGRIC, Moorepark, Fermoy, Co. Cork, ³ Teagasc, Johnstown Castle, Co. Wexford.

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Introduction:

Accurate maps of soil types at the field scale are required for many environmental and planning applications, from land use management and precision agriculture to drainage schemes and infrastructure development.

The thematic mapping of soil traditionally has been done using in-situ point sample measurements by a core or auger system (Zhang, 2017). The operator then follows a standardised classification system to place the soil sample into groups defined by the national soil classification system This method is slow, costly and subjective depending on the experience of the operator. It is difficult to create maps from point classifications as boundary conditions are rarely sampled.

More recently, the Irish Soil Information System (Irish SIS) used environmental co-variates (temperature, climate, elevation, slope etc.) alongside auger data and historical soil maps to create a national soil map to a scale of 1:250,000 (Creamer, 2018). This however lacks the resolution at field scale and provide only a probability of any one soil group being present at any point location.

Geophysics has the potential to bridge this scale gap by using national airborne datasets combined with high resolution ground surveys (Binley, 2015). This poster highlights a potential methodology using a national airborne radiometric dataset, currently being acquired in the Republic of Ireland, with machine learning classification techniques to map soil within the Great Group classification (See Soils in Ireland Panel) in the Irish SIS.

Irish Soil Information System defines soils in Ireland into:

11 Great Groups (Common Soil forming conditions) 67 Subgroups (sub division of great groups) 213 Series (within a subgroup with similar horizons)

58 Associations (for mapping) Groups of soils that commonly occur together in the landscape. Cannot be used to describe soils in an exact location

Machine Learning Data selection and Methodology:

Figure: Dunleer ACP site with mapped soil class (Teagasc)

Figure: Garryduff bog site with mapped soil class

Figure: Rossmore HSP site with mapped soil class (Teagasc)

ndom training points chosen	
thin mapped areas	

- Data acquired above 180m clearance removed (Beamish,
- 81.1% positive prediction for approx. 1100 training points using weighted nearest neighbour algorithm

Trained Neural **Network for Soil** Classification

• Only 7 of the 11 soil classes are sampled on these 3 sites

• Number of training points per soil class are low and not evenly distributed

	1) Brown Earth	7 Surface-water Gley
0 25 50 Kilometres	Soil Associations 0300a 0650a 0700h 0843f 0960d 1100c 1130a Island 0360a 0660c 0760a 0900a 0960e 1100d 1130b Rock 0360c 0660d 0760c 0900b 1000a 1100e 1150a Tidal marsh 0410a 0660e 0760f 0900f 1000g 1100h 1150b Urban 0410b 0700a 0760f 0900g 1000g 1100h 1150c Water body 05LAK 0700b 0800c 0900g 1000x 1100m 1160a 05MAR 0700c 0800c 0900h 1030a 1100n 1160c 05RIV 0700d 0843b 0920a 1030b 1100a Peat 0500c 0700d 0843b 0920a 1000a 1100a Sand dunes	8 Podzol 9 Brown Podzolic 10 Luvisol 11 Brown Earth

National Airborne Survey:

Figure: Radiometirc Ternary image from GSI showing national Red = Potassium, Green = Thorium, Blue = Uranium

- The Tellus Survey (GSI) is a national airborne geophysical survey
- The data that it collects included Airborne Electromagnetic, Magnetic and Radiometric data
- The Radiometric data is collected approx. every 60m along a flight line and lines are spaced 200m apart
- Radiometric surveys collect gamma radioactive decay for Thorium, Potassium and Uranium in counts per second

Test site locations:

- The Irish Food and Agricultural Authority (Teagasc) operates a variety of field/farm programmes at several scales
- These are the Agricultural Catchment

Figure: Map of Ireland with Teagasc ACP and HSP site locations marked. Test site locations are highlighted

Teagasc ACP sites Teagasc Heavy soil sites

Bord na Mona Peat Bog site

Programme (ACP) at 100's of hectares and the Heavy Soils Programme (HSP) at 10's of hectares

- One ACP (Dunleer Catchment) and one HSP (Rossmore Farm) are used in this initial study
- A third site, Garryduff, a raised peat bog operated by Bord ná Mona was also used

Initial Ground truth:

- In September 2019, fieldwork was undertaken to determine if electrical geophysical methods could be used to identify soil types at the great group level at the Rossmore HSP site
- Electrical resistivity tomography was performed using a Dipole-Dipole array with electrode spacing of 1m, using a roll along method, for total final line length of 111m

Figure: Rossmore Farm with Neural Network Predicted soils and ERT Line

Figure: Rossmore Farm with mapped soils and ERT Line

• Complete ground truth on both farm and catchment scale is planned using a recently funded CMD Mini-Explorer, similar to work

• More data is needed in order to better train the neural networks. Access to all ACP and HSP sites will aid in this training

The predicted soil classes better match the ERT data

- The boundary on the left is moved closer to an obvious change within the ERT data
- Similarly on the right the boundary is moved closer to a potential boundary in the ERT data.

Roinn Cumarsáide, Gníomhaithe ar son na hAeráide & Comhshaoil Department of Communications, Climate Action & Environment	References: Beamish, D., 2013, Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat: Journal of Environmental Radioactivity, v. 115, p. 13-27. Binley, A., S. Hubbard, J. Huisman, A. Revil, D. Robinson, K. Singha and L. Slater (2015). "The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales." Water Resources Research 51(6): 3837-3866. Brogi, C., J. A. Huisman, S. Patzold, C. von Hebel, L. Weihermuller, M. S. Kaufmann, J. van der Kruk and H. Vereecken (2019). "Large-scale soil mapping using multi-configuration EMI and supervised image classification." Geoderma 335: 133-148. Creamer, R., and L. O'Sullivan, 2018, The Soils of Ireland: Cham, Springer International Publishing, Cham. Geological Survey, I. (2019). "Tellus." from https://www.gsi.ie/en-ie/programmes-and-projects/tellus/Pages/default.aspx. Teagasc. (2017). "Agricultural Catchments." from https://www.teagasc.ie/environment/water-quality/agricultural-catchments/. Teagasc. (2017). "Heavy Soils Programme." from https://www.teagasc.ie/crops/grassland/heavy-soils/. Zhang, G. L., F. Liu, and X. D. Song, 2017, Recent progress and future prospect of digital soil mapping: A review: Journal of Integrative Agriculture, v. 16, p. 2871-2885.	Acknowledgements: The PhD project is fully funded by the Irish Research Council The authors wish to thank the landowner at Rossmore farm for allowing access to their land during fieldwork			IRISH RESEARCH COUNCI
		Software used:	GIS Software – QGIS Surface creator – Surfer ERT Inversion – ResIPy + R2 Data reformat and Machine Learning – Matlab 2019a	CC	An Chomhairle um Thaighde in Éirir www.research.ie

completed by Brogi, 2019

Future work:

• Test the application of un-supervised classification (Self Organising Maps etc.)