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Abstract

In this dissertation, three interconnecting research themes in the domain of groundwater

modeling and characterization are explored. The dissertation represents a significant

integration of novel approaches and computational tools for groundwater modeling and

characterization. It not only improves our current understanding but also presents

considerable new directions for future study, making a significant contribution to

groundwater modeling.

Chapter 2 focuses on the development of a distinctive joint-inversion methodology, which

utilizes hydrogeological, self-potential, and magnetotellurics data, to estimate hydraulic

conductivity and electrical resistivity. The proposed technique doesn’t necessitate any

assumptions related to petrophysical relationships and demonstrates a 25% improvement

in the estimation of hydraulic conductivity in comparison to single data-type inversions,

providing crucial insights into regions beyond immediate observation wells.

In Chapter 3, a significant focus is placed on developing a reliable hydraulic conductivity

upscaling tool for high-dimensional groundwater flow models. Recognizing the vital role of

accurately representing hydraulic conductivity at an appropriate scale, the study strived

to develop a computational tool that effectively balances computational efficiency while

preserving key features of the detailed hydraulic conductivity field. The tool, based on

Kitanidis’ (1990) hydraulic conductivity upscaling approach, has the capability to calculate

upscaled hydraulic conductivity values in the tensor form and account for anisotropy.

Rigorous tests were carried out to assess the performance of the tool, and its resilience under
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various flow conditions, providing a reliable resource for high-dimensional groundwater

modeling.

Chapter 4 addresses the development of the PISALE software. This tool is specifically

designed to manage the complexities of groundwater flow processes in Pacific islands that are

marked by dynamic interactions between freshwater and seawater in highly heterogeneous

volcanic rocks. The software integrates advanced mathematical techniques and parallel

programming models to accelerate solutions and offer precision in reproducing freshwater-

seawater interfaces in large-scale coastal aquifers.
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Chapter 1

Introduction

1.1 Background

1.1.1 Groundwater

Groundwater is a critical resource worldwide that plays a vital role in meeting the water

demands of various human activities and contributing to the hydrological water cycle

by providing a significant portion of the world’s freshwater supply. It has been utilized

to support a variety of water demands including urban, industrial, agricultural, and

environmental demands. Climate change will increase the spatiotemporal variability in

water resources and population growth will lead to increased competition for limited water

resources. To address these challenges, there have been considerable efforts to project the

effects of climate change and population changes on water resources (Arnell 1999, 2004;

Haddeland et al. 2014). Groundwater is the water stored underground in the soil and

rock pore spaces and the fractures of rock formations. Therefore, groundwater can lessen

the impacts of climate change on water resources due to the nature of the hydrological

process and storing freshwater subsurface. Vaux (2011) suggested that groundwater

would be an attractive alternative to water shortages and emphasized the importance of

groundwater management. It is critical to understand groundwater distribution and predict

its spatiotemporal changes in the future for the sustainable use of groundwater resources.
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In Hawai‘i State, groundwater provides about 99 percent of domestic water, which

includes potable and non-potable water delivered from public supply and private

wells(Gingerich 2000). Hawai‘i consists of several volcanic islands in the middle of the

Pacific Ocean. Hawai‘i solely relies on precipitation as its source of water and cannot

import water naturally flowing from other states due to its location. Precipitation is mostly

infiltrated in the subsurface through porous volcanic rocks, thus groundwater serves as the

most important water resource and the underlying aquifers act as subsurface reservoirs for

freshwater storage. Unfortunately, groundwater resources are vulnerable to over-extraction,

contamination, and sea-water intrusion (Almasri 2008; Abd-Elhamid and Javadi 2011;

Loáiciga et al. 2012). Concerns about the sustainability of Hawai‘i’s groundwater resources

have grown as the state’s population and economy continue to increase demand for water.

The population of Hawaii has seen a significant increase, rising from 1.21 million in 2010 to

approximately 1.44 million in 2021 (U.S. Census Bureau 2022). Additionally, the number of

annual visitors to Hawaii has also increased, reaching 8.99 million in 2019, compared to 6.84

million in 2012 (Hawaii State Department of Business, Economic Development & Tourism

2021). Bassiouni and Oki (2013) addressed that the decrease in baseflow and streamflow in

Hawai‘i is associated with increasing groundwater withdrawals and decreasing precipitation.

Climate change is one of the crucial factors that influence the water resources of Hawai‘i,

since sea level rise and changes in precipitation patterns may affect the quantity and salinity

of groundwater (Ranjan et al. 2006; Masterson and Garabedian 2007; Werner and Simmons

2009). Groundwater is distributed as a lens-shaped freshwater body on top of the seawater

in the islands as shown in Figure 1.1. The freshwater lens floats on seawater because of

their density difference and its interface is determined by geological features such as lava

rock connectivity. This groundwater resources issue becomes more complicated with the

current drought situation and sea level rise from climate changes (Rozell and Wong 2010;

Kumar 2012; Leeper et al. 2022).
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Figure 1.1: Schematic diagram of a freshwater lens of Hawai‘i.

Drought, an additional aspect related to climate change, amplifies challenges in

groundwater management. Prolonged periods of drought decrease the recharge of the

freshwater lens, reducing its thickness and thus the overall freshwater availability. The

long-term drought conditions with sea level rise will decrease freshwater availability in the

future. An overall decrease in annual rainfall is anticipated in Hawai‘i, which will affect

the sustainability of groundwater recharge (Burnett and Wada 2014). Leta et al. (2016)

assessed the impacts of climate change on the Heeia watershed in Hawai‘i and concluded

that the projected changes, including a 10% decrease in rainfall during the wet season and a

5% increase during the dry season, are the main factors contributing to the overall decrease

in annual water budgets and groundwater recharge, and potentially reducing groundwater

sustainability.

Sea level rise combined with climate change and drought conditions may cause

groundwater inundation and seawater intrusion which implies a degradation of water quality

in Hawai‘i (Rotzoll and Fletcher 2013). Groundwater inundation occurs when rising sea

levels push the underlying seawater upward, causing the freshwater lens to ascend above

3



the land surface. The outcome of the inundation includes flooding of low-lying areas that

were previously unaffected by direct seawater inundation, damaging infrastructure, and

potentially causing some regions uninhabitable (Kreibich and Thieken 2008; Habel et al.

2017).

The quality and sustainability of fresh groundwater supplies in coastal aquifers are

threatened by seawater intrusion, one of the most challenging and pervasive environmental

issues (Hussain et al. 2019). Seawater intrusion is the flow of saline water into

freshwater aquifers near the coast, leading to quantity reduction and quality degradation

in groundwater. Seawater intrusion poses a serious threat to coastal areas because it

can contaminate sources of drinking water and reduce the amount of water available for

agriculture and other uses.

Considerable studies have been conducted to investigate density-driven flow and

transport in aquifers, freshwater-seawater interaction, and seawater intrusion process.

Diersch and Kolditz (2002) explored contemporary methods for modeling variable-density

flow and transport in porous media, model verification weaknesses, and provided examples

that emphasize the need for future research in large-scale, heterogeneous scenarios. Post

(2005) investigated the unique characteristics, common issues, and vulnerability of coastal

aquifers to salinization while exploring how hydrogeology can help develop sustainable

solutions in the face of rising freshwater demand, climate change, and groundwater

contamination. Werner et al. (2013) reviewed the global issue of seawater intrusion,

emphasizing the need for more detailed, real-world measurements and multidisciplinary

studies to address gaps in understanding of transient seawater intrusion processes,

freshwater-seawater interfaces, and the impacts of climate change. Comparing the

last decade to the ten years prior, research on seawater-groundwater interaction within

groundwater sustainability has increased by more than threefold (Elshall et al. 2020).

Despite the remarkable progress in research focused on seawater intrusion and groundwater

sustainability, there remains a critical need for additional interdisciplinary studies that

integrate field observations, advanced modeling, and convenient tools to better understand
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and manage the complex challenges of groundwater resources in coastal regions, particularly

in the face of accelerating climate change impacts.

Long-term changes in coastal groundwater levels from pumping, land-use change, and

sea level fluctuations induce seawater intrusion (Werner et al. 2013). Over-pumping of

groundwater is the major cause of seawater intrusion that is worsened by the sea level rise

(Abd-Elhamid and Javadi 2011). Groundwater withdrawal can lower the water table and

shrink the thickness of the freshwater lens, which makes groundwater vulnerable to seawater

intrusion. The degree of seawater intrusion depends on various factors such as hydraulic

conductivity, pumping rate, recharge rate, and well location (Gingerich 2000). There are

several methods to remedy or reduce seawater intrusions such as well relocation (Dibaj

et al. 2020), physical barriers (Pool and Carrera 2010), artificial aquifer recharge (Shammas

2008), and saline water extraction (Hussain et al. 2019). However, it may be challenging to

purify a whole aquifer from saline water. Once it has been contaminated with seawater, the

water may then no longer be suitable for human consumption or supporting the ecosystem

without significant remediation efforts. This can have serious implications for biodiversity,

potentially threatening a wide variety of species that rely on freshwater habitats. To promise

a sustainable water supply for future generations, effective management and conservation

of groundwater resources are fundamental.

1.1.2 Groundwater Modeling

A groundwater model is a mathematical representation that simulates the complex

behaviors and movements of groundwater within an aquifer system that are dependent

on the system’s hydraulic properties and various factors such as pumping, recharge, and

geological formations (Baalousha 2009; Bear and Cheng 2010; Suckow 2014). It is a

computational tool used by hydrogeologists and engineers to simulate and predict the

movement, distribution, and quality of groundwater over time and space. Therefore, the

groundwater models can be applied to a wide range of purposes, including water resource

management, environmental impact assessment, and contaminant remediation. It can be
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used to predict groundwater availability, taking into account the potential impacts of land

use change and climate change. Additionally, groundwater models are utilized for simulating

complex phenomena, such as seawater intrusion, storm surge, and tidal fluctuation, in

coastal aquifers. The groundwater model can offer useful information and insight into the

behavior of groundwater to decision-makers, engineers, and stakeholders. Groundwater

modeling plays a pivotal role in understanding and managing groundwater resources by

simulating different scenarios and evaluating their potential impacts.

While groundwater modeling provides invaluable insights and predictions for

hydrogeologists, engineers, and decision-makers, it is important to acknowledge the inherent

limitations of groundwater modeling. One major limitation is the requirement for high-

quality and comprehensive data sets to build accurate representations of the subsurface

environment. In practice, due to the cost and time for observation and heterogeneity of

porous media, the availability of observation data is often limited, leading to uncertainty

and inaccuracy in model predictions (Rojstaczer 1994).

Another challenge is the simplification of real-world processes and systems into model

equations, which might not perfectly capture the complexities of groundwater systems

and lead to bias and underestimation of uncertainty (Gosses and Wöhling 2019). This

includes simplification of physical processes like groundwater-surface water interactions,

seawater intrusion, and contaminant transport. Moreover, the spatial and temporal scale

of groundwater models can also pose limitations (Gleeson et al. 2021). Small-scale models

may fail to capture the larger regional impacts, while large-scale models often overlook local

variations and anomalies. Similarly, short-term models might not be sufficient for evaluating

the impacts of climate change, and long-term models can have difficulty with forecasting

uncertainties. Lastly, groundwater models are usually computationally intensive especially

when one needs to simulate multi-scale flow and reactive transport phenomena over a

long period (Hayley 2017; Hunt and Zheng 2012). This leads to further challenges when

conducting parameter calibration with the high-dimensional numerical models required for
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fine-scale simulations since the parameter calibration requires numerous numerical model

runs.

The first procedure of groundwater modeling is constructing a conceptual groundwater

system model with a set of assumptions, including the geometry of an aquifer, the property

of porous media, initial and boundary conditions, the dimension of flow, sources, sinks, etc

based on the currently available knowledge (Bear et al. 1992). The next step in groundwater

modeling is constructing a mathematical model that provides a quantitative description of

the system behavior and expresses the conceptual model using mathematical equations (i.e.,

governing equations). The mathematical model can be categorized as an analytical model or

numerical model depending on how they are solved. The analytical model used for solving

a relatively low dimension solves equations with algebraic or other mathematical methods

to obtain exact solutions. On the other hand, the numerical model uses numerical methods,

such as finite difference, finite volume, and finite element methods, to solve governing

equations that are too complex to be solved analytically.

1.1.2.1 Groundwater Flow Model

The most widely used mathematical groundwater simulation models are groundwater flow,

groundwater tracer transport, and density-driven groundwater flow models if the density

effect of the tracer transport is significant (Wang and Anderson 1995; Bear and Cheng

2010). The groundwater flow model simulates the movement of groundwater flow through

porous media with Darcy’s law and mass conservation. Darcy’s law states the volumetric

groundwater flow rate is proportional to the hydraulic conductivity of porous media and the

hydraulic gradient of groundwater. The groundwater flow equation can be derived from the

mass balance for representative elementary volume in which measurements or properties

are assumed to be able to represent the values of the whole. The groundwater flow equation

can be written as:

Ss
∂h

∂t
= ∇ · (K∇h)− f (1.1)
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where h is hydraulic head [L], Ss is the specific storage [L
−1], K is the hydraulic conductivity

[LT−1], and f is a sink and/or source term [T−1]. Numerous factors in the modeling,

including hydraulic conductivity, hydraulic head, and boundary conditions, can have a

significant impact on the flow of groundwater. In various situations, for example, changes

in pumping and/or recharge rates due to drought, groundwater flow models can be used

to simulate and forecast states of the groundwater system in terms of flow patterns and/or

water table changes.

1.1.2.2 Groundwater Transport Model

The groundwater transport model simulates the movement of contaminants and the

concentration of dissolved chemical substances through the aquifer system. Groundwater

transport models use the advection-dispersion equation to describe the movement of

contaminants or other dissolved substances in groundwater. The advection-dispersion

equation can be expressed as:

∂c

∂t
= ∇ · (D∇c)−∇ · (vc) + qscs +R (1.2)

where c is the concentration of the solute [ML−3], D is diffusion coefficient [L2T−1], v

is groundwater velocity [LT−1], qs is volumetric flow rate per unit volume of aquifer

representing fluid sources (positive) and sinks (negative) [T−1], cs is the concentration of

the source or sink flux for solute [ML−3], and R is a chemical reaction [ML−3T−1]. If multi-

species chemical reaction during solute transport becomes important, advection-dispersion-

reaction equations can be used (Zheng et al. 1999). Konikow and Mercer (1988) categorized

the changes in concentration within the groundwater system as four processes: (1) advection

involves dissolved chemical substances moving with groundwater flow; (2) dispersion occurs

as the chemical substance spread from the main groundwater flow due to the molecular

diffusion or velocity variations between flow paths, i.e., mechanical dispersion; (3) fluid

sources refer to the mixing with solutes that have different concentrations; (4) reactions
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encompass biological, chemical, and physical reactions that affect the concentration of

chemical substances in porous media. Groundwater transport models using the advection-

dispersion equation are designed to describe the contaminants changing processes within

porous media through groundwater flow. Groundwater transport models can be used

to predict the fate and transport of contaminants in groundwater and to evaluate the

effectiveness of different remediation strategies.

1.1.2.3 Density-Driven Groundwater Flow Model

The variable-density groundwater flow model describes the behavior of groundwater under

changing density conditions, for example, groundwater flow in coastal and island aquifers,

as it moves in response to changes in the density of the fluid over time or across space. Two

governing equations, which are groundwater flow and advection-dispersion equations, are

coupled to describe the variable-density groundwater flow (Román-Gutiérrez et al. 2022).

The general form of Darcy’s law is considered to account for the changes in density or/and

concentration of fluids in the mass balance equation. By expanding the gravity term in

Darcy’s law, it is possible to analyze the impact of changes in fluid density on the effects of

gravity (Davies 1989):

q = −k
µ
(∇p+ ρg∇z)

= −k
µ
(∇p+ (ρf +∆ρ)g∇z)

= −K

(
∇hf +

∆ρ

ρf
∇z
) (1.3)

where k is permeability [L2], µ is fluid viscosity[M/LT], p is pressure [M/LT2], hf is

equivalent-freshwater head [L], ρ and ρf are the density of fluid and freshwater [M/L3],

respectively. ∆ρ is the difference between the fluid density and freshwater density. The
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density ρ is generally assumed as a linear function of salinity c and can be expressed as:

ρ(c) = ρf +∆ρ

= ρf +
∂ρ

∂c
(c–c0) ≈ ρf + (ρs–ρf )c

(1.4)

where ρs is the density of seawater, c and c0 are the concentration of fluid and freshwater,

respectively. After the groundwater flow is determined from the groundwater flow model,

the concentration distribution is calculated by solving the advection-dispersion equation,

from which the concentration updated the groundwater velocity in the groundwater flow

model iteratively (Davies 1989; Wagner 1992). Variable-density groundwater flow models

play a crucial role in understanding the groundwater and solute movement in both natural

and man-made systems, including saline aquifers, geothermal reservoirs, and seawater

intrusion in coastal regions(Simmons et al. 2001). Their significance lies in predicting how

changes in temperature, pressure, and salinity affect groundwater resources, which supports

effective and sustainable groundwater management strategies.

1.2 Motivations

1.2.1 Simulating Groundwater Flow and Transport with Adaptive Mesh

Refinement

When using numerical models for the simulation of groundwater flow and transport, the

accuracy and stability of the numerically obtained solutions should be checked before they

are applied in practice (Wang and Anderson 1995; Bear and Cheng 2010; Sun 2013). It

is crucial to assess the model’s numerical solutions against relevant analytical solutions

or observations, allowing for validation of the model’s ability to reflect actual physical

phenomena with precision. Moreover, numerical stability, in simulations involving complex

high-dimensional modeling, high variability in heterogeneous porous media, and long-term

prediction, ensures that the model does not generate erroneous or unstable results due to

numerical artifacts or instabilities. Recognizing possible modeling errors and instabilities
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and selecting appropriate numerical schemes to guarantee stable solutions with reasonable

accuracy is crucial for maintaining the credibility and precision of groundwater models,

which in turn contributes to more informed decision-making in the areas of water resource

management, pollution control, and the protection of groundwater-reliant ecosystems.

Numerical oscillation is one of the commonly observed issues that can degrade the

performance of groundwater flow and transport modeling. This phenomenon creates

non-physical fluctuations or oscillations in simulation outcomes due to inaccuracies or

instabilities in the numerical techniques utilized for solving mathematical equations. In

the context of groundwater modeling, numerical oscillations can be observed especially in

the simulation of solute transport. These oscillations can manifest as unrealistic variations

in concentration distributions. Numerical oscillations can occur due to various factors, such

as the use of a coarse-resolution model grids whose spatial or temporal discretization is

too large to capture plume fronts, or when the numerical method is not appropriate for

the problem being solved. If the chosen spatial or temporal resolution is too coarse or not

well-suited for the specific issue being addressed, numerical oscillations may occur.

To reduce numerical oscillations in groundwater modeling, several approaches can be

proposed, including the application of advanced numerical methods (Putti et al. 1990;

Vasconcelos et al. 2009), adaptive mesh refinement (Berger and Colella 1989; Anderson

et al. 2004), stabilization methods (Tezduyar 1991), and mixed Eulerian-Lagrangian

methods (Neuman 1981). Among many approaches, the mixed Eulerian-Lagrangian method

combines the simplicity of the Eulerian-based fixed domain simulation with the Lagrangian

approach that is effective in high Peclet number regions.

Another important aspect of numerical modeling is execution speed and scalability.

To simulate flow and transport in a large-scale aquifer, computation and storage costs may

become large. Computational speed plays a crucial role in large-scale groundwater modeling

as it influences the feasibility and practicability of running various simulations to understand

different scenarios. Strategies to improve computational speed include optimizing the

implementation of numerical methods (Gao et al. 2022), using high-performance computing
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resources (Abu-El-Sha’r and Rihani 2007), and employing parallel computing techniques to

distribute the computational workload (Verkaik et al. 2021). Furthermore, implementing

efficient algorithms and data structures can also substantially decrease the computation

time and storage requirements (Sahoo et al. 2017; Condon et al. 2021).

Among many techniques to enhance computational efficiency while guaranteeing

numerical accuracy and stability, Adaptive Mesh Refinement (AMR) is an attractive option

to enhance the accuracy and efficiency of the simulation. AMR involves dynamically

adjusting the spatial resolution of the computational grid based on the evolving features

of the solution. The technique focuses on refining the mesh in regions where the solution

exhibits high gradients, sharp interfaces, or complex behavior while maintaining a coarser

mesh in areas with less variation. This approach allows for a more accurate representation

of critical features in the model while reducing the overall computational cost compared

to using a uniformly fine grid throughout the entire domain. However, widely used

groundwater flow and transport models such as MODFLOW (Langevin et al. 2022), SUTRA

(Provost and Voss 2019), and PFLOTRAN (Hammond et al. 2014) have not adopted AMR

capability. Cao and Kitanidis (1999) discussed a high-accuracy computation methodology

for flow in heterogeneous isotropic formations using finite element approximations (dual-flow

formulation) and adaptive gridding. Bekele et al. (2016) suggested that adaptive analysis

using local refinement exhibits optimal convergence rates compared to uniform refinement

when solving two-dimensional groundwater flow problems with various complexities.

Adaptive Mesh Refinement can also mitigate numerical oscillations by providing a

more accurate representation of the problem being examined. By allocating computational

resources to regions with steep gradients or rapid changes, AMR can capture the essential

features of the solution precisely. This improved representation decreases the probability

of numerical oscillations related to coarse spatial discretization, resulting in a more stable

and accurate solution. Moreover, AMR can assist in detecting and addressing potential

instabilities stemming from the interaction between the numerical scheme and the problem’s

unique attributes, thereby further diminishing the likelihood of numerical oscillations. AMR
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enhances the overall precision and reliability of groundwater models (Huang and Zhan 2005;

Kourakos and Harter 2021).

1.2.2 Stochastic Inverse Modeling for Hydraulic Conductivity Estimation

Among various subsurface parameters, hydraulic conductivity is a key parameter in

groundwater modeling, as it governs flow directions, speed, and ultimately chemical

transport with which water can move through porous media such as soils and rocks.

Understanding and accurately representing hydraulic conductivity in a groundwater model

is crucial for predicting the movement of water and contaminants, assessing the availability

of water resources, and managing water resources effectively. Hydraulic conductivity is a

measure of the ability of a porous medium to transmit water under a hydraulic gradient.

It depends on both the properties of the porous medium, such as pore size distribution

and pore space connectivity, and the properties of the fluid, such as viscosity and density

(Mohnke and Yaramanci 2008).

In general, hydraulic conductivity varies over several orders of magnitude, depending on

the geological materials (Bradbury and Muldoon 1990). For example, it can range from less

than 1 × 10−3 m/day for clay and other low-permeability materials to more than 1 × 102

m/day for highly permeable materials like gravel and fractured rocks (Heath 1998). The

importance of hydraulic conductivity in groundwater modeling cannot be overstated because

it is a key factor in determining the rates of groundwater flow, recharge and discharge

processes, solute transport, and contaminant migration. An accurate representation of

hydraulic conductivity in a model is vital for predicting the behavior of groundwater systems

and informing management decisions related to water resources, pollution control, and

ecosystem preservation.

However, obtaining accurate hydraulic conductivity values in the real world can be

challenging due to the high costs associated with field measurements and the inherent

heterogeneity of geological materials. Variability in hydraulic conductivity can occur at

multiple scales, from centimeters to kilometers, making it difficult to obtain representative
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values for use in groundwater models. For example, Rotzoll and El-Kadi (2008) estimated

the hydraulic conductivity range from 8 to 8,200 m/day for Hawai‘i islands by a geostatistical

approach. This difficulty often necessitates the use of various field and laboratory methods

to estimate hydraulic conductivity, as well as model calibration and sensitivity analysis to

account for uncertainties in this crucial parameter.

Inverse modeling and parameter upscaling are two complementary techniques employed

in groundwater modeling to address the challenges associated with obtaining accurate

hydraulic conductivity values and representing them effectively in the model. These

methods help improve the accuracy and prediction capability of groundwater models.

Inverse modeling is an approach that involves adjusting model parameters, such as hydraulic

conductivity, based on observed data to achieve a better match between model simulations

and real-world measurements. This technique allows for the calibration of groundwater

models by minimizing discrepancies between observed and simulated values, taking into

account measurement errors and uncertainties. Inverse modeling can be performed using

various optimization algorithms and may involve the adjustment of single or multiple

parameters simultaneously. The process can help identify optimal parameter values and

provide insight into the spatial distribution of hydraulic conductivity, ultimately leading to

more accurate and reliable predictions of groundwater behavior.

Many inverse modeling applications focus on the estimate of hydraulic conductivity

because of its importance in groundwater engineering (Prasad and Rastogi 2001; Liu and

Kitanidis 2011; Zarebanadkouki et al. 2016; Vogeler et al. 2019; Minutti et al. 2020; Zhao

and Illman 2022). However, estimating hydraulic conductivity in complex, heterogeneous

aquifers using only hydrogeological data from wells is challenging due to the limited number

of well locations compared to the extent of the subsurface domain of interest. The subsurface

inverse problem, with a large number of unknown hydraulic conductivity values and a

few noisy well observations, becomes ill-posed, meaning that the inverse solution is non-

unique or sensitive to observation errors (Mao et al. 2013; Tian-chyi et al. 2015). To

address this issue, researchers have employed geostatistical inversion approaches, which
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use spatial correlation of the underlying unknown field as prior information within a

Hierarchical Bayesian framework (Zhou et al. 2014; Maliva and Maliva 2016; Zha et al.

2017). The outcomes from the geostatistical inversion approaches are a spatially distributed

hydraulic conductivity field that provides a more realistic representation of the subsurface

and enhances the predictive capability and reliability of groundwater models. Therefore,

the geostatistical approach has become a valuable tool, aiding in the development of more

accurate and robust groundwater models.

While advanced inverse modeling approaches can offer a systematic way to characterize

the subsurface site with rigorous uncertainty quantification, it is well known that

hydrogeological data alone such as well cores and hydraulic heads are not enough to identify

important hydraulic features such as high permeable channels or low permeable dikes. In

recent years, there has been a growing interest in incorporating additional geophysical

data, such as Electrical Resistivity Tomography (ERT), self-potential (SP), time-domain

electromagnetics (EM), and magnetotellurics (MT), to improve the characterization of

spatially variable hydraulic conductivity (Hubbard 2011; Revil et al. 2012; Binley et al.

2015; Grobbe and Barde-Cabusson 2019a). Incorporating various sources of information

from hydrogeological and geophysical surveys has been studied, but inferring hydraulic

conductivity requires identifying a suitable petrophysical relationship that links hydraulic

conductivity to relevant geophysical model parameters, such as electrical conductivity.

However, a petrophysical relationship may not be uniquely determined or may not even

exist in general. Systematic joint data inversion approaches need to be developed and

applied for better site characterization especially when we can achieve various multi-modal

and multi-scale hydrogeophysics data sets (Vozoff and Jupp 1975; Lochbühler et al. 2013;

Linde and Doetsch 2016).
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1.2.3 Hydraulic Conductivity Upscaling for High-Dimensional

Groundwater Modeling

Parameter upscaling, on the other hand, is a technique used to represent hydraulic

conductivity values at any given scale in groundwater models by taking into account the

inherent heterogeneity of geological materials. This approach involves the aggregation of

high-resolution hydraulic conductivity data to a coarser resolution hydraulic conductivity

tensor compatible with the computational grid used in the groundwater model.

Parameter upscaling can be performed using various methods ranging from simple

arithmetic/geometric/harmonic averaging to numerical solutions of modified governing

equations depending on the specific characteristics of the problem and underlying

assumptions (Renard and De Marsily 1997; Sanchez-Vila et al. 2006). This process allows for

the effective or “equivalent” representation of hydraulic conductivity variations at different

scales, accounting for the impact of small-scale heterogeneities on larger-scale groundwater

flow and solute transport processes.

Over the past few decades, upscaling hydraulic conductivity has been studied

extensively, with methods ranging from simple averaging in analytical approaches to

more advanced numerical techniques that solve partial differential equations (Dagan 1982;

Kitanidis 1990; Durlofsky 1992; Paleologos et al. 1996). Comprehensive reviews of these

methods under different flow conditions are available and they shed light on their advantages

and limitations (Wen and Gómez-Hernández 1996; Kitanidis 1997). However, previous

studies mostly focus on a single block upscaling and there are only a few studies on how

accurate the upscaled hydraulic heads at arbitrary scale would be compared to the fine-scale

“true” hydraulic heads (Durlofsky 1992, e.g.,). This might be because publicly available

upscaling software tools are rare and the hydrogeology community can benefit from software

that implements accurate, fast, and scalable upscaling methods.

Natural porous media, with their complex and irregular geometric structures at various

scales, present significant challenges to groundwater modeling. Accurately representing
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the heterogeneity and anisotropy of porous media is crucial for describing groundwater flow

and transport processes. However, when hydraulic conductivity is heterogeneous, numerical

methods are required to solve the groundwater flow equation, and large spatial variability in

hydraulic conductivity leads to difficulties in solving the equation for two primary reasons.

First, high variability in hydraulic conductivity results in an ill-conditioned matrix in the

process of solving the differential equation. Second, high-resolution grids can easily exceed

the computational capacity of computers.

These challenges, combined with the limitations of computing resources and lack of

subsurface information, necessitate the upscaling of hydraulic conductivity to a valid scale.

Groundwater modeling requires upscaling the hydraulic conductivity field to a grid at a

larger scale than the Darcy scale or measurement scale. The goal is to minimize information

loss during the upscaling process so that the groundwater simulation with an upscaled grid

can reproduce head fluctuations as closely as possible to the fine-grid model. Accurate

representation of hydraulic conductivity at different scales is the first step in constructing

a numerical groundwater model for field applications.

1.3 Overview and Objectives

This dissertation consists of three main chapters to propose techniques aiming for

accurate simulation and reliable parameter estimation for subsurface flow and transport

phenomena. Chapter 2 is dedicated to exploring an improved methodology for deep

aquifer characterization using various subsurface measurements such as hydrogeological,

self-potential, and magnetotellurics data. The chapter proposes a novel joint-inversion

approach that does not rely on any assumptions of petrophysical relationships, instead

by utilizing self-potential data to directly link groundwater flow velocity to magnetotelluric

data for estimating both hydraulic conductivity and electrical conductivity of the subsurface.

The methodology incorporates computationally efficient and scalable methods for solving

governing equations required for simulating hydrogeophysics and performing the large-scale
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joint inversion. The proposed method results in improved subsurface characterization

compared to single data-type inversion approaches. Various configurations are tested to

demonstrate the applicability and robustness of the proposed method.

Chapter 3 is focused on the development of a reliable hydraulic conductivity upscaling

tool for groundwater flow model parameter assignment. Estimated fine-scale hydraulic

conductivity values can be suitably converted to the hydraulic conductivity tensors at any

coarser scale fed to the existing numerical models. The chapter revisits the hydraulic

conductivity upscaling approach of Kitanidis (Kitanidis 1990) and applies an efficient

implementation for calculating upscaled hydraulic conductivity values in tensor form,

accounting for anisotropy. The performance of the proposed tool is then tested using

high-resolution 3D modeling, comparing head fluctuations from fine-scale descriptions of

conductivity to their coarse-scale modeling counterparts. The robustness of the tool under

challenging flow conditions that may violate the assumption of the proposed method is

investigated, and its performance is compared to other existing methods.

Chapter 4 presents the development and implementation of the PISALE (Pacific Island

Structured-AMR with ALE) codebase for simulating flow and transport in large-scale

coastal aquifers, particularly in the Pacific islands. This chapter addresses the challenges

of accurately simulating density-driven flow and transport processes in complex coastal

aquifers and presents the mathematical techniques, parallel programming models, and

software toolkit used in the PISALE codebase. The integration of groundwater flow and

advection modules, as well as the coupling of transient flow and transport equations, are

discussed in detail. The chapter concludes with test cases and results to showcase the

accuracy and computational scalability, ultimately contributing to sustainable groundwater

resource management in island aquifers.

Chapter 5 summarizes the key findings, contributions, and implications of research topics

presented in the dissertation. This final chapter also outlines potential directions for future

research to further advance our understanding and application.
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Chapter 2

Improved methodology for deep aquifer

characterization using hydrogeological,

self-potential, and magnetotellurics data

Note: This section of the dissertation is submitted on May 1, 2023, and is also available on the arXiv

preprint server. Seo, Y. H., El-Kadi, A. I., Grobbe, N., & Lee, J. (2023). Improved methodology for deep

aquifer characterization using hydrogeological, self-potential, and magnetotellurics data. arXiv preprint

arXiv:2304.10083.

Abstract

Estimating subsurface hydraulic conductivity with sparse hydrogeological data is

challenging. Geophysical data, such as Self-potential (SP) and Magnetotelluric (MT), can

be acquired additionally to improve our understanding of the underlying hydrogeological

structure. However, in order to use both hydrogeological and geophysics data sets, it is

necessary to identify a proper petrophysical relationship, which may not be unique or

even not exist. In this work, we propose a joint-inversion approach without petrophysical

relationship assumptions, using SP data, connecting groundwater flow velocity to electrical

potential differences, and MT data to simultaneously estimate hydraulic and electrical

conductivity. To accelerate the joint data inversion, high-dimensional hydraulic conductivity

and electric resistivity fields are estimated by using a dimension reduction technique through
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the Principal Component Geostatistical Approach. The approach assures that the estimated

parameters and their uncertainties are quantified within only a few hundred coupled forward

model runs. To demonstrate the applicability and robustness of the proposed method,

several tests are performed, using hydrogeophysical data sets generated from subsurface

models of hydraulic conductivity and electrical conductivity. The findings demonstrate

that the joint hydraulic head-SP-MT data inversion can be reasonably used to estimate

hydraulic conductivity and electrical resistivity, even in the absence of knowledge of a one-

to-one petrophysical relationship. On average, the proposed joint inversion yields 25%

improvement in the hydraulic conductivity estimates relative to a single data-type inversion,

i.e., using only of hydraulic head and core data from wells; the single data-type inversion

approach can only identify the subsurface structure near the observation wells.

2.1 Introduction

Hydraulic conductivity is one of the key parameters to understanding the groundwater

flow patterns for various engineering applications, such as water resources management,

contaminant transportation and seawater intrusion and accompanying salinization (e.g.,

Lee et al. 2016; Kang et al. 2017). However, estimating hydraulic conductivity in complex,

heterogeneous aquifers using only hydrogeological data from wells is challenging, primarily

due to the limited number of well locations compared to the extent of the subsurface domain

of interest, or in other words the model domain size. The subsurface inverse problem of a

huge number of unknown hydraulic conductivity values using a few noisy well observations

becomes ill-posed, which means that the inverse solution is non-unique or sensitive to

observation error. To account for the uncertainty in the estimate, the inverse problem has

been treated within a stochastic framework, rather than using the deterministic method

that yields only a single best estimate (McLaughlin and Townley 1996; Carrera et al. 2005;

Kaipio and Somersalo 2007; Slater 2007; Oliver et al. 2008).
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To overcome the ill-posedness originating in the limited number of observations,

the geostatistical inversion approach Kitanidis and VoMvoris (1983); Kitanidis (1995) is

widely used for various subsurface applications (Cirpka and Kitanidis 2000; Michalak and

Kitanidis 2004; Cardiff and Barrash 2011; Cardiff et al. 2012). The approach uses spatial

correlation of the underlying unknown field as prior information within the Hierarchical

Bayesian framework (Kitanidis 2012, 2010). Still, unless a large number of wells is

available (e.g., Hochstetler et al. 2016), hydrogeological data alone such as hydraulic head

and borehole data at the wells only provides overly smooth, low resolution images of the

subsurface with large uncertainty due to the diffusive nature of the groundwater flow

equation. To address this issue, in the last decades, there have been various efforts to

characterize the spatially variable hydraulic conductivity, using for example geoelectrical

measurements (Purvance and Andricevic 2000; Slater 2007; Chandra et al. 2008; Perdomo

et al. 2014). Hydrogeophysical data, such as Electrical Resistivity Tomography (ERT), self-

potential(SP), time-domain electromagnetics (EM), and magnetotellurics (MT) acquired

either at the ground surface and/or in boreholes, can provide additional information on the

subsurface hydrogeological structure, as well as serve as supplemental data for interpolation

between the wells and possibly extrapolation beyond the wells. A number of studies have

investigated the joint inversion using hydrogeological and geophysical data together to

infer various subsurface parameters (Jardani and Revil 2009; Huisman et al. 2010; Mboh

et al. 2012; Jardani et al. 2013; Kang et al. 2020). However, in order to infer hydraulic

conductivity, a suitable petrophysical relationship between hydraulic conductivity and the

relevant geophysical model parameters, such as electrical conductivity, needs to be identified.

Such a relationship may not be uniquely determined, or may even not exist.

To address the challenge of needing to identify suitable petrophysical relationships,

we investigate the effectiveness of using self-potential and magnetotelluric data to inform

the joint-inversion process for deep aquifer characterization. SP data is based on the

measurement of electrical potential differences induced by groundwater flow (Revil and

Jardani 2013; Grobbe et al. 2021) and has been used to successfully estimate hydrogeological
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parameters (Jardani and Revil 2009; Straface et al. 2011; Ozaki et al. 2014). Previous

studies have investigated joint inversion for hydrogeological parameter-estimation using self-

potential data, due to its advantage in relating the method’s physics to the groundwater

flow process (Straface et al. 2011; Jardani et al. 2013; Soueid Ahmed et al. 2014; Kang

et al. 2020; Han et al. 2022). For example, Soueid Ahmed et al. (2014) applied the

geostatistical approach to the inverse modeling of hydraulic conductivity and specific storage

using hydraulic head and self-potential data.

Magnetotellurics is a passive geophysical method for characterizing the electrical

resistivity of the subsurface using the natural magnetic and electric field of Earth (Chave

and Jones 2012). A number of geophysical studies of MT-inverse modeling for characterizing

electrical conductivity have been conducted (Unsworth and Bedrosian 2004; Avdeev and

Avdeeva 2009; Aizawa et al. 2011; Meqbel et al. 2014; Yang et al. 2015; Ledo et al. 2021; Yang

et al. 2021). The typically low-frequencies being used and accompanying large wavelengths

offer an advantage to the MTmethod: it allows for subsurface investigations of the resistivity

in deeper regions up to the depth of a few kilometers. Incorporating MT data in the

joint-inversion process can thus be expected to allow for characterization of the hydraulic

conductivity and electrical resistivity for deep aquifers, for example, for geothermal heat

energy exploitation (Simmons et al. 2021). To date, little research has been carried out on

the study of estimating hydraulic conductivity explicitly using a joint inversion of MT, SP,

and hydrogeological data sets.

In this work, we propose a new joint inversion method for deep aquifer characterization

that does not assume any petrophysical relationship, by incorporating MT, self-potential

(SP), and hydrogeological data sets. In the proposed framework, hydraulic conductivity

and electrical conductivity fields are simultaneously estimated through self-potential data

fitting that links the groundwater velocity to the electrical conductivity. The self-

potential forward problem is solved with a spectral method that allows for an accurate

calculation of the derivatives of velocity fields as required in the governing equation.

For computationally efficient site characterization, the Principal Component Geostatistical
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Approach (PCGA) (Lee and Kitanidis 2014; Kitanidis and Lee 2014) is utilized. The

joint hydrogeophysics data inversion typically requires prohibitive computation and storage

costs for Jacobian and dense covariance matrices especially for high-dimensional inverse

problems with multi-physics coupled forward solvers. PCGA accelerates the geostatistical

inversion by avoiding the computation of the Jacobian matrix product with the finite-

difference approximation through the row-rank approximation of the prior covariance

matrix. PCGA has already been applied to several large data set inverse problems, for

example, estimating hydraulic conductivity using tracer concentration breakthrough data

of synthetic cases (Lee and Kitanidis 2014), reactive transport data (Fakhreddine et al.

2016), temperature data (Lee et al. 2018a) and laboratory-scale sandbox experiments (Lee

et al. 2016). Kang et al. (2020) conducted the joint inversion for hydraulic conductivity

and DNAPL saturation by using the hydraulic head and partitioning trace data sets with

self-potential as additional information. In this study, PCGA is implemented to estimate

the high-dimensional hydraulic conductivity and electrical resistivity fields in synthetic

heterogeneous aquifers and to quantify its estimation uncertainty, utilizing only a few

hundred forward model runs.

The remainder of the paper is organized as follows: in Section 2.2 we present an overview

of the governing equations used in the joint data inversion. We then introduce the synthetic

deep aquifer characterization configuration in Section 2.3. We show how well the proposed

method performs in comparison to the single data inversion using hydrogeological data or

MT data alone. Lastly, the discussion and conclusions, including a reproducible code for

the examples shown in the paper, are presented in Section 2.5.
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2.2 Methods

2.2.1 Governing Equations

For the forward problem, coupled governing equations for groundwater flow, SP, and MT

are used to incorporate hydraulic head, self-potential, and magnetotellurics data sets into

our proposed subsurface characterization framework.

2.2.1.1 Hydrogeology: Groundwater Flow

The groundwater flow equation describing fluid flow through a porous medium at the Darcy

scale is

∇ · [K (x)∇h(x, t)] = S
∂h(x, t)

∂t
(2.1)

where x = (x1, x2, x3) is the spatial coordinate [m], K (x) is the hydraulic conductivity

tensor [m/d], S is specific storage [1/m], and h is the hydraulic head [m]. Note that

hydraulic conductivity estimation with the groundwater flow equation and hydraulic data

alone typically results in overall smoothed outcome due to the widely used Gaussian (two-

point correlation) assumption, as well as the associated estimation uncertainty becoming

large far away from the observation wells (Lee and Kitanidis 2013, 2014).

2.2.1.2 Magnetotellurics

Magnetotellurics (MT) is a passive geophysical method in which natural electromagnetic

fields are used to image the electrical conductivity or resistivity of the subsurface. Key

(2016) developed the MARE2DEM code for 2-D anisotropic forward and inverse modeling

of Magnetotellurics (MT) data and frequency-domain controlled-source electromagnetic

(CSEM) data acquired from geophysical surveys. We use MARE2DEM for the forward

modeling and consider a 2D electrical conductivity model to generate synthetic MT

observations. The governing equations for the frequency-domain electromagnetic field are
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shown below, assuming an e−iωt time-dependence, with angular frequency ω:

∇×E− iωµH = Ms (2.2)

∇×H− σE = Js (2.3)

where E is the frequency-domain electric field [V/m], H is the magnetic field [A/m], Ms

is a magnetic current source [V/m2], and Js is an electric current source [A/m2]. µ

denotes the magnetic permeability and σ the complex electrical conductivity (for most low-

frequency geophysical applications, one can neglect the imaginary component containing

the dielectric permittivity term, in the so-called quasi-static approximation). After the

Fourier transformation, the governing equations can be expressed in a compact form:

−∇ · (A∇u) + Cu = f in Ω u = 0 on ∂Ω (2.4)

f = ∇ · (AQT st)− sx (2.5)

where

R =

0 −1

1 0

 , Q =

0 R

R 0

 , st = (Ĵs
t , M̂

s
t ), sx = (Ĵs

x, M̂
s
x) (2.6)

where Ω is the model domain and u =
(
Êx, Ĥx

)
. x and hat ( ˆ ) denote the strike direction

and the quantity in the wavenumber domain respectively. f is the source term and t denotes

transverse direction. The coefficient matrices A and C for MT are in (Key 2016):

A =

λσt 0

0 iωµλ′

 , C =

σx 0

0 iωµ

 ,
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where

σt =

σy 0

0 σz

 , λ−1 =

−iωµσy 0

0 −iωµσz

 , λ′ = RTλR (2.7)

The numerical solutions of Equation 2.4 provide the electric and magnetic fields of the strike

direction. The transverse electric and magnetic fields can be obtained by:

ut = (Êt, Ĥt) = QA∇u+QTAQst (2.8)

2.2.1.3 Self-Potential

The self-potential method is a passive geophysical method that measures the electrical

potential differences to investigate dynamic subsurface processes, such as groundwater flow

or geochemical reactions (e.g., Revil and Jardani 2013; Grobbe and Barde-Cabusson 2019b;

Barde-Cabusson et al. 2021; Revil et al. 2023). Here, we focus on groundwater flow related

self potential signals. The governing equation of self-potential can be derived, starting from

the continuity equation for electrical charge (Sill 1983):

∇ · j = 0 (2.9)

where j is the current density (A/m2). The current density due to groundwater flow in a

heterogeneous porous medium can represent the total flux of natural electrical charges (Revil

et al. 2007; Boleve et al. 2007; Jardani et al. 2007):

j = −σ∇φ+ Q̂vq (2.10)

where σ denotes the electrical conductivity (S/m), φ is the electrical potential (V), Q̂v is

the effective charge density (C/m3), and q represents the specific discharge vector (m/s).

Then the self-potential (φ) equation can be obtained from Equations 2.9 and 2.10 (Kang

et al. 2020):

∇ · (σ∇φ) = ∇ · (Q̂vq) (2.11)
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with the boundary conditions:

φ = 0 at ΓD

−n · (σ∇φ− Q̂vq) = 0 at ΓN

(2.12)

The self-potential equation in Equation 2.11 relates the electrical conductivity σ (i.e.,

1
ρ) from Maxwell’s equations (i.e., Equations 2.2 and 2.3) to the groundwater discharge

q = −K (x)∇h(x, t) from the groundwater flow equation in Equation 3.1 without any

petrophysical relationship. The unknown effective charge density Q̂v can be inferred

from the hydraulic conductivity using the empirical relationship identified in previous

studies (Jardani et al. 2007; Revil et al. 2007; Jougnot et al. 2012), which will be explained

in the next section.

2.2.2 Fast and Scalable Inverse Modeling: Principal Geostatistical

Approach

When solving the inverse problem, for example, using the geostatistical approach, the

coupled governing equations need to be solved multiple times. For example, several tens of

thousands of numerical simulations are required to compute the Jacobian and its products

with the dense prior covariance matrix Ghorbanidehno et al. (2020). To address the

computational challenges associated with such inverse problems, the PCGA (Principal

Component Geostatistical Approach) can be implemented as a “matrix-free” geostatistical

inverse modeling approach that can avoid the direct calculation of the Jacobian matrix and

its products by utilizing the principal components (low-rank approximation) of the prior

covariance through a finite-difference approximation (Lee and Kitanidis 2014; Lee et al.

2016). Here we briefly explain the main idea of PCGA. The quasi-linear geostatistical

approach (Kitanidis 1995) starts from the observation equation:

y = h(s) + v (2.13)
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where y is the n × 1 vector of the observations, s is the m × 1 vector of the unknown

spatially distributed parameters such as hydraulic conductivity or resistivity, and h is the

forward model. The random variable v represents the error in the observations y as well

as the forward model h and follows a Gaussian distribution with zero mean and covariance

R. The probability density function (pdf) of y given s, the likelihood function, is following

a Gaussian with mean h(s) and covariance matrix R. The prior of the unknown spatially

distributed field s is parameterized as:

s = Xβ + ε (2.14)

where X is a known m × p matrix representing deterministic trends/drifts, β is a vector

consisting of p unknown drift coefficients, and ε is the spatially correlated random variable

with zero mean and the prior covariance matrixQ that is not explained with the drift/trend.

Therefore, the prior s is a Gaussian with mean Xβ and covariance matrix Q. The posterior

pdf p′′(s) can be obtained through Bayes’ theorem, and the negative loglikelihood for the

posterior pdf of s and β is minimized to obtain the maximum a posterior (MAP) or most

likely value ŝ:

− ln p′′(s,β) =
1

2
(y − h(s))TR−1 (y − h(s)) + (s−Xβ)TQ−1 (s−Xβ) (2.15)

One can update the latest estimation s̄ to a new solution until it converges to the most

likely value ŝ. The n×m Jacobian matrix H, the derivative of h with respect to s at s̄, can

be expressed as:

H =
∂h

∂s

∣∣∣∣
s=s̄

(2.16)

Using the Jacobian matrix for the linearization of the forward model h, the updated next

solution can be evaluated as:
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s̄ = Xβ̄ +QHTξ̄ (2.17)

where the n×1 vector ξ and p×1 vector β can be computed by the following linear system:

HQHT +R HX

(HX)T 0


 ξ̄
β̄

 =

y − h(̄s) +Hs̄

0

 (2.18)

By repeating Equations 2.16- 2.18 until the convergence of s̄, the best estimation ŝ can be

obtained. After computing the best estimation, the posterior covariance can be used for the

estimation of uncertainty. The posterior covariance of s, V, is the inverse of the Hessian of

the objective function (Equation 2.15) and can be simplified by using matrix identities:

V =
(
Q−1 +HTR−1H

)−1
= −XM+Q−QHTΛ, (2.19)

where X and Λ can be obtained from:

HQHT +R HX

(HX)T 0


ΛT

M

 =

HQ

XT

 . (2.20)

For large-scale inverse problems such as deep aquifer characterization with multiple

hydrogeological and geophysical data sets, the geostatistical approach would require a high

computational cost for the construction and storage of the Jacobian matrix H and its

products with the dense prior covariance matrix Q, i.e., HQ and HQHT. Lee and Kitanidis

(2014) developed a scalable method called the principal component geostatistical approach

(PCGA) that utilizes the low-rank of Q and a finite difference approach to avoid the direct

construction of H and accurate approximation of the Jacobian-Covariance products. The

low-rank approximation of Q can be assumed as:

Q ≈ QK = ZZT =
K∑
i=1

ζiζ
T
i (2.21)
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where QK is a rank-K approximation of Q, Z is a m × K principal component matrix

and ζTi is ith column vector of Z, which is an i-th eigenvector of Q scaled by square root

of its eigenvalue. The Jacobian-vector product Hx can be calculated by using the Taylor

expansion of the forward model h:

h(s̄+ δx) = h(s̄) + δHx+O(δ2) (2.22)

where x is a m × 1 vector and δ is the finite difference interval. When x = s̄, a Jacobian-

vector product Hs̄ can be:

Hs̄ =
1

δ
(h(̄s+ δs̄)− h(̄s)) +O(δ) ≈ 1

δ
(h(̄s+ δs̄)− h(̄s)) (2.23)

Similarly, the approximation of HQ can be computed by

HQ ≈ HQK = H
K∑
i=1

ζiζ
T
i =

K∑
i=1

(Hζi)ζ
T
i ≈

K∑
i=1

ηiζ
T
i (2.24)

where

ηi = Hζi ≈
1

δ
(h(s+ δζi)− h(s)) (2.25)

2.2.3 Joint Hydrogeological and Geophysical Inversion Strategy without

Petrophysical Relationship

To identify subsurface properties beyond the well locations, geophysical surveys such as

Magnetotelluric and seismic investigations are widely used. However, geophysical survey

results typically require a petrophysical relationship to convert the estimated geophysical

properties, such as electrical conductivity (or resistivity) or seismic velocity to hydraulic

conductivity. To address this challenge, we propose a novel joint inverse modeling framework

to estimate hydraulic conductivity and electrical resistivity simultaneously through the use

of additional self-potential data sets.
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In our geostatistical inversion approach, the unknown subsurface properties are

represented in an augmented vector s consisting of the log-hydraulic conductivity field

lnK and the log-resistivity field lnρ (ρ=1/σ) as in Equation 2.26. Note that for the same

mesh for the groundwater flow and MT simulations, s is a 2m by 1 vector concatenating

the m by 1 lnK and lnρ vectors. In the same manner, the covariance matrix Q embeds

the covariance of the hydraulic conductivity field QlnK and the covariance of the resistivity

field Qln ρ and we assume there is no correlation between the hydraulic conductivity and

resistivity in the prior for simplicity. One might use a parameterized correlation model

between K and ρ for better results.

s =

lnK
lnρ

 , Q =

Qln k 0

0 Qln ρ

 (2.26)

In the joint data inversion framework, we need to utilize three forward models that

simulate the groundwater flow, the self-potential, and the MT responses. The groundwater

model hgw uses hydraulic conductivity K to simulate the hydraulic heads and compute its

corresponding groundwater velocities. The MT model hMT uses electrical conductivity σ or

resistivity ρ distributions to produce the electromagnetic signals. The self-potential model

is adopted here to link these two models and eliminate the need for an often unknown

or uncertain petrophysical relationship, by simply satisfying the continuity equation of

the self-potential in Equation 2.11 with the currently estimated groundwater velocity and

resistivity fields through self-potential observations φ within the Bayesian framework as in

Equation 2.15.

The Jacobian matrix H contains the information from the three models; the first row of

H represents the Jacobian matrix between the hydraulic conductivity field and the hydraulic

head observations, the second row consists of the Jacobian matrix (i.e., sensitivity) between

the hydraulic conductivity field and the SP observations HSP−GW and the Jacobian matrix

between the resistivity field and the SP observation HSP−MT , and the third row represents
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the Jacobian matrix of the resistivity and the MT forward models, respectively as

H =


HGW 0

HSP−GW HSP−MT

0 HMT

 (2.27)

HGW =
∂hGW

∂ lnK
, HSP−GW =

∂hSP

∂ lnK
, HSP−MT =

∂hSP

∂ ln ρ
, HMT =

∂hMT

∂ ln ρ
(2.28)

The Jacobian-vector product can be computed separately within each numerical model

through finite difference as in Equation 2.23 and can be subsequently merged for the

construction of the entire Jacobian matrix H.

2.3 Description of the Numerical Experiments

2.3.1 Synthetic Site Domain

In this section, we assess the performance of our proposed joint inversion for estimating

the subsurface properties in a synthetic deep aquifer. Here, two cases are considered; the

first case represents a configuration in which the true hydraulic conductivity and resistivity

fields are correlated through a petrophysical relationship. In the other case, we generated

the true hydraulic conductivity and resistivity fields independently from their own Gaussian

random field parameters. The performance of the joint inversion model using groundwater,

self-potential, and MT models and data sets is evaluated by comparing the results against

those obtained from the single hydrogeological inversion, which are obtained by using the

observed well-core and hydraulic-head data.

As explained in the previous sections, we additionally utilize the self-potential model

and sparse observations to simultaneously estimate hydraulic conductivity and resistivity

fields without any assumed relationship between the two unknown fields. The domain and

observation configurations for the inverse modeling tests are illustrated in Figure 2.1.

32



The model domain is a 2D unconfined aquifer of 2 km by 2 km in which 4 observation

wells provide core data for the hydraulic conductivity and hydraulic heads. The depth of the

wells is 100 m, and we assume that the head and core data are measured at intervals of 20

m each. The self-potential data is measured at intervals of 20 m from the surface and wells.

For the MT survey, 21 MT receivers over the 4 km surface (i.e., 4 km by 4 km domain

extended from the 2 km by 2 km model domain) measure EM amplitude and phase for

32 frequency bands to estimate resistivity at depth in the inverse modeling. The relatively

large-scale 2D modeling domains are intended to 1) evaluate how deep the proposed method

can identify the properties and 2) eliminate the effect of boundary conditions so that the

inversion can minimize the effect of wrongly assigned boundary conditions, which typically

take place in practice.
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Figure 2.1: Measurement configuration.

2.3.2 Subsurface Property and Data Generation

In order to evaluate the performance of our proposed method, we consider several hydraulic

conductivity and resistivity fields. Specifically, we design the numerical experiments

in terms of observation with two configurations: (1) the hydraulic conductivity and

resistivity fields are determined through a known petrophysical relationship, and (2) the

hydraulic conductivity and resistivity are determined independently. The purpose of

these configurations is to check whether the proposed inversion method can perform well
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for deep aquifer characterization where one cannot uniquely determine the petrophysical

relationship.
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Figure 2.2: Data generation with petrophysical relationship; these fields are used for the
inversion test as Case 1-1.

The first configuration case assumes the known petrophysical relationship in the true

field generation. For this, we first randomly generated the electrical conductivity σ, the

reciprocal of the resistivity ρ = 1
σ , from a log-normal distribution using Gaussian and

exponential kernels with scale parameters as shown in Figure 2.2 (a). Using the random

field of the electrical conductivity, porosity is computed using Archie’s law as shown in

Figure 2.2 (b). Archie’s Law is an empirical expression for the electrical conductivity of

porous media related to its porosity and fluid saturation of pores. In a saturated medium,

Archie’s Law can be reduced to (Ewing and Hunt 2006):

σ = aσbϕ
m (2.29)

where σ is the electrical conductivity of porous media, σb is the electrical conductivity of the

bulk brine solution, ϕ is the porosity and a and m are fitting parameters, respectively. The
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range of the parameters are chosen from the previous studies (Cai et al. 2017; Thorslund and

van Vliet 2020). To convert porosity ϕ to the hydraulic conductivity, a modified Kozeny-

Carman model (Kozeny 1927; Carman 1937; Costa 2006) is used with Archie’s equation

that leads to:

K =
kρg

µf
= Cc

ϕm

(1− ϕ)
ρg (2.30)

where k is the permeability, ρ is the density of the fluid, g is the gravitational acceleration,

µf is the viscosity of the fluid, Cc is a model factor, and m is the Archie exponent. The

permeabilities of different porous media were selected and modified from Costa (2006). The

resulting permeability field is shown in Figure 2.2 (c) with a range of 10−16 to 10−12 m2.

After generating the permeability field, the hydraulic conductivity is calculated as in

Figure 2.2 (d) by Equation 2.30. Using the hydraulic conductivity, the hydraulic head

and its corresponding groundwater velocity were simulated as shown in Figure 2.2(e) and

observations were extracted at the data locations in Figure 2.1. The self-potential model in

Equation 2.11 requires the effective charge density. In this study, we following the previously

developed empirical relationship (Jardani et al. 2007; Jougnot et al. 2012; Revil 2017):

log10 Q̂v = −9.2− 0.82 log10 keff (2.31)

2.4 Results

2.4.1 Case 1: Inverse Modeling for Petrophysically Related Unknown

Fields

We present the inverse modeling results for the configuration in which the hydraulic

conductivity and resistivity are created through a known petrophysical relationship. The

two resistivity fields are first generated from a log-normal distribution using the Gaussian

and exponential kernel, which we call Case 1-1 and Case 1-2, respectively. The covariance

scale parameters for the Gaussian (Case 1-1) are 355 m in x and 118 m in z, and for the
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exponential kernel (Case 1-2) are 447 m in x and 200 m in z, respectively. After converting

the resistivity field to the hydraulic conductivity through the petrophysical relationship

(Equation 2.30), the groundwater flow is simulated using USGS MODFLOW6 (Langevin

et al. 2022) to create head and hydraulic conductivity observations at the wells with 1% and

3% noise, respectively. The self-potential model is executed to create electrical potential

with 1% noise. For MT observations, MARE2DEM (Key 2016) is used to simulate the MT

amplitude and phase. The modeling and inversion parameters are listed in Table 2.1. After

conducting the MODFLOW6 simulation, a total of 20 hydraulic head observations and 20

hydraulic conductivity well cores are obtained from four observation wells (as illustrated

in Figure 2.1). The self-potential model provides 116 electrical potential data from the

well and surface, and a total of 5248 MT amplitude and phase data are produced by the

MARE2DEM. We run inversions on a computational node with 48 cores and 190 GB RAM.

Table 2.1: Parameter summary used in the application.

Description Application

Geometric Parameters
Lx, Lz domain length and depth (m) 2000, 2000
∆x, ∆z grid size (m) 20, 20

Measurement Error
σh std(error) of head (m) 0.3
σlnK std(error) of lnK (lnm/d) 0.05
σsp std(error) of self-potential (V) 10−3

σMT1 std(error) of MT log10amplitude (-) 0.1
σMT2 std(error) of MT phase 2.0

Geostatistical Parameters
q(x, x′) exponential covariance kernel σ2s exp(− r

θexp
)

θexp exponential scale parameters in x and z (m) [447, 200]

q(x, x′) Gaussian covariance kernel σ2s exp

[
−
(

r
θgau

)2]
θgau Gaussian scale parameters in x and z (m) [355, 118]
σs prior standard deviation (lnm/d) 2.0

PCGA Parameters
ns1 The number of principal components for single inversion of lnK 200
ns2 The number of principal components for single inversion of ln ρ 200
ns The number of principal components for joint inversion of lnK and ln ρ 400

With this configuration, the “single“ inversion using MODFLOW6 and hydrogeological

data and the joint data inversion using hydrogeological and geophysics models and datasets

are performed to identify and quantify the estimation uncertainty. Figure 2.3 presents the

estimated log-hydraulic conductivity fields from the single and joint inversions up to the

36



depth of 500 m below the ground surface. Beyond the depth of 500 m, the uncertainty

reduction from the prior is no longer observed under our configuration thus we decide not

to present in this study. The accuracy of the single and joint inversion results is evaluation

through the element-wise root-mean-squared-error (RMSE):

RMSE =

√√√√ 1

m

m∑
i=1

(lnKest
i − lnKtrue

i )
2

(2.32)

where lnKest
i is the estimated log-hydraulic conductivity in the grid i, and lnKtrue

i is the

i -th true log hydraulic conductivity. The RMSE of log-hydraulic conductivity from single

inversion up to the depth of 500 m is 2.25 ln(m/d) while the RMSE of joint inversion is

1.09 ln(m/d), which shows a great improvement of 51.6% in the accuracy compared to the

single inversion result.

It is shown that the low hydraulic conductivity regions up to the depth of 100 m

are estimated well in both results from the single and joint inversions. Still, the joint

inversion produces better results overall in the terms of RMSE since the information from

the deeper formation can be acquired from the MT survey. Indeed, the proposed joint

inversion approach is able to identify high hydraulic conductivity anomalies below 250 m

as shown in the jointly estimated lnK of Figure 2.3 (c). In the joint inversion, the use of

the self-potential observations links the groundwater flow phenomena to the geophysics so

that one can perform reasonably accurate deeper subsurface characterization without any

petrophysical relationship.

Figure 2.3 (e)-(g) display the posterior standard deviation, i.e., linearized uncertainty, of

the single and joint inversion estimates. As reported in many previous studies (e.g., Lee and

Kitanidis 2014), the inversion using hydrogeological data alone results in high uncertainty

away from the observation wells. On the other hand, the proposed joint inversion combining

hydrogeological and geophysical data sets leads to lower uncertainty near the observation

wells and also a reduction in the uncertainty in the area of the high hydraulic conductivity
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Figure 2.3: (a) True lnK field. lnK estimation from (b) single inversion, (c) the proposed
joint inversion with self-potential, and (d) joint inversion with the petrophysical relationship.
Posterior std. from (e) single inversion, (f) the proposed joint inversion with self-potential,
and (g) joint inversion with the petrophysical relationship. Scatter plot obs. vs simul. head
from (h) single inversion, (i) the proposed joint inversion with self-potential, and (j) joint
inversion with the petrophysical relationship. Scatter plot obs. vs simul. core from (k)
single inversion, (l) the proposed joint inversion with self-potential, and (m) joint inversion
with the petrophysical relationship.
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anomalies below 250 m where the uncertainty of the joint inversion is found to be relatively

lower than that from the single inversion.

The right two columns of Figure 2.3 shows the scatter plots of observations against

simulated hydraulic heads and hydraulic conductivities from the single and joint inversions.

The data fittings are reasonably performed within the range of the observation errors

specified in Table 2.1. The single inversion for lnK requires 4 iterations and takes about 8

seconds for each iteration, and the single inversion for ln ρ needs 6 iterations for simulation

and takes 13 minutes for each iteration. The joint inversion of lnK and ln ρ needs 7

iterations to be converged and take 25 minutes for each iteration.

We also perform the resistivity inversion using MT response alone and compare it with

the joint data inversion. Figure 2.4 (b) and (c) show the log-resistivity ln ρ estimate from

single and joint inversions. The estimated resistivity fields from both methods are similar

to the true value in general while the joint inversion, which additionally utilizes the surface

and over 100m in the depth of the observation well data, estimates the resistance field in

more detail in shallow areas. In specific, the joint inversion estimates the high resistivity

region around x = 1000 m below the surface. The RMSEs of estimated ln ρ from single and

joint inversions are 0.614 and 0.543, respectively showing that the joint inversion results in

a better estimation with 11.6% improvement in terms of the element-wise RMSE.

Figures 2.4 (e)-(g) present the posterior standard deviation for both cases. The joint

inversion estimate has lower uncertainty for the overall region compared to the single

inversion. The additional information from the observation wells and the SP can reduce the

uncertainty significantly for both shallow (i.e., around x = 1000 m) and deeper (i.e., below

z = 250 m) regions in general. Note that it is observed that the estimation uncertainty is

relatively high where the joint inversion fails to identify high resistivity region near x = 800

m and z = 175 m.

Figures 2.4 (h)-(m) represents the scatter plots of observations versus simulated MT

observation in amplitude and phase. The first two figures (Figure 2.4 (h) and (i)) provide

the scatter plots for EM amplitude in log scale from single and joint inversion which show
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Figure 2.4: (a) True ln ρ field. ln ρ estimation from (b) single inversion, (c) the proposed
joint inversion with self-potential, and (d) joint inversion with the petrophysical relationship.
Posterior std. from (e) single inversion, (f) the proposed joint inversion with self-potential,
and (g) joint inversion with the petrophysical relationship. Scatter plot obs. vs simul.
amplitude from (h) single inversion, (i) the proposed joint inversion with self-potential, and
(j) joint inversion with the petrophysical relationship. Scatter plot obs. vs simul. phase
from (k) single inversion, (l) the proposed joint inversion with self-potential, and (m) joint
inversion with the petrophysical relationship.
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RMSE of 0.103 and 0.104, respectively. The other figures show the comparison between

observed and simulated EM phases from single and joint inversions and the RMSE of 2.025

for both inversions.

2.4.1.1 Comparison with Joint Inversion using Known Petrophysical

Relationship

An additional experiment is performed in this subsection to investigate how well

our proposed method identifies the unknown subsurface aquifer. Since the hydraulic

conductivity K and resistivity ρ fields are generated with a predefined petrophysical

relationship, we utilize this known petrophysical relationship as additional information for

estimating the unknown K and resistivity ρ along with the hydraulic head and MT data

sets. This setting reveals the maximum information the joint inversion using the well-

based observations and MT survey can attain and allows us to evaluate the value of the

self-potential measurements.

The petrophysical relationship links the groundwater model with the MT model to

update the K and ρ fields simultaneously. In the implementation, the additional term is

added to the objective function in Eq. 2.15:

1

2
(K− fpetro(1/ lnρ))

TR−1
petro (K− fpetro(1/ lnρ)) (2.33)

where fpetro represents the hydraulic conductivity estimated with resistivity using the

petrophysical relationship described in the previous section 2.3.2 and the diagonal matrix

Rpetro represents the matrix of the petrophysical relationship errors/residuals. Rpetro were

assigned based on the error level of estimated hydraulic conductivity.

Figure 2.3 (d) shows the estimation of the K field obtained with the petrophysical

relationship with the lowest RMSE of 0.930 among the three inversion results from Case 1.

Since we assume a perfectly identified petrophysical relationship during the inversion, the

result estimates the high and low hydraulic conductivity accurately both in deep and shallow
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regions. In this specific example, the proposed joint inversion with self-potential data as

in Figure 2.3 (c) yields comparable results to that with perfectly known petrophysical

relationship qualitatively and also in terms of RMSE (i.e., RMSE 0.930 vs 1.090). This

additional analysis shows that the proposed joint inversion approach via the SP data

can perform reasonably accurate subsurface characterization without any petrophysical

relationship which may not be accessible or completely wrong in practice. Figure 2.4 (d)

presents the estimation of the ρ field that is also comparable to Figure 2.4 (c).

2.4.2 Case 2: Independently Generated Unknown Subsurface Fields

In this subsection, we examine the applicability of our proposed method to the synthetic

true hydraulic conductivity and resistivity fields that are created without any petrophysical

relationship. These synthetic true hydraulic conductivity and resistivity fields are

generated independently with the previously used geostatistical models and their associated

parameters listed in Table 2.1. The estimated log hydraulic conductivity and resistivity

fields are shown in Figure 2.5 (a) and Figure 2.6 (a), respectively.

Figures 2.5 (b)-(c) represent the estimated hydraulic conductivity field from the single

and joint inverse modelings. The RMSE of single and joint inversions are 1.098 and 0.726

ln(m/d), respectively, which indicates a 33.9% improvement in RMSE. The joint inversion

as in Figures 2.5 accurately identifies high and low conductivity regions up to the depth

of 250 m while the single inversion could not produce reliable results beyond the depth

of 100 m where the observation well penetration ends and wrongly estimated high-low

conductivity areas are artifacts from the inversion showing that one would not resort in

the values outside the observation network, i.e., “extrapolation”. The proposed approach

identifies the hydraulic conductivity field well regardless of the existence of any underlying

petrophysical relationship.

The posterior uncertainty plots in Figure 2.5 (d)-(e) illustrate overall uncertainty

reduction nearby observation wells while the joint inversion result produces lower

uncertainty between observation wells due to the additional measurements from SP and MT
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Figure 2.5: (a) True lnK field. The lnK estimation from (b) single and (c) joint inversion.
Posterior std. from (d) single and (e) joint inversion. Scatter plots of Head from (f) single
and (g) joint inversion, of well core from (h) single and (i) joint inversion; in Case 2, K
and ρ fields are independently generated to ensure no specific relationship between the two
fields.
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Figure 2.6: (a) True ln ρ field. The ln ρ estimation from (b) single and (c) joint inversion.
Posterior std. from (d) single and (e) joint inversion. Scatter plots of amplitude from (f)
single and (g) joint inversion, of phase from (h) single and (i) joint inversion; in Case 2, K
and ρ fields are independently generated to ensure no specific relationship between the two
fields.
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surveys. The joint inversion result identifies the high-low conductivity variation below the

observation wells due to the coverage of the MT survey and the uncertainty map confirms

the increased accuracy of the estimation up to a depth of 400 m. The scatter plots of

data fitting are presented in Figure 2.5 showing the data are fitted reasonably within the

predefined measurement error levels. The cR/Q2 criteria (Kitanidis 1991), which is an

optimal structure (hyper) parameter selection method in the Bayesian framework, was also

performed to check the validity of the parameter selection in this study.

Figure 2.6 represents the estimation of ln ρ by the depth of 500 m. The first figure

shows the true ln ρ field, and the other figures show the estimated ln ρ by single and joint

inversions, respectively. The RMSE of estimated ln ρ from single inversion is 0.499 and

0.464, respectively. The ln ρ joint inversion of case 2-1 improved the element-wise RMSE

by 7.1% without the one-to-one petrophysical relationship between unknowns.

The posterior standard deviation plots in Figure 2.6 explain that the joint inversion has

lower uncertainty for the overall domain and can have a high-resolution interval between

the depth of 0 m and 250 m. With both methods, the PCGA in case 2 can also estimate

ln ρ fields that are similar to the true value within the range between 0 and 500 m. As in

case 1, the joint inversion of case 2 can more accurately reproduce the resistivity field of

which the depth near the surface and observation wells.

2.4.3 Additional Tests

We generate additional six hydraulic conductivity and resistivity fields to validate our

proposed method further. The first three hydraulic conductivity and resistivity fields are

created with a one-to-one petrophysical relationship (Case 1) and the other three fields

are generated independently (Case 2) as in the previous sections. For each case, three

examples in total are created, one using the exponential kernel as in previous results of

Case 1-1 and Case 2-1 and the other two examples generated by the Gaussian kernel in

order to test different covariance models. Figures 2.7 and 2.8 show the lnK estimates

and their corresponding uncertainty results, respectively. As observed in the previous
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sections, the hydraulic conductivity estimate is consistently better than those from the

single inversion and even comparable to the joint inversion results when we can access the

“true” petrophysical relationship.

For comparison across all the tests with different ranges of hydraulic conductivity and

resistivity, we also compute the normalized RMSE (NRMSE) as:

NRMSE =
RMSE

ymax − ymin
(2.34)

where ymax is the maximum value of the observations and ymin is the minimum value of the

observations. The RMSE and NRMSE of lnK estimation and the (relative) improvement

of the joint inversion results with respect to those from the single inversion are shown in

Table 2.2. The average improvements from our proposed joint inversion approach for Case

1 and Case 2 are 25.8% and 25.4 %, respectively.

Table 2.2: RMSE and NRMSE of lnK estimation.

RMSE (ln (m/d)) / NRMSE (-)

Cases Single Inv.
Joint Inv.
with SP

Joint Inv.
with petrophysical

Improvement
(%)

Case 1-1 2.25 / 0.29 1.09 / 0.14 0.93 / 0.12 51.6
Case 1-2 0.89 / 0.14 0.78 / 0.12 0.48 / 0.07 13.0
Case 1-3 1.40 / 0.25 1.13 / 0.20 0.83 / 0.15 19.7
Case 1-4 0.85 / 0.16 0.67 / 0.12 0.82 / 0.15 20.9

Case 2-1 1.10 / 0.18 0.73 / 0.12 - 33.9
Case 2-2 0.74 / 0.17 0.62 / 0.14 - 17.0
Case 2-3 0.93 / 0.15 0.85 / 0.13 - 8.2
Case 2-4 0.92 / 0.25 0.64 / 0.17 - 30.0

Figure 2.9 presents the estimates of ln ρ from the single MT and joint inversions. Overall,

the proposed joint inversion strategy produces slightly better results than those from the

single MT inversion due to the additional information from hydrogeological data sets and SP

measurements while both single and joint inversions provide reasonable estimations. This is

because the MT survey can image deeper subsurface and the drastic improvement observed

in the hydraulic conductivity estimation is not expected in the resistivity estimation,
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Figure 2.7: The lnK estimations for (A) Case 1: unknown K and ρ fields generated from
the petrophysical relationship and (B) Case 2: independently generated K and ρ fields;
(a)-(c) True lnK fields. lnK estimations from (d)-(f) single inversion, (g)-(i) the proposed
joint inversion, and (j)-(l) joint inversion with petrophysical relationship.
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Figure 2.8: The Uncertainties of lnK for (A) Case 1: unknown K and ρ fields generated
from the petrophysical relationship and (B) Case 2: independently generated K and ρ
fields; the uncertainties from (a)-(c) single inversion, (d)-(f) the proposed joint inversion,
and (g)-(i) joint inversion with petrophysical relationship.

especially in the deeper region. Figure 2.10 represents the uncertainty plots of the resistivity

estimation for petrophysically related and independently created unknown fields. Because

of the broader range of the MT survey, the uncertainty reduction in the resistivity estimates

is more widely observed than the uncertainty reduction in the hydraulic conductivity

estimation as in Figure 2.8. Still, the proposed joint inversion provides uncertainty reduction

deeper through additional information from observation wells and SP data. Note that

the use of the true petrophysical relationship (Figure 2.8 (a)) can reduce the estimation

uncertainty further because we constrain the relationship at every location of the aquifer

during the inversion. Of course, the “true” petrophysical relationship will not be available

in practice and all the numerical tests illustrate the effectiveness of SP-based joint inversion

without any petrophysical assumptions.
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Figure 2.9: The ln ρ estimations for (A) Case 1: unknown K and ρ fields generated from
the petrophysical relationship and (B) Case 2: independently generated K and ρ fields;
(a)-(c) True ln ρ fields. ln ρ estimations from (d)-(f) single inversion, (g)-(i) the proposed
joint inversion, and (j)-(l) joint inversion with petrophysical relationship.
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Figure 2.10: The Uncertainties of ln ρ for (A) Case 1: unknown K and ρ fields generated
from the petrophysical relationship and (B) Case 2: independently generated K and ρ
fields; the uncertainties from (a)-(c) single inversion, (d)-(f) the proposed joint inversion,
and (g)-(i) joint inversion with petrophysical relationship.

2.5 Concluding Remarks

This paper examines a new joint inversion strategy utilizing self-potential data, hydraulic

head, and MT data set for estimating hydraulic conductivity and resistivity of a deep aquifer

formation that exceeds typical hydrogeological investigations. The joint inversion only needs

the forward models of MT, self-potential, and groundwater flow with associated data sets

without assuming any petrophysical relationship between hydrogeological variables. The

need for such a relationship is eliminated for the joint hydrogeophysical inversion by using

the self-potential equation utilizing self-potential surveys to link hydraulic conductivity and

resistivity. The joint inversion estimates hydraulic conductivity and electrical resistivity

fields simultaneously, by using hydraulic head and core data from observation wells, self-

potential data from surface acquisition and the wells, and MT data from MT receivers.

Several subsurface examples for different spatial models are tested to illustrate the

effectiveness of the proposed method. For each experimental example, the joint inversion
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results are compared against the single inversion results in which hydraulic conductivity or

resistivity are estimated independently by using a single forward model for the former, and

associated observations for the latter.

The subsurface examples are considered for two cases, one with petrophysically related

and the other with independently generated hydraulic conductivity and resistivity fields. It

is shown that regardless of the use of the petrophysical relationship in the data generation,

the joint inversion consistently produces estimations close to the true fields up to the depth

of 500 m, whereas the single inversion is limited to identifying the subsurface properties

only around the wells for hydraulic conductivity and up to the depth of 250 m for the

resistivity. For the hydraulic conductivity estimation, the posterior standard deviation in

the single inversions shows low uncertainty zones only nearby observation wells and abrupt

increases in uncertainty below 250 m. On the other hand, the joint inversions produce

wide and deeper low uncertainty zones across and below the wells. For the resistivity

estimation, the joint inversion shows a deeper and larger uncertainty reduction than the

single inversion. Additionally, for the case where the petrophysical relationship is used for

the data generation, the joint inversion shows close agreement with results that are obtained

by the proposed joint approach utilizing the self-potential survey.

To achieve the results presented in this paper, we use a computing workstation

equipped with 48 cores and 190 GM RAM within a high-performance computing cluster

for conducting the inverse modeling. The numbers of principal components for the PCGA

inversion were set to 200 and 400 for single and joint inversion (200 each for hydraulic

conductivity and resistivity), respectively. The single lnK estimation inversions using

the groundwater equation required 4 iterations on average and took about 32 seconds to

converge, and the single ln ρ inversions using the MT forward solver needed 5 iterations

and took 65 minutes in average. The single inversion executed about 200 forward model

runs for each iteration to be converged. The joint inversion of lnK and ln ρ took about 150

minutes with 6 iterations on average with the number of joint forward model runs, which

consists of groundwater, SP, and MT models, to be about 200 times for each iteration.
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This illustrates the computational efficiency of the current proposed approach for deep

aquifer characterization using joint data sets, which can scale suitably to three-dimensional

applications (Lee et al. 2016).

The current paper presents and illustrates a potential strategy to address the

current limitation of unknown or uncertain petrophysical relationships for deep aquifer

characterization, using a combination of hydrogeophysical and hydrogeological data sets.

Additional validation studies using field data are needed to validate the proposed method

further. It is important to note that, even though this paper demonstrates a combination

of MT, SP, and hydrogeological data to prove the concept of the proposed methodology,

the methodological framework is transferable to other combinations of data types. To

this end, different combinations of geophysical data sets could be explored, such as 3D

electrical resistivity tomography data (ERT) instead of MT data, or active seismic data

and/or ambient seismic noise data combined with slightly different parameterizations.

2.6 Open Research

The software for the inverse model (version 1.0.0) used for the forward and inverse model for

hydraulic head-SP-MT data is preserved at https://doi.org/10.5281/zenodo.7869449,

available via open access and developed openly at https://github.com/yhseo0321/

Inverse_Modeling Seo (2023).

Version 0.1.0 of the pyPCGA (Python library for Principal Component Geostatistical

Approach) used for estimating prior with matrix-free geostatistical inverse modeling is

preserved at https://doi.org/10.5281/zenodo.7870032, available via open access and

developed openly at https://github.com/jonghyunharrylee/pyPCGA Lee et al. (2023).
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Chapter 3

Development of a reliable hydraulic conductivity

upscaling tool for high dimensional groundwater

flow models

Note: This section of the dissertation will be submitted to a journal with Peter K.

Kitanidis, Massimo Rolle, and Jonghyun Lee.

Abstract

Porous geologic formations exhibit complex heterogeneity that is critical in groundwater

flow and transport processes. Specifically, the representation of hydraulic conductivity at

the appropriate scale is the first step for constructing a numerical groundwater model for

field applications. In this work, we revisit the hydraulic conductivity upscaling approach

originally proposed by Kitanidis (Kitanidis 1990) and reformulate it to a multi-block

upscaling method in a computationally efficient and scalable way. The formulation of

upscaling is performed in a spectral domain with matrix-free implementation and the

Kronecker product combined with a fast Fourier transform can accelerate the construction of

preconditioners and the solution of the upscaling equations at a linear scalable computation

cost. This leads us to compute upscaled hydraulic conductivity fields at any scale from the

fine-resolution one in a few minutes on a modern desktop computation. Second, we test our

accelerated approach under various conditions beyond those assumed in analytic derivations,
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including the hydraulic conductivity field with high conductivity inclusions, and compare

simulated head fluctuations using fine-scale descriptions of conductivity with their coarse-

scale modeling counterparts. High-dimensional 3D fine-scale hydraulic conductivities and its

upscaled tensors at different scales are computed to show the accuracy and scalability of the

upscaling approach. Through various numerical experiments, we illustrate what information

is preserved when using a coarser grid and also compare with the performance of widely-used

geometric mean averaging to show the accuracy of our method. Lastly, we offer an efficient

computational tool to allow field practitioners to compute upscaled hydraulic conductivity

values in a tensor form that accounts for anisotropy, from fine-resolution ones. The code can

be easily linked to the open-source groundwater modeling software, and USGS MODFLOW

6 is used in this study to evaluate the fine-scale and upscaled hydraulic conductivity field

to compute hydraulic heads. The analysis provides important insights into the type of grid

appropriate for applications like groundwater supply and contaminant cleanup.

3.1 Introduction

Geologic formations display complex and irregular geometric structures at various scales.

Representing the heterogeneity and anisotropy of porous media is essential to describe

groundwater flow and transport processes accurately. However, this complexity in porous

media paradoxically challenges groundwater modeling. Numerical methods are required

to solve the groundwater flow equation with an appropriate level of spatial discretization

to account for the heterogeneity in hydraulic conductivity. Furthermore, large spatial

variability in hydraulic conductivity leads to difficulties in solving the groundwater

equation for two reasons (Dykaar and Kitanidis 1992a). First, high variability in

hydraulic conductivity leads to an ill-conditioned matrix in solving the differential equation

(Borcea and Papanicolaou 1997). Second, the high-resolution grid goes easily beyond the

performance of a personal computer, and one may need to resort to high-performance

computing clusters.
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The issues from the complexity of natural porous media, the limitation of computing

resources, and the need to extrapolate from the Darcy or measurement scale raise the

necessity of hydraulic conductivity assignment to a valid scale. In other words, groundwater

modeling requires upscaling the hydraulic conductivity field to the modeling grid at the

desired scale, usually much larger than the Darcy or measurement scale. By minimizing the

loss of information in the process of upscaling conductivities, the groundwater simulation

with an upscaled grid should reproduce fluctuations of heads as close to the results of the

fine-grid model as possible. Representing hydraulic conductivity appropriately at different

scales is the first step for constructing a numerical groundwater model for field applications.

Upscaling hydraulic conductivity has been studied for the past few decades. These

studies vary from those that apply simple average analytical methods to those that

utilize numerical methods involving partial differential equations. Comprehensive reviews

provided insights into the advantages and limitations of upscaling techniques from each

point of view (Wen and Gómez-Hernández 1996; Kitanidis 1997; Renard and De Marsily

1997; Sanchez-Vila et al. 2006). Wen and Gómez-Hernández (1996) reviewed upscaling

methods for saturated medium and categorized it as local, non-local, grid geometry,

and direct techniques. Upscaling studies also were classified as heuristic, deterministic,

and the stochastic method (Renard and De Marsily 1997). Sanchez-Vila et al. (2006)

reviewed upscaling research according to flow configurations, which are mean parallel

flow, convergent flow, etc. Kitanidis (1997) described the upscaling problem from two

perspectives: conditions for the blocks to be regarded as homogeneous and conductivity

values to be assigned in the blocks for representing subgrid variability in the numerical

groundwater modeling. Dagan (1982) and Kitanidis (1990) provided considerations of the

conditions for the effective conductivity problem. Kitanidis (1990) derived a method for the

effective conductivity under an assumption of gradually varying flow with periodic boundary

conditions by matching up to the second moments of local flow conditions, the so-called

method of moments. (Dykaar and Kitanidis 1992a,b) extends the approach of Kitanidis

(1990) using a computationally accurate spectral approach. They focus on the upscaling of
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a stationary heterogeneous hydraulic conductivity field to a hydraulic conductivity tensor

and comparing their results with those from other approaches.

While most previous approaches focus on single block upscaling, i.e., upscaling

over multiple blocks to a single anisotropic hydraulic conductivity (a tensor), hydraulic

conductivity field upscaling from a fine resolution field to coarse-scale field is also studied

(e.g., Durlofsky 1992). With advances in geophysics and data collection technologies,

high-resolution subsurface imaging has been made possible (Lee et al. 2016; Hochstetler

et al. 2016; Seo et al. 2023) and assigning subsurface parameters such as hydraulic

conductivity at a larger scale that produces similar subsurface states, such as hydraulic head

and contaminant concentration distributions, can save computation time and accelerate

subsequent subsurface managements such as groundwater supply and contaminant removal.

Thus, parameter upscaling approaches that guarantees reasonable accuracy can assist

researchers and engineers who cannot afford high-performance computing resources to easily

study subsurface phenomena with different, complex configurations and support decision-

makers.

In this paper, we apply the hydraulic conductivity upscaling approach of Kitanidis

(1990); Dykaar and Kitanidis (1992a,b) and advance their approach with faster

implementation so that the approach can upscale fine-resolution isotropic hydraulic

conductivity fields, from site characterization campaign (Lee and Kitanidis 2014; Lee et al.

2016, e.g), into coarse-resolution “equivalent” conductivity tensors. We test our approach

with high-dimensional 3D fine-scale model upscaling examples and compare fine-scale head

fluctuations with coarse-scale counterparts. We investigate how robust our proposed tool

can work by considering non-Gaussian and large-variance fields. The approach is packaged

into an efficient open-source computational tool so researchers and field practitioners can

test hydraulic conductivity upscaling for their modeling purposes.
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3.2 Methods

3.2.1 Hydraulic Conductivity Upscaling

The effective conductivity from a three-dimensional, isotropic, and stationary hydraulic

conductivity field can be computed using a method of volume averaging and spatial moment

matching (Kitanidis 1990). In this section, the resulting upscaling equation is briefly

reviewed. We start with the governing equation describing fluid flow through a porous

medium at the Darcy scale:

∇ · [K (x)∇h(x, t)] = S
∂h(x, t)

∂t
(3.1)

where x = (x1, x2, x3) is the spatial-coordinates vector [L], K (x) is the hydraulic

conductivity tensor [L/T ], S is specific storativity [1/L], and h is the hydraulic head [L].

The objective of hydraulic conductivity upscaling is to find an “equivalent” homogeneous

tensor at a coarser scale from the representation of the fine-scale heterogeneous medium.

With the effective conductivity tensor Ke [L/T ], Equation 3.1 then becomes

∇ · [Ke∇h(x, t)] = S
∂h(x, t)

∂t
(3.2)

Equation 3.2 can be used, among other things, to accelerate computation. When the spatial

variability in K (x) is large, an ill-conditioned matrix system arises from the discretization

of Equation 3.1 (Borcea and Papanicolaou 1997), and solving the system with effective

hydraulic conductivity may be preferred or assisted for constructing preconditioners.

The effective conductivity is determined by the moment method in a two-step procedure

(Kitanidis 1990). In the first step, the following diffusion equations are solved for

“intermediate” functions gi(x) for i = 1, · · · , d d is the dimension of the flow domain:

∇ ·
[
K (x)∇gi(x)

]
= ∇ · ki(x) (3.3)
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where ki is the i-th column of K. The obtained function gi is used to determine the effective

conductivity tensor Ke in the second step:

Ke
ij = − 1

2V

∫ (
ki · ∇gj + kj · ∇gi

)
dx+ K̄ij (3.4)

where K̄ij is the spatial average of the original tensor element Kij and V is the volume

of an element we perform the upscaling. In this study, we assume the original finely

resolved hydraulic conductivity field that can be modeled as a locally isotropic heterogeneous

medium and we will use the isotropic hydraulic conductivity K(x) with the spatially variable

hydraulic conductivity field discretized and defined on a numerical grid as K henceforce.

Then, Equations 3.3 and 3.4 become respectively,

d∑
p=1

∂

∂xp

(
K
∂gi

∂xp

)
=
∂K

∂xi
(3.5)

Ke
ij = − 1

2V

∫
K

(
∂gj

∂xi
+
∂gi

∂xj

)
dx+ K̄δij (3.6)

where δij is the Kronecker delta, i.e, for i = j, δij = 0 otherwise. Note that the same

upscaling equation can be derived from multiscale expansion methods (Bensoussan et al.

2011; Bakhvalov and Panasenko 2012) and theoretical error bounds |h−he| can be obtained.

Choosing boundary conditions for Equation 3.5 is an issue. Here we choose periodic

boundary conditions because they restrict the flow the least and allow a solution using

spectral methods.

3.2.2 Numerical Approach for Upscaling

In this section, we reformulate the upscaling equation 3.3 in a matrix level expressed in the

form of Ax = b. This reformulation allows us to apply iterative solvers that only need

a matrix-vector product Ax without directly constructing the matrix A. The use of Fast

Fourier Transform (FFT) and Kronecker products accelerates the computation of matrix-
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vector products. Additionally, we propose a computationally efficient preconditioner to

further reduce the number of iterations required. To solve the Equations 3.3 and 3.4, we

use a spectral approach by performing Fourier transforms. We first rewrite K and gi with

their respective truncated Fourier expansion:

K(x) ≈
∑

|k|≤kc

K̂ke
i2πx·f (3.7)

gi(x) ≈
∑

|k|≤kc

ĝi
ke

i2πx·f (3.8)

where K̂k and ĝk are the Fourier coefficients of K and g corresponding to the wave number

and frequency vector k = (k1, · · · ,kd) and f = (f1, · · · , fd), respectively, and kc is the

cutoff wave number vector of (kc1, · · · , kcd) with the dimension d ∈ (1, 2, 3). For example,

implementation on discrete grids with kc = N c/2 for all directions and let m = 2πf is as

follows:

K =

Nc−1∑
k=0

K̂ke
imx, mi =

(
0, 1, ...,

N c

2
,−N

c

2
+ 1, ...,−1

)
(3.9)

which can be expressed in a matrix from:

K̂ = FK, K = F∗K̂ (3.10)

where F and F∗ are d-dimensional discrete Fourier Transformation (DFT) and inverse DFT

matrices, respectively and d-dimensional DFT can be written as

F =

d⊗
i=1

Fi = F1 ⊗ · · · ⊗ Fd (3.11)

where Fi is the 1D DFT matrix along i-th direction,
⊗d

i=1 indicates d times Kronecker

product of a matrix, e.g., F1 ⊗ F2 ⊗ F3 for 3D. Then, Equation 3.5 can be expressed as

Aĝi = im ◦ K̂ (3.12)

60



where ◦ is the Hadamard product or element-by-element multiplication, Now we build an

equation to get ĝi as the form of Ax = b, and the matrix A is computed as

A = −DmFDKF∗Dm = −
d∑

i=1

Dmi

(
d⊗

i=1

Fi

)
DK

(
d⊗

i=1

F∗
i

)
Dmi

(3.13)

where Dm and DK are a diagonal matrix with the entries of the vector m and K as the

diagonal entries, respectively.

To solve the matrix system in Equation 3.12 efficiently, one can avoid direct construction

of the matrix A and apply iterative linear solvers that only require a fast computation of

matrix-vector product, i.e., Av where v is any arbitrary N × 1 vector (Saad 2003). Then,

the matrix-vector product Av can be further accelerated using the property of Kronecker

product and using FFT and inverse FFT with a computational cost of N log(N) (Trefethen

2000). That is, Equation 3.12 can be solved at an almost linear cost at each iteration of

Krylov solver by repeating of FFT (and inverse FFT) as in 3.13, for example, in 2D:

(F⊗ F)v = (F⊗ F) vec (V) = vec(FVFT ) (3.14)

where V is a matrix whose columns (or rows depending on the programming language)

are filled from v with its element order via the matricization and vec indicates is the

vectorization, i.e., reshaping, operator converting V back to v. To reduce the number of

iterations further when solving Equation 3.12, a simple preconditioner matrix P is tested

in this work as:

P = −
d∑

i=1

D1/mi

(
d⊗

i=1

F

)
D1/K

(
d⊗

i=1

F∗

)
D1/mi

(3.15)

where D1/m and D1/k are a diagonal matrix with the entries of the vector from the

reciprocal of m and k, i.e., 1/m and 1/K, as the diagonal entries, respectively. The

computational cost for the preconditioner construction is the same as the matrix-vector

Av construction above and it is exact, i.e., P = A−1, for d = 1.
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The resulting method takes approximately 3 minutes to upscale from 1000 × 1000

heterogeneous hydraulic conductivity field to 10 × 10 Ke tensors and about 20 minutes for

the 3D upscaling case of 2003 isotropic K field to 503 Ke tensors on a personal computer

equipped with Intel 2.80GHz CPU and 32 GB RAM. Computational time and scalability

of the proposed method are explained in detail in Section 3.3.2.3.

3.3 Numerical Results

3.3.1 Model Problems and Configurations

To test the accuracy and scalability of the proposed upscaling approach, we compute

the upscaled hydraulic conductivity tensor from the fine-scale hydraulic conductivity and

compare the hydraulic head results from the two hydraulic conductivity distributions. We

assume the fine-scale “true” heterogeneous isotropic hydraulic conductivity is characterized

at a representative element volume level and aims at upscaling to larger scales. Two-

dimensional fine-scale hydraulic conductivity fields are considered first to investigate the

effect of variability and anisotropy to the accuracy of the upscaling. For this, four hydraulic

conductivity generation models are considered here for Gaussian random fields with mild

(Case 1) and high (Case 2) heterogeneity with anisotropy (Case 3). In addition, high-K

inclusions in homogeneous background (Case 4) are generated.

Figure 3.1(a) shows the groundwater model domain and associated upscaling scheme

in which the hydraulic conductivity defined on the original fine grids is upscaled to coarse

blocks that consist of hydraulic conductivity tensors with minimizing a loss of information.

The model domain Ω is set to [0, 1000m] × [0, 1000m] with a constant head boundary of

10 m and 0 m on the west and east side, respectively. We utilize USGS MODFLOW 6

(Langevin et al. 2022) for simulating hydraulic head distributions from generated hydraulic

conductivity fields and compare 1000 × 1000 grid of hydraulic head results with 10 × 10, 20

× 20, 50 × 50, and 100 × 100 grids of hydraulic head results from each upscaled hydraulic

conductivity. Figure 3.1(b) and (c) illustrate an example of 50 × 50 blocks-to-one hydraulic
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(a) Model Domain of Fine Grid and Tensor Form of Upscaled Grid

(b) Fine Grid Example (c) Upscaled Grid Example

Figure 3.1: Schematic of the modeling domain and upscaling; (a) Model domain in of fine
grid and tensor form of upscaling grid, (b) Hydraulic conductivity field in the fine grid, (c)
tensor Ke in an upscaled grid.
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conductivity tensor upscaling in which the fine-scale realization on the 1000 × 1000 grid

is upscaled to the tensor form of hydraulic conductivity on the 20 × 20 grid. To apply

computed anisotropic hydraulic conductivity tensor field to the groundwater flow model,

where the principal directions of anisotropy K are not everywhere aligned with the grid,

we use the “XT3D” option in the Node Property Flow (NPF) package of MODFLOW 6

(Provost et al. 2017). The “XT3D” option in MODFLOW 6 takes the anisotropic K values

in the principal directions, i.e., K11, K22, and K33 and the rotational angles of its axis,

i.e., ANGLE1 and ANGLE2, from the model domain grid. These inputs are computed

from the eigenvalue analysis of the upscaled Ke tensor and assigned to each grid cell in

MODFLOW6.

To evaluate the upscaling performance further in the 3D modeling case, we generate

two cases of 3D hydraulic conductivity fields from Gaussian (Case 6) and non-Gaussian

with high K inclusions (Case 7). The tests for 3D modeling upscale the fine-scale isotropic

hydraulic conductivity structure to the anisotropic hydraulic conductivity tensor structure

and simulated MODFLOW 6 with constant head boundaries of 10 m difference between left

and right faces. The cubic domain of the 200× 200× 200 grid is upscaled to the 50× 50× 50

grid, and hydraulic head distributions are compared to examine the accuracy and scalability

of the upscaling tool in the 3D case. Table 3.1 lists modeling domain configurations and

generation models and their parameters for all 6 cases.

3.3.2 2D Upscaling Results

We apply the proposed method to upscale hydraulic conductivity fields to various sizes of the

grid field before simulating the groundwater model as shown in Figure 3.2. The fine-scale,

1000 × 1000 grid hydraulic conductivity field is generated from a log-normal distribution

using a Gaussian covariance model. The hydraulic conductivity (called Case 1) is generated

from the Gaussian kernel, σ2 exp(−|xi−xj |2/l2), with standard deviation σ = 0.5 and scale

parameter l = [lx = 250m, ly = 50m] and the K field (Case 2) uses the same kernel with

σ = 2. Hydraulic conductivity in Case 3 is generated from the same covariance model used
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Table 3.1: Parameter summary used in hydraulic conductivity fields.

Description Values

Domain width and height (Lx, Ly) 1000 m,1000 m
Grid size in x and y (∆x,∆y) 1 m, 1 m

Geostatistical Parameters for 2D K Fields (Cases 1-3)
Covariance function q(x, x′) = σ2 exp(−|xi − xj |2/l2)

Scale parameters l = lx, ly 250 m, 50 m
variance σ2 0.52 (Case 1), 2.02 (Case 2), 2.02 (Case 3)

Rotation angle θ 0◦ (Case 1), 0◦ (Case 2), −45◦ (Case 3)

Generation Parameters (Cases 4-5)
Background and inclusion K values 1 m/d, 100 m/d

Density of inclusions 0.18 (Case 4), 0.30 (Case 5)
Minimum and maximum inclusion length 150 m, 375 m

Rotation angle θ 45◦

Geostatistical Parameters for 3D K Fields (Cases 6-7)
Covariance function q(x, x′) = σ2 exp(−|xi − xj |2/l2)

Scale parameters l = lx, ly, lz 50 m, 112 m, 50 m (Case 6)
variance σ2 0.152

Background and inclusion K values 1 m/d, 100 m/d (Case 7)
Density of inclusions 0.05

Minimum and maximum inclusion length 60 m, 150 m
Rotation angle θ 45◦

in Case 2 but rotated 45 degrees to account for the anisotropy in the Gaussian field. Lastly,

a non-Gaussian K field is generated with high K anisotropic inclusion of 100 m/day in the

background homogeneous media of K = 1 m/day with an inclusion ratio of 18% to the total

domain defined during the generation.

Figure 3.2 shows the fine-scale hydraulic conductivity fields generated from different

statistical models and their upscaled hydraulic conductivity of 20 × 20 grid in the tensor

form with Ke
xx, K

e
xy, and Ke

yy, for four cases considered here. Figure 3.2 (a) shows the

mildly heterogeneous K field and upscaled 1000 × 1000 grid to the tensor form of 20 × 20

grids. The range of the fine-scale reference K values is between -0.6 and 0.6 in the log scale

and the associated Ke tensors in principal directions, i.e., Ke
xx and Ke

yy, exhibit similar

patterns as in the reference K field with negligible Ke
xy values as expected. Simulated

hydraulic heads will be presented and analyzed in detail in the next subsection. Figure 3.2
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(a) Case1 (b) Case2

(c) Case3 (d) Case4
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Figure 3.2: Reference log10K fields and computed upscaling tensor Kxx, Kxy, and Kyy;
(a) Case 1: mildly heterogeneous field, (b) Case 2: highly heterogeneous field, (c) Case 3:
highly heterogeneous, anisotropy field, and (d) Case 4: high permeable inclusions.
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(b) presents the upscaling results for high variable reference K field varying on the 4 orders

of magnitude and Ke
xy is still close to zero.

Figure 3.2 (c) shows the fine-scale reference and upscaled K fields whose principal

directions are rotated by clockwise 45 degrees. 50 m × 50 m block-to-one tensor upscaling

results in non-zero Ke
xy values in some locations while Ke

xy is close to zero in most locations.

For most practical purposes, the upscaled conductivity is isotropic.

In Figure 3.2 (d), the hydraulic conductivity field with thin high permeable inclusions

(Case 4) is upscaled to the coarse-scale Ke tensors. Significant anisotropy in the structure

of the reference K produces high Ke
xy values in the upscaling tensors. Note that Ke

xy has

negative values because of the principal directions in K rotated counterclockwise 45 degrees

from the x-axis in the domain.

3.3.2.1 Accuracy of Upscaling

To evaluate the accuracy of the upscaling method, we compare the hydraulic heads

computed from the original fine-scale hydraulic conductivity with those obtained from the

upscaled hydraulic conductivity as presented in Figure 3.2. The 1000 ×1000 hydraulic

conductivity fields generated from the four different statistical models (i.e., Cases 1-4 in

Section 3.3.2) are upscaled to 10 × 10 (i.e., via 100 × 100 K blocks to a single Ke tensor),

20 × 20 (i.e., 50 × 50 K blocks to a single Ke tensor), 50 × 50 (i.e., 20 × 20 K blocks

to a single Ke tensor), and 100 × 100 (i.e., 10 × 10 K blocks to a single Ke tensor) grids

which are simulated through MODFLOW 6 as explained previously. In each case, 100

realizations of hydraulic conductivity fields were generated to test and analyze the accuracy

of the proposed upscaling results.

An example of simulated hydraulic heads computed from the reference fine-scale K

and upscaled Ke fields is presented in Figure 3.3. Overall, the upscaled hydraulic head

distributions are close to the reference high-resolution heads for all the cases considered here,

and high-frequency variation in hydraulic heads are gradually removed as the upscaling is

performed over larger areas. The groundwater flow simulation with the mildly heterogeneous

67



K field (Case 1) produces relatively uniformly spaced hydraulic heads gradually changing

from 10 m to 0 m following the boundary condition and all the upscaled hydraulic heads

including the 10 × 10 grid upscaling are similar to the fine-scale heads as expected. Highly

heterogeneous K fields (Cases 2 and 3) yield rapidly changing hydraulic heads as shown

in Figures 3.3 (b) and (c). For both cases, the results up to the 50 × 50 grid/20 × 20

block upscaling reproduce complex, rapidly changing hydraulic head distributions well.

While the 10 × 10 grid/100 × 100 block upscaling as well as 20 × 20 grid/50 × 50 block

upscaling results are deviated from the reference fine-scale heads especially around the

domain boundaries, the coarse-scale equivalent hydraulic conductivities overall produce

salient features in the fine-scale hydraulic heads. Note that in Case 3 the upscaling of the

rotated hydraulic conductivity field, where the principal direction is not aligned with the

modeling grid, results in non-negligible Ke
xy values to account for anisotropy as in Figure

3.3 (c). Lastly, the upscaled hydraulic head distributions for the non-Gaussian K field

with high permeable inclusions (Case 4) are shown in Figure 3.3 (d). The fine-scale head

distribution with small fluctuations is well captured in the upscaled head distributions,

which is explained by the high Ke
xy component from the inclusions in Figure 3.2 (d).
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Figure 3.3: Reference fine-scale (Kfine) and corresponding upscaled (Kupscale) hydraulic
head results for (a) mildly heterogeneous hydraulic conductivity field (Case 1), (b) highly
heterogeneous hydraulic conductivity field (Case 2), (c) highly heterogeneous hydraulic
conductivity field with rotation (Case 3) and (d) homogeneous hydraulic conductivity field
with high permeable inclusions (Case 4).
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The accuracy of the upscaled groundwater modeling is further examined by the element-

wise root-mean-squared error (RMSE):

RMSE =

√√√√ 1

m

m∑
i=1

(
hupscaledi − hfinei

)2
(3.16)

where hfinei is i -th element of hydraulic head in the fine grid and hupscaledi is the hydraulic

head in the upscaled grid corresponding the location of the i -th element in the fine grid.

Figure 3.4 shows the RMSE boxplots computed over 100 K field realizations for each

case under different upscale configurations. Overall, RMSE and its variability increase

as upscaling is performed on larger areas. RMSE also increases when the original K field

is generated with larger variability (i.e., σ2 = 0.5 Case 1 vs σ2 = 2.0 in Case 2/Case 3)

as expected. For the Gaussian random field cases (Cases 1-3), the maximum RMSE values

are less than 0.2 until we increase the upscaling area up to the 50 × 50 grid (i.e., 20 x 20

to 1 block upscaling). The error from 10 × 10 and 20 × 20 grid upscaling becomes large

because of an inherent head mismatch affected by constant boundary conditions used in

MODFLOW 6. By default, MODFLOW 6 assigns the constant boundary values to the

center of the finite volume blocks (i.e., cell-centered finite volume) whose face meets the

boundary, thus 10 × 10 and 20 × 20 grid configurations introduce the bias on the Dirichlet

boundary unless one applies a ghost node cell-type approach. For Case 3, it is worth noting

that the error becomes larger when the principal directions of hydraulic conductivity are

not aligned with the domain discretization because of rotation in Case 3, however, the

accuracy difference between Case 2 and Case 3 is not significant for 50 × 50 grid (20 x

20 to 1 block) or smaller block upscaling. For Gaussian hydraulic conductivity cases, it is

shown that the upscaling error grows linearly with respect to the number of blocks until

the error from constant boundary conditions starts affecting the RMSE. The non-Gaussian

upscaling test (Case 4) has relatively larger errors because the upscaled single block cannot

fully describe complex small-scale flows associated with abrupt, two orders of changes in

K. However, once the upscaling area is large enough to contain the length of inclusion, the

70



effect of high K inclusions in the upscaling becomes smaller and the RMSE becomes similar

as we observed flatted RMSE from 50 × 50 to 10 × 10 grids in Figure 3.4 (d).
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Figure 3.4: boxplots of RMSE computed over 100 realizations with different upscaling
schemes of 100 × 100 blocks to a single Ke tensor (resulting 10 × 10 grid), 50 × 50 blocks
to a single Ke tensor (20 × 20 grid), 20 × 20 blocks to a single Ke tensor (50 × 50 grid),
and 10 × 10 blocks to a single Ke tensor (100 × 100 grid) for (a) mildly heterogeneous
hydraulic conductivity field (Case 1), (b) highly heterogeneous hydraulic conductivity field
(Case 2), (c) highly heterogeneous hydraulic conductivity field with rotation (Case 3) and
(d) homogeneous hydraulic conductivity field with high permeable inclusions (Case 4).
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3.3.2.2 Comparison with geometric mean upscaling

We further investigate the accuracy of the upscaling method by comparing the geometric

mean upscaling, a popular method. It has been shown that the effective hydraulic

conductivity under statistical configuration is equal to the geometric mean Kg of the

hydraulic conductivity in the two dimensional flow with isotropic, log-normally distributed

hydraulic conductivity fields (Matheron 1967; Gutjahr et al. 1978). The upscaling equation

for d dimension (Matheron 1967; Nœtinger 2000) is given by

Keff = KG

[
1 +

(
1

2
− 1

d

)
σ2logK

]
(3.17)

where σ2logK is the variance of the log-transformed hydraulic conductivity field. Dykaar and

Kitanidis (1992b) investigated how the effective hydraulic conductivity from the method

of moments converges to geometric mean according to integral scale and Equation 3.17

becomes the geometric mean for 2D (d=2) flow.

For detailed comparison, streamlines of the simulated flow are computed to complement

the analysis through hydraulic head comparison between tensor Ke and geometric mean

Kg. Streamlines have been used for transport simulation (e.g., Cirpka et al. 1999) and the

error in streamlines degrades the accuracy of the transport parameter upscaling (e.g., Lee

et al. 2018b). The governing equation for computing stream function (Frind and Matanga

1985) is given by

∇ · 1

|K|
K∇ψ(x) = ∂

∂xi

(
1

|K|
Kij

∂ψ

∂xj

)
= 0 (3.18)

where ψ is the stream function and |K| is the determinant of K. MODFLOW 6 is used to

solve Equation 3.18.

Figure 3.5 (a) - (d) show streamline and hydraulic head results for Cases 1-4, respectively.

The solid line represents the equipotential lines of head and stream function from the

upscaled tensor Ke and the dotted line represents those obtained from geometric mean Kg.

In general, both the tensor and geometric upscaling approaches reproduce hydraulic heads
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Figure 3.5: Reference fine-scale (Kfine) and corresponding upscaled (Kupscale) hydraulic
heads and streamlines for (a) mildly heterogeneous hydraulic conductivity field (Case 1),
(b) highly heterogeneous hydraulic conductivity field (Case 2), (c) highly heterogeneous
hydraulic conductivity field with rotation (Case 3) and (d) homogeneous hydraulic
conductivity field with high permeable inclusions (Case 4). Tensor-based (solid) and
geometric mean (dashed) approaches are applied.
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consistent with their finite-scale head distribution. In Case 1 with mildly heterogeneous

hydraulic conductivity, little difference in heads and streamlines is observed between

the tensor Ke and geometric mean Kg-based flow simulations for all different upscaling

resolution configurations. For Case 2, the highly heterogeneous case, and Case 3, the

rotated heterogeneous case, the results of the upscaled tensor field are almost identical to

those from the geometric mean field with slight differences for 10 × 10 and 20 × 20 grid

upscaling. 10 × 10 grid upscaling with tensor construction in Case 2 seems to be better

for honoring the stream function around the area where y is between 300 m and 500 m.

The high-K inclusion case in Figure 3.5 (d) shows upscaling results from high K inclusions,

which introduces high off-diagonal components Ke
xy. They show similar results until 50

× 50 grid simulation with 20 × 20 blocks to a block upscaling but larger differences are

observed for larger area upscaling. Because of the tensor computation, directional flows in

Case 4 with 10 × 10 and 20 × 20 grid upscaling are better captured, especially near the

boundaries. Table 3.2 summarizes RMSE between the fine-scale heads and the upscaled

heads from the upscaled tensor and geometric mean K for all the cases considered in our

study. The RMSE of the upscaled approach shows lower RMSE values than those from the

geometric mean consistently in every case.

Table 3.2: RMSE of the hydraulic heads from the upscaled tensor and geometric mean K.

Case 1 Case 2 Case 3 Case 4 Case 5

# of Grid Tensor Geo. mean Tensor Geo. mean Tensor Geo. mean Tensor Geo. mean Tensor Geo. mean

10x10 0.276 0.280 0.494 0.702 0.776 0.924 0.596 0.904 0.347 0.824

20x20 0.124 0.126 0.261 0.411 0.378 0.402 0.550 0.686 0.290 0.733

50x50 0.045 0.047 0.100 0.130 0.099 0.099 0.325 0.397 0.400 0.628

100x100 0.021 0.022 0.050 0.059 0.033 0.032 0.078 0.098 0.262 0.339

We further study the effect of inclusions on upscaling and a realization with the increased

density of high K inclusions is generated. Figure 3.6 examines the matching of hydraulic

head equipotential lines and streamlines from the tensor Ke and geometric mean Kg-based

upscaling over different areas. Figure 3.6 (a) shows the porous media of 1 m/d with high

hydraulic conductivity inclusion of 100 m/d that are randomly generated for the ratio

of 30% to the total domain, increased from the density 18% in Case 4. Figure 3.6 (b)
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Figure 3.6: Reference fine-scale (Kfine) and corresponding upscaled (Kupscale) hydraulic
heads and streamlines for homogeneous hydraulic conductivity field with increased high
permeable inclusions (Case 5). Tensor-based (solid) and geometric mean (dashed)
approaches are applied.
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illustrates the hydraulic head contour and streamlines of fine-scale hydraulic conductivity

and evenly spaced streamlines flowing diagonally upward due to the increased amount of

high K inclusions. 3.6 (c-f) shows contour lines of heads and streamlines obtained from

the upscaled tensor Ke (solid), and the geometric mean Kg (dashed). Overall, the upscaled

results from the tensor-based approach show better reproduction of fine-scale results and

because of strong directional flow from high permeable inclusions, bigger differences between

the two approaches are observed as the modeling grid becomes coarser with large area

upscaling. In Figure 3.6 (c), it is observed that the tensor-based approach can describe the

groundwater flow toward the top-right direction well even from the 10 × 10 grid with 100

× 100 block upscaling and has an advantage of direction flow reproduction on a coarse grid

due to the explicit off-diagonal component computation. The RMSE values are reported in

Table 3.2.

3.3.2.3 Scalability of Upscaling Algorithm

In this subsection, computational times for upscaling various sizes of the grid to one grid

cell are measured to investigate the scalability of the upscaling algorithm. To investigate

the scalability in this section, we use a computing workstation equipped with 48 cores and

128 GM RAM within a high-performance computing cluster for measuring computational

time and iterations. This experiment is conducted by CGS (Conjugate Gradient Squared

method) (Sonneveld 1989) and BICG (Biconjugate Gradient method) (Fletcher 2006) to

count the iteration numbers and record wall-clock times of the upscaling. 100 hydraulic

conductivity realizations are randomly generated following the statistical distributions in

Table 3.1 for modeling domains of 10 × 10, 20 × 20, 50 × 50, 100 × 100, 200 × 200, 300 ×

300, and 500 × 500 grids. All the generated grids are upscaled to one cell of the hydraulic

conductivity tensor to examine the scalability of the upscaling method.

Figure 3.7 (a) and (b) represent the number of iterations and upscaling time, respectively,

which are required to upscale the entire domain to one grid cell of the hydraulic conductivity

tensor. In Figure 3.7, the blue and black lines represent the iteration results of Case 1 and
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Figure 3.7: (a) the number of iterations required for upscaling and (b) the computation
wall-clock time for upscaling. 10 × 10, 20 × 20, 50 × 50, 100 × 100, 200 × 200, 300 × 300,
and 500 × 500 K blocks are upscaled to one single K tensor.

Case 2, respectively, and the upscaling is performed with (solid line) and without (dashed

line) the proposed preconditioner (in Equation 3.15). Because of higher heterogeneous K

field generation in Case 2, the condition number of the upscaling equation (matrix A in

Equation 3.13) becomes high requiring more number of iterations. Still, the use of the

preconditioner is effective and beneficial to reduce the number of iterations by more than

half especially when the upscaling size is large. Figure 3.7 (b) presents the measured wall-

clock time spent for upscaling. The upscaling time grows linearly with the upscaling grid

size for both cases.

3.3.3 3D Upscaling

Lastly, we test two examples of 3D hydraulic conductivity realizations in order to further

assess the accuracy of the upscaling approach for the 3D modeling situation. The numerical

experiment considers upscaling of 3D fine-scale, isotropic hydraulic conductivity field to

coarse-scale K tensors. With constant head boundaries of a 10 m difference between the

left and right faces, MODFLOW6 is simulated with fine-scale reference and coarse-scale

upscaled hydraulic conductivity fields. The first 3D case (Case 6) considers the fine-scale
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hydraulic conductivities on the 2003 grid generated from a log-normal distribution with a

Gaussian kernel of (0.15)2 exp(−r2/l2) and scale parameters l = [50 m, 112 m, 50 m] in the

cubic domain of 1km3. The second 3D case (Case 7) generated a 3D field of 1 m/day with

high hydraulic conductivity inclusions of 100 m/day, and the density of the inclusions is set

to 5%. The generated 2003 grid is upscaled to 503 K tensors and simulated hydraulic head

distributions are compared in Figure 3.8. The resulting method takes about 20 minutes for

the 3D upscaling case of 2003 isotropic K field to 503 K tensors.

Figure 3.8 represents the 3D hydraulic conductivity field and simulated hydraulic head

results on the reference fine-scale 2003 and the upscaled 503 grids. The left column of each

case represents hydraulic head distribution on the fine scale, and the right column shows

hydraulic heads from the upscaled K tensors. The horizontal head distributions at z = 100

m and the vertical head slices at x = 100 m are plotted to show the head patterns of the

fine-scale and upscaled grid for both cases. The hydraulic head contour of Case 6 shows

the mild meandering equipotential head lines from the log-normally distributed hydraulic

conductivity field similar to 2D head contours from Case 1 and Case 2. The upscaled

grid of 503 reproduces the hydraulic head results from the fine-scale grid with reasonable

accuracy. In Figure 3.8 (b), the hydraulic heads simulated from high permeable inclusion

K field exhibit more frequent small fluctuations than the Gaussian field in Case 6 and the

upscaling approach can produce the hydraulic head results close to the reference fine-scale

heads. These promising results indicate that the upscaling approach can be reliably and

efficiently applied with reasonable accuracy and fast execution for field case studies and

decision making, for example, the use of coarse-scale models for groundwater resources

supply and/or contaminant remediation which require more than thousands of model runs

(e.g., Drumheller et al. 2017; Lee et al. 2012).
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Figure 3.8: (a) 3D hydraulic conductivity field from Gaussian K field (Case 6) and (b) 3D
hydraulic conductivity field with high permeable inclusions (Case 7).
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3.4 Conclusion

This study has examined the hydraulic conductivity upscaling method that is proposed by

Kitanidis (1990) with MODFLOW 6 and developed an efficient open-source computational

tool for 2D and 3D modeling of groundwater flow. The fine-grid model usually requires a lot

of computations. The coarse grid has the advantage of decreasing computational costs, but

upscaling involves loss of information. The upscaling method presented here aims to reduce

the loss of information and perform relatively accurate modeling even on a coarse grid. This

method computes efficiently the hydraulic conductivity tensor. The groundwater model on

the upscaled grid with the computed tensor can reproduce the hydraulic head distribution

close to the accuracy that the fine-scale model can have. Using the upscaling method with

an assumption of a gradually varying flow, the fine-scale hydraulic conductivity field of the

fine-scale grid is upscaled to the coarse-scale grids in 2D and 3D modeling.

The fine-scale hydraulic conductivity realizations to be upscaled are randomly generated

to validate the upscaling method in a 1000 by 1000 grid. Four different realization types are

architecturally developed in the 2D upscaling investigation: (1) case 1 for mild heterogeneity

of the gradually varying flow, (2) case 2 for the increased heterogeneity for exploring

the impacts of K variability, (3) case 3 in which the identical realizations to case 2 are

rotated to validate the upscaling for XY-direction flow, and (4) case 4 for the effects of

high-K inclusions in homogeneous porous media. We have upscaled hydraulic conductivity

realizations from each case and simulated the groundwater model to compare the hydraulic

head associated with the upscaled hydraulic conductivity with the original groundwater

head in order to assess the accuracy of the upscaling approach.

We have evaluated the upscaling method by comparing the hydraulic head from the

upscaled grid with the original fine grid in terms of qualitative and quantitative perspectives.

The hydraulic head results from each case indicate that (1) case 1: the head is replicated

on all scales similar to the original grid in mild heterogeneity, and fine details begin to be

expressed at 20 by 20 scales, (2) case 2 and case 3: the effects of the high variability in

80



the hydraulic conductivity induce the complex meandering equipotential lines and require

50 by 50 grid to reproduce the original head accurately, (3) case 4: the high-K inclusions

cause slight fluctuations in the head contour, the upscaled grid of 100 by 100 can replicate

the details. To assess the upscaling results quantitatively, one hundred realizations for

each case are generated and upscaled to simulate the hydraulic heads that are evaluated

by RMSE. The RMSE boxplots find that the upscaled grid scale that can reproduce the

complex equipotential lines in detail has an RMSE of less than 0.2 for all cases. It implies

that the upscaling approach can deliver consistent performance in 2D modeling, requiring

different grid scales depending on the heterogeneity of the hydraulic conductivity.

We have measured the computing times and iterations to examine the scalability of

the upscaling approach. The hydraulic conductivity realization following the distributions

of Case 1 and Case 2 are generated on various grid sizes from 10 × 10 to 500 × 500

and upscaled to one cell of the hydraulic conductivity tensor. The results show that

the upscaling times and iteration increase log-linearly with the grid size to upscale and

the preconditioner can improve the upscaling process, especially in large grids. It is

demonstrated that the upscaling tool in this study can handle an increasing size of the

grid with efficiency and reliability. Moreover, to verify the applicability of the upscaling

tool to the 3D modeling, the hydraulic conductivity fields of 2003 grids are generated: (1)

Case 6 for log-normally distributed hydraulic conductivity field and (2) Case 7 for high

K-inclusions in 3D realization. The 3D hydraulic conductivity realizations are upscaled to

a 503 grid, and the hydraulic head results imply that the upscaling tool is able to have

stability in 3D modeling as well.

We have verified the robustness of the upscaling tool by comparing the hydraulic head

results of the upscaled tensor Ke and geometric mean Kg in 2D modeling. In addition,

streamlines useful for groundwater flow and contaminant transport research are compared

for the comparative analysis of the tensor Ke approach and geometric mean method. In the

high-resolution upscaling results for both methods, it is difficult to find a difference between

head contours and streamlines from the original grid results. In cases of high variability in
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hydraulic conductivity, the upscaled tensor Ke and geometric KG produce different results

in low-resolution grids. In the case of high K inclusions, the head and streamline results

showed a large difference between the two methods, and we increase the number of the

inclusions from 18% to 30% to confirm the effects of off-diagonal components in tensor Ke.

The results show that only the upscaled tensor Ke can simulate the flow of the up-right

direction in the low-resolution grid. In addition, the new method had a lower RMSE value

than the geometric mean in all cases and grid sizes. This study demonstrates that the

upscaling tool provides upscaled hydraulic conductivity, which ensures improved results in

various forms of hydraulic conductivity fields, and that the upscaled tensor Ke has a great

advantage, especially in groundwater modeling where the flow of XY-direction is dominant.

In the future study, it is expected that the upscaling tool using tensor Ke can be applied to

groundwater contaminant transport to provide simulation with fewer computational costs

and reliable results.

The code is available at https://github.com/jonghyunharrylee/k_upscaling.git

and cases presented in the paper can be reproduced from the code examples.
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Chapter 4

Development of the PISALE Codebase for

Simulating Flow and Transport in Large-scale

Coastal Aquifer

Note: This section of the dissertation is modified and extended from conference paper ICCFD11-2022-

1502 on Eleventh International Conference on Computational Fluid Dynamics (ICCFD11), Maui, Hawaii,

July 11-15, 2022.

Abstract

The solution of partial differential equations (PDEs) on modern high-performance

computing (HPC) platforms is essential to the continued success of groundwater flow and

transport modeling in Pacific islands where complex regional groundwater flow is governed

by highly heterogeneous volcanic rocks and dynamic interaction between freshwater and

seawater. For accurate simulations of complex groundwater flow processes in the Hawaiian

islands, the PISALE (Pacific Island Structured-AMR with ALE) software has been

developed to offer an innovative combination of advanced mathematical techniques such

as arbitrary Lagrangian-Eulerian method (ALE) and Adaptive Mesh Refinement (AMR).

The software uses parallel programming models to accelerate the time to solution and

dynamically adapt the grids using AMR. This allows for the solution of equations that

can reproduce the sharp freshwater-seawater interface in large-scale coast aquifers. In this
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work, we summarize our ongoing efforts to create a publicly available sustainable branch of

the software focused on the groundwater problem. The island-scale numerical groundwater

flow modeling will play an important role in predicting the sustainable yields and potential

contaminant transport for the volcanic aquifer systems and planning groundwater resources

management.

4.1 Introduction

Accurate simulation of density-driven flow and transport in coastal aquifers is crucial

for evaluation of fresh groundwater sustainability and reliable water supply design amid

climate change and associated sea level rise Kang et al. (2017). The numerical simulation

of the density-driven flow process becomes more challenging for the prediction of the

groundwater resources in Hawaii where complex groundwater flow processes governed

by highly heterogeneous volcanic rocks and dynamic interaction between freshwater and

seawater. We use the PISALE (Pacific Island Structured-AMR with ALE) code developed

by the University of Hawai‘i Koniges et al. (2015) (see also https://pisale.bitbucket.io/).

The project discussed here has developed a software toolkit aiming for accurate and scalable

simulations of groundwater flow in the Hawaiian islands. This PISALE project combines

advanced mathematical techniques for the solution of partial different equations (PDEs),

including parallel software tools to dynamically adapt the grids and special Lagrangian-flow

methods that allow for the solution of equations that can reproduce the sharp freshwater-

seawater interface observed in seawater monitoring locations in Hawai‘i Oki (2018). The

PISALE software is based on the techniques of Arbitrary Lagrangian Eulerian (ALE) Donea

et al. (2004) methods with Adaptive Mesh Refinement (AMR) Hornung and Kohn (2002) to

create a publicly available sustainable branch of the software. It is well known that the flow

and salinity transport should be locally mass conservative to avoid unphysically spurious

dispersion or oscillation especially when the flow is coupled with the transport system. The
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ALE-AMR method is formulated to ensure the local conservation of mass while preserving

the sharp interface between freshwater and seawater.

The development of ALE-AMR codes for solving Euler equations and enabling improved

efficiency in highly resolved 3D problems was pioneered by Anderson et al. (2004). This

work laid the foundation for further research and development in various fields.

In the field of laser/target effects, debris, and shrapnel generation, the ALE-AMR code

was used in several studies. Koniges et al. (2006) incorporated AMR into Lagrangian

hydrodynamics algorithms for modeling National Ignition Facility (NIF) experimental

designs, focusing on minimizing shrapnel generation and protecting optics. Koniges et al.

(2010) further developed the ALE-AMR code, creating a 3D multi-physics multi-material

code for modeling laser/target effects, including debris and shrapnel generation, using novel

numerical techniques.

For warm dense matter experiments and high-energy-density experiments with ion

beams, Koniges et al. (2013) adapted the ALE-AMR code to model experiments on the

NDCX II ion accelerator, addressing two-phase expansion and equation of state. Koniges

et al. (2016) used the ALE-AMR code to simulate complex targets for these experiments,

addressing surface tension and target fragmentation effects.

Diffusion equation solutions have also been a significant focus in the development of

ALE-AMR codes. Fisher et al. (2010) presented a method for solving the diffusion equation

in the ALE-AMR code to capture thermal conduction and radiative transport effects.

Fisher et al. (2015) later introduced a novel method for solving the diffusion equation

on a composite AMR mesh in ALE hydrocodes, enabling the implementation of radiation

transport and heat conduction in ALE-AMR. Regarding surface tension models and droplet

dynamics, Liu et al. (2017) implemented surface tension models in the ALE-AMR code,

focusing on the height function approach using volume fractions, which was chosen for

simulating droplet dynamics in extreme ultraviolet lithography.

In addition to these advancements, there have been several studies in the development

and application of ALE-AMR codes for specific purposes. Koniges et al. (2007) discussed
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the development strategies of a multiscale simulation code for high-powered laser systems,

combining ALE hydrodynamics with AMR for advanced target design modeling. Fisher

et al. (2008) presented a hierarchical material model implemented in the NIF-ALE-AMR

code for efficient fragmentation simulations in NIF targets. Masters et al. (2010) discussed

the implementation of laser ray tracing in ALE-AMR for simulating laser propagation

and energy deposition in high-energy laser facilities. Eder et al. (2013a) highlighted

the role of simulations in determining risks associated with debris and shrapnel in NIF

targets, while Eder et al. (2013b) provided full-target simulations of cryogenic targets

using ALE-AMR to study debris and shrapnel generation in inertial confinement fusion

experiments. There has been a little research dedicated to groundwater modeling using

Arbitrary Lagrangian-Eulerian (ALE) methods combined with Adaptive Mesh Refinement

(AMR) techniques. These methods have been employed for various applications, such as

solving the Euler equations, simulating complex target designs, and predicting vaporization

and fragmentation in the NIF experimental target elements.

The application of these methods in groundwater modeling has not been thoroughly

explored. The principles and capabilities of ALE-AMR suggest potential advantages

for groundwater modeling, particularly in handling non-uniform spatial scales, temporal

dynamics, and subsurface heterogeneities. A systematic study and adaptation of these

methods for groundwater modeling could lead to significant improvements in our ability

to simulate and understand complex hydrogeological systems. This study intends to

contribute to the developing but promising field of applying ALE-AMR methods to

groundwater modeling, thereby broadening the horizons of its applications and fostering

new advancements in the field.

86



4.2 Method Description

The complex groundwater flow process in coastal aquifers considers the interaction between

freshwater and seawater. Especially in the Pacific islands, the simulation of groundwater

flow and salt transport becomes more complex due to highly heterogeneous volcanic porous

media and requires coupling the governing equations which are the groundwater flow

equation and advection-dispersion equation for the so-called density-driven flow simulation.

In this case, the hydraulic head will be dependent on the (salt) concentration, thus two-way

coupling of transient flow and transport equations are needed to simulate the freshwater

lens.

In this work, the groundwater flow modeling part has been implemented and tested in

the Eulerian framework with AMR capability. The developed flow module is integrated

into the advection module already implemented in PISALE for density-driven flow in

coastal aquifers. Flow models are developed and tested using a modular finite element

method library (MFEM) (Anderson et al. 2021), a free, lightweight, scalable C++ library

for finite element methods. The Eulerian step in flow simulation will be projected onto

the Lagrangian mesh of advection through operator splitting to solve coupled governing

equations in the PISALE framework. Previously, a nodal finite element-based diffusion

model was implemented into an ALE-AMR method to simulate heat conduction and

radiation transport Fisher et al. (2015). Such implementations lay the groundwork for

these new models.

4.2.1 Mathematical Model for Density-Driven Groundwater Flow

The governing equation in groundwater flow in porous media is given by the conservation

law in the domain Ω ∈ R3 with the boundary ∂Ω:

∇ · q = f in Ω (4.1)
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where q and f are the Darcy velocity and source/sink term [L/T ], respectively. The velocity

is defined as

q = −K∇h = −K

(
∇p
ρ(c)g

+∇z
)

in Ω (4.2)

where K is hydraulic conductivity [L/T ], h is hydraulic head [L], p is pressure head [L],

ρ is the fluid density [M/L3]. For density-driven groundwater flow models, the density is

generally assumed as a linear function of salinity c:

ρ(c) = ρf +
∂ρ

∂c
(c− c0) ≈ ρf + (ρs − ρf ) c (4.3)

The transport of groundwater is described as:

∂c

∂t
= ∇ · (D∇c)−∇ · (vc) +R (4.4)

where D is the diffusivity [L/T 2], v is the velocity of groundwater [L/T ] obtained from q

with the material porosity, and R is the sink/source term.

4.2.2 Mixed Finite Element Method for Flow Simulation

For the flow simulation, a mixed finite element method Arnold and Brezzi (1985); Chavent

and Roberts (1991) is used to provide groundwater velocity, e.g., specific discharge, to

transport equation as in Equations 4.1 and 4.2. The finite element method has an advantage

in modeling complex geometries and irregular grids and the mixed finite element method

provides an accurate, continuous groundwater velocity that the tracer transport model for

density-driven flow requires. Equation 4.5 derives a weak formulation from Equation 4.2 by

multiplying a test function by τ and integrating it over the domain Ω:

∫
Ω
(q · τ +K∇hτ) dx = 0 ∀τ ∈ Σ∫

Ω
(q · τ −Kh∇ · τ +∇ · (Khτ)) dx = 0∫

Ω
(q · τ −Kh∇ · τ) dx = −

∫
∂Ω

Khτ · n ds

(4.5)
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where τ is vector test function and Σ is its function space. Equation 4.6 represents the

weak formulation of the mass conservation in Equation 4.1 multiplying a test function by

v and integrating it over the domain on both sides.

∫
Ω
∇ · qvdx = −

∫
Ω
fvdx ∀v ∈ V (4.6)

where v is test function and V is function space. Equation 4.7 represents the weak

formulation expressed as the general form. The variational form of a and L for the mass

matrix and a right-hand side vector are defined as in Equations 4.8 and 4.9, respectively

and assembled into a linear system for the solution of the groundwater flow problem.

a((q, h), (τ, v)) = L((τ, v)) ∀(τ, v) ∈ (Σ0, V ) (4.7)

a((q, h), (τ, v)) =

∫
Ω
(q · τ −Kh∇ · τ +∇ · qv) dx (4.8)

L((τ, v)) = −
∫
ΩD

fvdx−
∫
∂Ω

Kh0τ · n ds (4.9)

4.2.3 Arbitrary Lagrangian-Eulerian Method with Adaptive Mesh

Refinement for Tracer Transport

The velocity of groundwater is calculated from the previously explained groundwater model

and fed to the transport model to update the salinity c over time. In turn, the salinity c(t)

computed from the transport model changes the head distribution and groundwater velocity.

In this work, we assume dispersion coefficients to be zero indicating that the sharp interface

exists between freshwater and seawater often observed in a regional aquifer in Hawaii Oki

(2018). Furthermore, the velocity is decoupled to the flow equation, thus does not change
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over the time, i.e., conservative tracer simulation:

∂c

∂t
+∇ · (vc) = 0 (4.10)

This advection-dominant configuration is intended to illustrate the effectiveness and

efficiency of our proposed PISALE framework.

Arbitrary Lagrangian-Eulerian adaptive mesh refinement (ALE-AMR) is a promising

computational technique that combines the advantages of two distinct discretization

methodologies. ALE meshing is a method where the computational grid deforms and moves

in accordance with the evolving dynamics of the problem, allowing accurate tracking of

complex physical phenomena. However, the mesh can become extremely tangled over time,

necessitating periodic remapping. This process can create elements of high skewness that

pose numerical difficulties. On the other hand, AMR is a technique where the computational

mesh refines during runtime based on estimated solution errors. This method achieves the

accuracy of a much finer mesh without the accompanying computational and storage costs.

However, the fixed topology of the grid may not adequately capture intricate problem

features.

ALE-AMR merges these two techniques, utilizing the strengths of both while mitigating

their weaknesses. In this hybrid approach, part of the mesh refines dynamically by adding

or removing grid points, similar to AMR, instead of allowing excessive deformation, as in

pure ALE schemes. This limits the creation of highly skewed elements associated with ALE

schemes, while still accurately capturing complex physics and features, such as shock fronts.

It also enables the use of efficient AMR grid management techniques.

Figure 4.1 represents the process of ALE-AMR. The process starts with an initial

Eulerian mesh, which is a grid that remains stationary, independent of the physical

movements within the system. After that, the mesh is allowed to deform and move in

response to the evolving dynamics of the system, a process characteristic of the ALE

methodology, for accurate tracking of complex physical phenomena. Instead of letting
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Figure 4.1: Schematic of ALE-AMR Process.
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the mesh deform excessively, which may lead to tangles and highly skewed elements, this

method adopts the AMR methodology, refining specific areas of the mesh by adding or

removing grid points, thereby optimizing resolution where it’s needed most. When the mesh

becomes too distorted, it remaps or reconstructs the mesh to maintain its effectiveness and

avoid numerical instabilities. This process can be repeated as the system evolves, which

means that the refined mesh becomes the starting point for another round of the ALE-AMR

process, continuously adapting and refining the mesh to accurately capture the dynamics

of the system while maintaining numerical stability and efficiency.

In general, the numerical simulation of transport with discontinuities is computationally

challenging due to numerical difficulties in preserving sharp boundary conditions and

associated fine space/time mesh discretization in the widely used Eulerian framework.

To address these issues in a computationally efficient manner, mixed Eulerian and

Lagrangian methods (Sorek 1988; Zheng et al. 1999) have been proposed with the method

of characteristics (MOC) and particle tracking when solving the contaminant transport in

groundwater flow. However, various boundary conditions for realistic groundwater transport

simulations may not be implemented suitably in MOC and particle tracking may require

a number of memory-intensive particle transport simulations to ensure the local mass

conservation. The ALE-AMR approach implemented in PISALE can offer a systematic

treatment for accurate advection-dominated simulations in a computationally scalable

manner. The ALE formulation takes advantage of the Lagrangian and Eulerian descriptions

in solving the advection problems without additional artificial dispersion to reduce spurious

oscillations. For a more accurate solution without extensive computation, an adaptive

mesh is introduced within the context of the ALE formulation. The Adaptive Mesh

Refinement(AMR) framework SAMRAI Hornung and Kohn (2002) is used to automate

mesh relaxation and adaptation in a highly parallel fashion optimized for High Performance

Computing (HPC) platforms. SAMRAI is included in PISALE as an underlying library.

Coupled density-driven flow examples will be demonstrated elsewhere.
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4.3 Simulation Results

Simulations for one way coupling of flow and transport simulations, e.g., velocity computed

from groundwater flow simulation fed to salt tracer transport simulation, are illustrated

here. The 2D square domains with two different hydraulic conductivity fields are tested to

update pressure and velocity fields followed by the conservative transport simulation. The

numerical simulations were performed on a computational node with 48 Intel Xeon 6240R

2.4GHz cores in the University of Hawaii HPC cluster Mana.

4.3.1 Groundwater flow model simulation

For the accurate continuous groundwater velocity simulation, the mixed finite element

method through the MFEM library is used to simulate both the hydraulic head and velocity

field. Figure 4.2 (a) represents the domain Ω = (0, 1000m)2 of the groundwater flow model

which consists of a 50 by 50 triangular mesh grid. The left and right boundaries are set to

10 m and 0 m of hydraulic heads, respectively and the upper and lower boundaries have no

flow boundary.

To illustrate, we generate isotropic homogeneous and heterogeneous hydraulic

conductivity (K) fields as shown in Figures 4.2 (b) and 4.3 for the groundwater flow model

coefficients, i.e., hydraulic conductivity K in Equation 4.2. The heterogeneous K field is

generated from a log-normal distribution with a variance of 0.01 with an anisotropy ratio

of 4 to 1 assigned to the spatial correlation during the random field generation.

Figures 4.2 (b) and 4.3 (b) represent the hydraulic head distribution from homogeneous

and heterogeneous hydraulic conductivity fields respectively. The contour maps for both

cases depict equipotential lines of hydraulic heads varying from 10 to 0 m at 2 m intervals.

The quiver plots depict the groundwater velocity as arrow sizes and directions. In the

homogeneous case, the hydraulic head changes linearly in which contour lines appear in a

straight line and the velocity field is uniform. Figure 4.3 (b) shows the results affected by

the heterogeneous hydraulic conductivity field (Figure 4.3 (a)) in which the equipotential
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lines of the head follow meandering lines and the velocity vector varies depending on the

hydraulic conductivity and the gradient of hydraulic head.
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Figure 4.2: (a) model domain and Finite Element mesh used in the flow simulation (b)
simulated hydraulic head and flow velocity of the Homogeneous Test Case.
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Figure 4.3: Hydraulic head and flow velocity of the Heterogeneous Test Case.
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4.3.2 Conservative Tracer Transport Simulation

With the velocity fields computed from the flow simulation, our PISALE framework is

used to simulate the conservative tracer (i.e., salt) transport. This simulation assumes that

convective seawater intrusion in the 1000 m by 1000 m square model domain. The red and

blue areas represent seawater and freshwater, respectively. Figure 4.4 shows the convective

tracer transport with the homogeneous K field. The initial concentration distribution of

tracer is set to a sine function at x = 400m as shown in the Figure 4.4 (left). It is illustrated

that the tracer moved to x = 470m and 540 m without change in the tracer distribution,

it takes 5.75 years and 11.5 years respectively. Figure 4.5 represents the convective tracer

transport with the heterogeneous K field. The initial distribution of the tracer starts from

the uniform at x = 200m as shown in the 4.5 (left). The tracer moves to x = 350m

and 500 m (Figure 4.5 center and right, respectively), it takes 12.6 year to travel 150 m

on average. The uniform distribution of the trace has been changed as it is transported.

The changes are propagated due to the heterogeneous K and corresponding velocity fields.

For both cases, PISALE successfully adapt the mesh following the flow velocity field and

preserve the freshwater-seawater interface.

Figure 4.4: Conservative tracer transport with homogeneous K field at t = 0 yr (left), 5.75
yrs (center) and 11.5 yrs (right).
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Figure 4.5: Conservative tracer transport with heterogeneous K field at t = 0 yr (left), 12.6
yrs (center) and 25.2 yrs (right).

4.4 Concluding Remarks

In this work, we present our ongoing efforts in density-driven flow simulation in Pacific

island aquifers. The groundwater flow equation is solved using the mixed finite element

method and the saltwater transport is simulated using an ALE with AMR methodology.

As an ongoing project, we will couple the flow and transport codes with an operator splitting

method within the full PISALE codebase. The accuracy and computational scalability will

be tested for island-scale 3D freshwater-seawater interaction applications.
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Chapter 5

Conclusions

5.1 Conclusions

To manage groundwater resources effectively and efficiently, accurate and reliable forecast

of flow and transport processes in the subsurface is crucial. This requires an integrated

framework that combines site characterization, characterized model parameter assignment

in numerical models, and accurate efficient groundwater flow and transport modeling. This

dissertation address some of the challenges in these research topics.

Three chapters with inverse modeling (Chapter 2), parameter upscaling (Chapter 3)

and numerical modeling (Chapter 4) are explored in this dissertation. First, inverse

modeling approach for subsurface site characterization is reviewed an improved methodology

for deep aquifer characterization is proposed using different data types. Second, to

assign characterized site parameters to any numerical models, an efficient and robust

computational approach with software tool is developed to covert high-resolution hydraulic

conductivity field to low-resolution equivalent tensors at any scale, marking a noteworthy

and practical advancement in the field of hydraulic conductivity upscaling. Finally, the

dissertation journeys through the development and implementation of a high performance

cluster codebase called PISALE, demonstrating a substantial step forward in simulating the

flow and transport of the groundwater model.
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Chapter 2 was primarily dedicated to the investigation of a novel methodology for

deep aquifer characterization using a combination of hydrogeological, self-potential, and

magnetotellurics data. The proposed joint-inversion approach innovatively refrained from

relying on any predetermined assumptions of petrophysical relationships. Instead, it utilized

the self-potential data to establish connections between groundwater flow velocity and

the respective measured electrical potential differences. Concurrently, the methodology

incorporated magnetotelluric data to estimate the hydraulic conductivity and electrical

conductivity of the subsurface. The spectral method was applied to solve the self-

potential forward problem, and the Principal Component Geostatistical Approach (PCGA)

was utilized for efficient and high-dimensional inverse problems without the construction

and storage of the Jacobian matrix and its product. Various inversion tests exhibited

the effectiveness and robustness of the proposed joint-inversion method, which produced

enhanced hydraulic conductivity estimates compared to those derived from single data-type

inversion approaches.

Chapter 3 concentrated on the formulation of a reliable hydraulic conductivity upscaling

tool for high-dimensional groundwater flow models. The effort was founded on the

knowledge that complex heterogeneity exists in porous geological formations, which has

a significant impact on groundwater flow and transport processes. Recognizing that the

accurate representation of hydraulic conductivity at the appropriate scale is a crucial

first step in constructing any field application numerical groundwater model, this work

endeavored to upscale the hydraulic conductivity field minimizing the loss of information

from the fine-scale models. This work, therefore, sought to develop a computational tool

that effectively balances computational efficiency with the ability to maintain key features

of the detailed hydraulic conductivity field. An efficient open-source computational tool

was developed, built upon the hydraulic conductivity upscaling approach of Kitanidis

(1990), capable of calculating upscaled hydraulic conductivity values in the tensor form

and accounting for anisotropy. The tool was put through rigorous tests including high-
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dimensional 3D fine-scale modeling, comparing its performance with existing methods, and

assessing its robustness under various flow conditions.

Chapter 4 represented the development and implementation of the PISALE (Pacific

Island Structured-AMR with ALE) codebase, aiming at simulating flow and transport in

large-scale coastal and island aquifers. The chapter focused on the significant challenges of

accurately modeling density-driven flow and transport processes in intricate coastal aquifers.

The mathematical techniques, parallel programming models, and software toolkit used in

the PISALE codebase were extensively detailed. The integration of groundwater flow and

advection modules, along with the coupling of transient flow and transport equations, were

examined. Test cases and results showcased higher computational accuracy and better

usage of high performance computing cluster of the developed PISALE codebase, especially

for simulating sharp interfaces between freshwater and seawater in heterogenous 2D aquifer

applications.

5.2 Future Directions and Concluding Remarks

5.2.1 Characterization of Deep Aquifer with PCGA

The findings confirm the superiority of this joint inversion method, offering a more precise

estimation of hydraulic conductivity and electrical resistivity fields compared to single

inversion results. This was tested through various subsurface examples and spatial models,

demonstrating the method’s ability to deliver accurate estimations up to depths of 500 m.

In contrast, single inversions were largely limited to surface-level properties and areas near

observation wells. The joint inversion method also outperformed single inversion approaches

in terms of uncertainty management, offering lower uncertainty levels over larger and deeper

areas. By dealing with the challenges related to uncertain petrophysical relationships,

this methodology provides a substantial contribution to deep aquifer characterization

using combined hydrogeophysical and hydrogeological data sets. The methodology is

not restricted to the MT, SP, and hydrogeological data sets and the framework can be
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adapted to other combinations of data types, providing opportunities for future research

and application. While numerical verification and validation from synthetic benchmark

problems are encouraging with promising results, field-scale evaluation and confirmation

will be needed.

5.2.2 Upscaling K with the Moments of Gradually Varying Flow

In this study, fine-scale hydraulic conductivity fields were randomly generated and upscaled

to validate the method under different conditions of heterogeneity and directional flow.

The upscaling approach was rigorously tested and demonstrated consistent performance

although the optimal grid scales varied based on hydraulic conductivity heterogeneity.

The computational tool exhibited scalable performance, handling an increase in grid size

efficiently. Future research will include further testing of the upscaling approach with

more complex boundary conditions such as time-varying for transient simulations and also

recharge and injection/extraction conditions. There were a few studies in this direction and

we expect the current upscaling approach still can offer reasonable simulation capability with

some modifications/corrections. Preconditioner developed in this chapter is somewhat ad-

hoc because it tried to take advantage of FFT and Kronecker products without theoretical

consideration of the condition number of the resulting system. Systematic analysis and

development and analysis for optimal preconditioner will be needed to maintain the number

of iterations in the linear solver constant or at least increasing sublinearly.

The upscaling tool developed here can significantly aid groundwater modeling,

particularly for projects dealing with groundwater contaminant transport. Reliable

dispersion upscaling needs to developed following the current work and combining hydraulic

conductivity upscaling with dispersion upscaling, one can simulate efficient flow and

transport simulation without much loss of simulation accuracy.
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5.2.3 Development of PISALE Codebase for Groundwater Flow and

Transport

Coupling developed flow in Eulerian framework with transport in arbitrary Eulerian-

Lagrangian framework is underway and the groundwater branch in PISALE will be

completed in the near future. Integration of diffusion modeling, i.e, groundwater flow

simulation, in MFEM into PISALE will require the interface between two different AMR

approaches adapted in MFEM and PISALE and the modification and implementation is

not trivial and this will be tested rigorously with several benchmark problems.
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Ledo, J., Garćıa-Merino, M., Larnier, H., Slezak, K., Piña-Varas, P., Marcuello, A., Queralt,
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Mboh, C., Huisman, J., Van Gaelen, N., Rings, J., and Vereecken, H. (2012). Coupled

hydrogeophysical inversion of electrical resistances and inflow measurements for topsoil

116



hydraulic properties under constant head infiltration. Near Surface Geophysics,

10(5):413–426.

McLaughlin, D. and Townley, L. R. (1996). A reassessment of the groundwater inverse

problem. Water Resources Research, 32(5):1131–1161.

Meqbel, N. M., Egbert, G. D., Wannamaker, P. E., Kelbert, A., and Schultz, A. (2014).

Deep electrical resistivity structure of the northwestern us derived from 3-d inversion of

usarray magnetotelluric data. Earth and Planetary Science Letters, 402:290–304.

Michalak, A. M. and Kitanidis, P. K. (2004). Estimation of historical groundwater

contaminant distribution using the adjoint state method applied to geostatistical inverse

modeling. Water Resources Research, 40(8).

Minutti, C., Illman, W. A., and Gomez, S. (2020). A new inverse modeling approach for

hydraulic conductivity estimation based on gaussian mixtures. Water Resources Research,

56(9):e2019WR026531.

Mohnke, O. and Yaramanci, U. (2008). Pore size distributions and hydraulic conductivities

of rocks derived from magnetic resonance sounding relaxation data using multi-

exponential decay time inversion. Journal of Applied Geophysics, 66(3-4):73–81.

Neuman, S. P. (1981). A eulerian-lagrangian numerical scheme for the dispersion-convection

equation using conjugate space-time grids. Journal of computational physics, 41(2):270–

294.

Nœtinger, B. (2000). Computing the effective permeability of log-normal permeability fields

using renormalization methods. Comptes Rendus de l’Académie des Sciences-Series IIA-

Earth and Planetary Science, 331(5):353–357.

Oki, D. S. (2018). Modeling the groundwater flow system of the keauhou area, hawaii.

Oliver, D. S., Reynolds, A. C., and Liu, N. (2008). Inverse theory for petroleum reservoir

characterization and history matching. Cambridge University Press.

117



Ozaki, Y., Mikada, H., Goto, T.-n., and Takekawa, J. (2014). Self-potential inversion for

the estimation of permeability structure. Journal of Environmental and Engineering

Geophysics, 19(3):193–199.

Paleologos, E. K., Neuman, S. P., and Tartakovsky, D. (1996). Effective hydraulic

conductivity of bounded, strongly heterogeneous porous media. Water Resources

Research, 32(5):1333–1341.

Perdomo, S., Ainchil, J. E., and Kruse, E. (2014). Hydraulic parameters estimation from

well logging resistivity and geoelectrical measurements. Journal of Applied Geophysics,

105:50–58.

Pool, M. and Carrera, J. (2010). Dynamics of negative hydraulic barriers to prevent seawater

intrusion. Hydrogeol. J, 18(1):95–105.

Post, V. (2005). Fresh and saline groundwater interaction in coastal aquifers: is our

technology ready for the problems ahead? Hydrogeology Journal, 13:120–123.

Prasad, K. L. and Rastogi, A. (2001). Estimating net aquifer recharge and zonal hydraulic

conductivity values for mahi right bank canal project area, india by genetic algorithm.

Journal of Hydrology, 243(3-4):149–161.

Provost, A. M., Langevin, C. D., and Hughes, J. D. (2017). Documentation for the “xt3d”

option in the node property flow (npf) package of modflow 6. Technical report, US

Geological Survey.

Provost, A. M. and Voss, C. I. (2019). Sutra, a model for saturated-unsaturated, variable-

density groundwater flow with solute or energy transport—documentation of generalized

boundary conditions, a modified implementation of specified pressures and concentrations

or temperatures, and the lake capability. Technical report, US Geological Survey.

118



Purvance, D. T. and Andricevic, R. (2000). Geoelectric characterization of the hydraulic

conductivity field and its spatial structure at variable scales. Water Resources Research,

36(10):2915–2924.

Putti, M., Yeh, W. W.-G., and Mulder, W. A. (1990). A triangular finite volume approach

with high-resolution upwind terms for the solution of groundwater transport equations.

Water Resources Research, 26(12):2865–2880.

Ranjan, P., Kazama, S., and Sawamoto, M. (2006). Effects of climate change on coastal

fresh groundwater resources. Global Environmental Change, 16(4):388–399.

Renard, P. and De Marsily, G. (1997). Calculating equivalent permeability: a review.

Advances in water resources, 20(5-6):253–278.

Revil, A. (2017). Transport of water and ions in partially water-saturated porous media.

part 1. constitutive equations. Advances in Water Resources, 103:119–138.

Revil, A., Finizola, A., and Gresse, M. (2023). Self-potential as a tool to assess groundwater

flow in hydrothermal systems: A review. Journal of Volcanology and Geothermal

Research.

Revil, A. and Jardani, A. (2013). The self-potential method: Theory and applications in

environmental geosciences. Cambridge University Press.

Revil, A., Karaoulis, M., Johnson, T., and Kemna, A. (2012). Some low-frequency electrical

methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology

Journal, 20(4):617.

Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S., and Finsterle, S. (2007).
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