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Abstract. Medical histories of patients can provide insight into the immediate future 

of a patient. While most studies propose to predict survival from vital signs and 

hospital tests within one episode of care, we carry out selective feature engineering 
from longitudinal historical medical records in this study to develop a dataset with 

derived features. We then train multiple machine learning models for the binary 

prediction whether an episode of care will culminate in death among patients 

suspected of bloodstream infections. The machine learning classifier performance 

is evaluated and compared and the feature importance impacting the model output 
is explored. The findings indicated that the logistic regression model achieved the 

best performance for predicting death in the next hospital episode with an accuracy 

of 98% and an almost perfect area under the receiver operating characteristic curve. 

Exploring the feature importance reveals that time to and severity of the last episode 

and previous history of sepsis episodes were the most critical features. 

Keywords. Electronic Health Records, Health Trajectory Analysis, Machine 

Learning, Bloodstream Infection 

1. Introduction 

Electronic Health Records (EHR) data finds secondary use for applications like disease 

progression modelling [1], patient trajectory modelling [2], disease inference [3], risk 

stratification, and survival prediction [4]. These practice data driven analyses are 

increasingly needed in all kinds of health services or research. The problem with EHRs 

is mostly the sparseness and context dependent interpretation, which appears as 

incompleteness and to a lesser extent inconsistency and inaccuracy [5]. A series of 

patient discharge summaries provide a longitudinal perspective of patients’ interactions 

with a hospital service. In Norway, with a predominantly public specialist healthcare, 

this means that patients often have long and continuous histories within one hospital’s 

records. Thus, we can do retrospective medical history analysis for patients with poor 

outcomes.  

      In this study instead of fitting the model to data, we attempted to fit the data to the 

model. Bypassing all the complexity of machine learning models that handle episode 

data about state, exposure and intervals, we selectively derived the most relevant count 

and temporal features and used them to train classifiers for predicting in-hospital 

mortality for the next episode. We then studied the features that led to improvement in 
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model performance as predictors of in-hospital deaths. Similar to this work on prediction 

models using longitudinal medical data Chicco et al. (2020) showed that traditional 

machine learning models applied to minimal clinical records of patients diagnosed with 

sepsis predicted the survival of the patients [4].  In other work on using medical history, 

studies mainly focused on visualizing the history or building patient disease trajectories 

[6]. Some studies work on tackling the problems with the representation of medical data 

and codes. For example, Tran et. al. (2015) worked on building a low-dimensional 

representation of medical events using a modified Restricted Boltzmann Machine (RBM). 

Thereafter they trained a logistic regression classifier for suicide risk stratification [7]. 

Similarly, some disease-specific applications have treated the medical history as a 

sequence of events and then trained machine learning (ML) models to predict an outcome 

[8]. While Jia et al. (2020) used patient similarity-based frameworks to group similar 

patient histories together [9]. The aim of this study was to investigate patterns of events 

leading to death in the hospital, and to find if these patterns in prior episodes can help 

predict an impending medical episode with risk of death.  

2. Methods 

2.1. Data and Data Mining 

The data comprises individual episodes of care with St. Olav’s university hospital, not 

including primary care or visits to other specialist care, of 35,594 patients that had at 

least one episode of suspected bloodstream infection (BSI) at between 2015-2020. The 

episodes range from the introduction of EHR in 1999 until 2020. The suspected BSI was 

identified through a physician-ordered blood culture test. The mean age of the complete 

cohort is 63.6 years, and the gender distribution is 52.5% males to 47.4% females. The 

data contains information on a total of 1.2 million medical episodes. Diagnosis is coded 

using ICD-10 (International Classification of Diseases 10th Revision). Python’s pandas 

library was used to preprocess and clean the dataset. Patient histories with only one 

episode were removed, leaving the final cohort with 32,313 patients. Patients with death 

date more than 30 days from the last episode were also excluded. New features were 

calculated by aggregating time under each ICD-10 code group and counting the number 

of respective episodes. To capture the repetitiveness of episodes, the time between 

episodes was calculated and normalized by total number of episodes. Other features such 

as age at the time of first visit, total length of medical history and total number of hospital 

visits were also included. 

Table 1. Description of derived features. 

Features Unit  Range  mean  

Age                    Years [0…107] 60.076 

Age at first visit Years [0…100] 52.578 

Time to last episode Hours [0…70489] 3287.287 
Type of last episode     Category [1, 3, 5, 8] 2.996 

Time between episodes Hours [0... 28399] 2356.617 

Time Hospitalized for implicit sepsis Hours [0…12712] 65.771 

Implicit sepsis episodes Count [0…27] 0.227 

Time Hospitalized for cancer disease Hours [0...10587] 119.825 
Number of cancer episodes Count [0…365] 9.467 

Time Hospitalized for explicit sepsis Hours [0…17299] 64.723 

Number of explicit sepsis episodes Count [0…14] 0.189 

Time Hospitalized for cardiovascular disease Hours [0...8894] 178.455 



Number of cardiovascular episodes Count [0…66] 4.826 
Number of infection episodes Count [0...93] 2.730 

Total time under acute urgency Hours [0…22874] 717.139 

Number of hospital visits Count [2…680] 31.107 

Total length of stay Hours [0...30873] 1105.631 

 

2.2. Prediction Modelling 

In this study we derive temporal features like exposure and repetitiveness not otherwise 

available to non-temporal or process-blind ML methods. Initially, around 50 derived 

features were calculated, and a Random Forest classifier was trained, and the importance 

of each feature was examined. Then finally, the 20 most important features were selected 

to form the final dataset. All features are continuous values. All empty cell values were 

imputed to zero. The values were then standardized by removing the mean and scaling 

to unit variance. The target feature was labelled as 0, if death within 30 days of final 

episodes and 1, if the patient was alive. There were 21,266 patients labelled 1 and 7,041 

patients labelled 0 making the data imbalanced 3:1. The dataset was further divided into 

a training set (80%) and a testing set (20%).  

For our binary classification problem, we used Logistic Regression (LR) as the 

linear model, Gaussian Naïve Bayes (GNB) as the probabilistic model, K-Nearest 

Neighbors (KNN) as the non-parametric model, Random Forest (RF), Bagging and 

Boosting decision tree classifiers (BG and ADB), Voting Classifier as the ensemble 

model, multi-layer perceptron (MLP) as neural network based model, and eXtreme 

Gradient Boosting (XGBoost). Additionally, we explored interpretable machine learning 

by using SHapley Additive exPlanations (SHAP) values to explain the output of a 

machine learning model.  

3. Results 

3.1. Model performance 

This study compared eleven different machine learning models on our dataset. 

Performance metrics for each of these models is given in Table 1. The results indicate 

that all models achieved high accuracy score. The logistic regression model and the 

XGBoost model gave overall best performance metrics. The receiver operating 

characteristic (ROC) curve for all models is given in Figure 1a. The confusion matrices 

on testing data for the logistic regression model and the XGBoost model are given as 

Figure 1b.   

Table 2. Prediction performance metrics 

Model Accuracy  Sensitivity  Specificity  F1 Score  AUROC 

Logistic Regression      0.987 0.964 0.994 0.982 0.999 

Naïve Bayes       0.822 0.578 0.904 0.752 0.881 

K-Nearest Neighbors 0.901 0.762 0.949 0.865 0.932 
Support Vector Machine  0.938 0.844 0.970 0.916 0.983 

Decision Trees    0.897 0.781 0.935 0.862 0.859 

Bagging Decision Trees 0.932 0.848 0.960 0.908 0.970 

Boosting Decision Trees 0.934 0.848 0.963 0.912 0.974 

Random Forest   0.915 0.791 0.957 0.885 0.969 
Ensemble           0.945 0.861 0.973 0.926 0.986 



Neural Network 0.940 0.857 0.968 0.919 0.981 
XGBoost             0.980 0.953 0.989 0.973 0.997 

 

(a)                                                                                                    (b) 

Figure 1. (a) ROC curve for all models (b) Confusion matrices logistic regression model (top right) and 

XGBoost model (bottom right) 

3.2. Feature Importance 

To study the features, SHAP values were estimated for each feature. SHAP values 

indicate the impact on model output. Figure 2a gives the feature importance as the impact 

on model prediction. In the figure Class 1 stands for alive patients and class 0 for patients 

who died. Age at the first visit and the information related to the last visit were the top 

features for the model shortly followed by time hospitalized for various disease episodes. 

Figure 2b summarizes the SHAP value by combining feature importance with feature 

effects. The plot depicts the features’ overall influence on the model prediction. Each 

point represents an individual case. Data points shifted to the right indicates the features 

that contribute to high risk of death and vice versa.  

  

(a)                                                                           (b) 

Figure 2. SHAP values for feature importance bar plot and dot plot. 



4. Discussion 

It was noticed during a thorough analysis of the patient histories that the last part of life 

in patients who died usually consisted of not one single episode but a series of episodes. 

On the other hand, such frequent episodes may be indicators of “swing door patients”, 

aged patients being discharged to primary care or home in a frail condition. This made 

our prediction model for in hospital mortality achieve high performance metrics as the 

derived features successfully capture these key indicators. The age at first visit being the 

most important feature indicated that patients arriving at the hospital for the first time 

very late in life are at a very high risk. Major limitations in this study are that alive 

patient’s histories were taken as complete instead of selecting only histories up to some 

critical episodes and the sensitivity to individual trajectory length and to rapid succession 

of episodes leading to a fatal episode. This can be avoided by normalizing patient 

histories by windowing, only using a fixed number of prior episodes or a fixed span of 

time.  

5. Conclusions 

We explored a new approach towards predicting in-hospital mortality based on minimal 

medical history data. We circumnavigated all the complexity of medical concept 

representation and derived indicators of severity, exposure and disease progression. We 

were able to predict if an impending disease episode entails risk of death. The derived 

features can be further well formulated with coordination and discussions with the 

hospital staff and stakeholders. These models can be easily implemented in the current 

and developing digital health platforms to predict adverse outcomes.  
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