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Abstract

We present a novel function fitting method for approximating the propagation of the

time-dependent electric dipole moment from real-time electronic structure calculations.

1



Real-time calculations of the electronic absorption spectrum require discrete Fourier

transforms of the electric dipole moment. The spectral resolution is determined by the

total propagation time, i.e. the trajectory length of the dipole moment, causing a high

computational cost. Our developed method uses function fitting on shorter trajectories

of the dipole moment, achieving arbitrary spectral resolution through extrapolation.

Numerical testing shows that the fitting method can reproduce high-resolution spec-

tra using short dipole trajectories. The method converges with as little as 100 a.u.

dipole trajectories for some systems, though the difficulty converging increases with

the spectral density. We also introduce an error estimate of the fit, reliably assessing

its convergence and hence the quality of the approximated spectrum.

1 Introduction

The rapid advancement of laser technology in the past decades allows us to probe matter on

spatiotemporal scales that approach the characteristic time and length scales of the electron,

opening the field of attosecond science.1,2 This development has forced quantum chemists

to shift their attention from the time-independent to the time-dependent Schrödinger and

Dirac equations.3–5 Numerical approaches to laser-driven electron dynamics are often la-

belled real-time methods to distinguish them from the response-theoretical methods to the

time-dependent Schrödinger/Dirac equation, the latter solving the equations of motion per-

turbatively in the frequency domain.6,7

Even without explicit reference to results derived from perturbation theory such as, e.g.,

Fermi’s golden rule, it is still possible to extract linear and low-order nonlinear optical proper-

ties from nonperturbative real-time simulations, including electronic absorption spectra and

time-resolved pump-probe absorption spectra that would be hard or impossible to compute

using response theory—see Refs. 8–12 for recent examples.

In this work, we focus on electronic absorption spectra extracted from electron-dynamics

simulations driven by a Dirac-delta impulse, which excites the molecule into all dipole-allowed
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excited states simultaneously.8 Due to the nonperturbative nature of real-time methods, the

resulting spectrum contains nonlinear (e.g., two-photon) as well as linear absorption lines.11

For weak pulses, the nonlinear effects are small, and the absorption spectrum is dominated

by linear lines. In practice, the induced electric dipole moment is recorded in the course of

the simulation and subsequently transformed to the frequency domain to yield the absorption

cross section. When using the conventional discrete Fourier transform to process the signal,

the spectral resolution is inversely proportional to the number of time steps N and the

time-step length ∆t, as ∆ω = 2π/(N∆t). Obtaining sufficient spectral resolution typically

requires tens to hundreds of thousands of time steps since ∆t cannot be increased beyond

a certain limit if rapid oscillations of the electron density are to be captured. Moreover,

increasing ∆t reduces the accuracy and stability of the numerical integration scheme used to

propagate the electronic degrees of freedom. As the computational effort in each time step

requires multiple rebuilds of the Hamiltonian matrix, it is comparable to several iterations

of a ground-state optimization within the chosen electronic-structure model.13 Hence, there

is considerable interest in decreasing the number of time steps required to achieve sufficient

spectral resolution.

In addition to reducing the number of time steps, it is possible to increase the compu-

tational efficiency of real-time electronic structure methods by disregarding negligible basis

functions,14 basis-function pairs and quartets.15 As a result, in a large molecule, although

there are O(N4) electron repulsion integrals (ERIs) in total, it can be shown that only O(N2)

of them are significant, where N refers to the number of basis functions. As shown within

RT-TDDFT, a large prefactor associated with the evaluation of non-negligible ERIs can fur-

ther be reduced by using, e.g., the resolution-of-the-identity method.16 By applying a spatial

truncation radius upon the time-dependent density matrix, RT-TDDFT can approach the

linear O(N) scaling.17,18

Previous efforts to improve the spectral resolution have been made by estimating excita-

tion energies through various signal processing techniques.19–21 More recently, Bruner et al. 22
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investigated the use of Padé approximants to interpolate the discrete Fourier transforms used

for the absorption spectrum. These are all methods operating in the frequency domain, leav-

ing no other validation options than comparison with a fully propagated spectrum.

The original periodic signal is typically damped using a decaying exponential function to

reduce unwanted artefacts arising when the discrete Fourier transform is applied to oscillating

functions in simulations with finite trajectory length. In the time domain, the number of

time points can be increased by padding the damped signal with zeros, leading to finer

spectra. However, this artificial extension of the trajectory length can only be applied on

sufficiently damped signals.

In this work, we investigate a more sophisticated and powerful alternative: the extrap-

olation of a short signal. The discrete Fourier transform of an extrapolated signal achieves

increasingly higher spectral resolution as the extrapolation length increases. This requires

the development of a stable and reliable method for time-series forecasting. The inherently

harmonic character of the time-dependent wave function in the absence of an external field

suggests that such forecasting of molecular properties should be possible. Importantly, the

forecasted signal can be verified in the time domain by comparing it with relatively few

additional time steps. To the best of our knowledge, no published work exists on improving

the spectral resolution by such extrapolation of the time-dependent dipole moment.

The current success and popularity of machine learning is undeniable, including use

cases in chemistry,23–29 and one might be tempted to leverage artificial neural networks

for forecasting the time-dependent electric-dipole moment. However, while artificial neural

networks are powerful tools for pattern detection in large data sets, they struggle with precise

and reliable extrapolations.30,31 Although the universal approximation theorem32 tells us that

an excellent interpolation can be achieved, it does not guarantee a stable extrapolation. In

order to achieve a stable extrapolation, over-fitting must be avoided by enforcing sufficient

restrictions.

In this paper, we present a novel approach for obtaining high-resolution absorption spec-
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tra from real-time simulations of laser-driven electron dynamics by exploiting a priori knowl-

edge of the form of the dipole function from quantum mechanics in a finite-dimensional

Hilbert space. The form of the dipole function thus is motivated by the underlying physics,

with unknown parameters to be determined by fitting a short dipole trajectory from a real-

time simulation. The fitted function may be evaluated at any point in time, meaning that it

can be extrapolated in the time domain to arbitrary future time. This further implies that we

can achieve arbitrary spectral resolution. For sufficiently weak Dirac-delta impulse, the eval-

uation of absorption spectra based on these fitted functions may use analytical expressions

for the linear response function.6

Working in the time domain, a quantitative error measure of the fitted dipole function can

be monitored during the course of the real-time simulation and used to evaluate convergence.

This way, an unnecessarily long real-time propagation can be avoided by automatically ter-

minating the propagation upon the convergence of the fit. The developed method is indepen-

dent of the quantum mechanical model and is tested with several molecular systems using

mainly real-time time-dependent density-functional theory (RT-TDDFT).8,33–38 Despite cer-

tain flaws arising mainly from the almost universally adopted adiabatic density-functional

approximation,3,39 RT-TDDFT is the far most widely used electronic-structure method for

laser-driven electron dynamics. With computational costs comparable to (or below) time-

dependent Hartree-Fock theory,40 RT-TDDFT takes into account electron-correlation effects

that would otherwise require advanced and computationally expensive wave-function theo-

ries.4,5 To demonstrate the independence of the underlying electronic-structure theory, we

also present results obtained from real-time time-dependent configuration interaction singles

(RT-TDCIS)41–43 theory.

We will start with a short presentation of the electric-dipole approximation within real-

time simulations before introducing the proposed method for fitting the time-dependent

electric-dipole moment. After briefly laying out the simulation details for the real-time

simulation of a selection of systems, the results of the fitting method on these systems are
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presented and discussed. Finally, we reflect on the performance of the fitting method and

discuss potential future improvements.

2 Theory

In this work, we employ the following conventions: Subscripts u, v denote Cartesian com-

ponents, vectors are typed in boldface, and quantum-mechanical operators are denoted by

a hat. Following the convention of response theory by Olsen and Jørgensen,6 we define the

Fourier transform and its inverse according to

f̃(ω) = F [f(t)] =
1

2π

∫ ∞

−∞
f(t)eiωtdt, (1)

f(t) = F−1[f̃(ω)] =

∫ ∞

−∞
f̃(ω)e−iωtdω, (2)

where the transformed function is denoted by a tilde. Atomic units are used throughout

unless otherwise specified.

2.1 Real-time simulations of absorption spectra

Within the clamped-nucleus Born-Oppenheimer approximation, real-time simulations of

electronic absorption spectra typically assume the electric-dipole approximation, where a

molecule is subjected to a time-dependent spatially uniform electric field, F (t). The time-

dependent Hamiltonian reads

Ĥ(t) = Ĥ0 + V̂ (t), (3)

where Ĥ0 is the time-independent electronic Hamiltonian, and the interaction operator is

given by

V̂ (t) = −µ̂ · uF (t), (4)
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where µ̂ is the electric dipole moment operator. The linear polarization direction of the

electric field is determined by the real unit vector u, such that the field aligns with one of

the Cartesian axes. This implies the form V̂ (t) = −µ̂uF (t), where µ̂u is the component of µ̂

along the polarization direction.

We assume that the electronic system is in the ground state |0⟩ at time t < 0, and

that the external field F (t) is only active between t = 0 and time t0 ≥ 0. At time t0, the

Hamiltonian reduces to the time-independent Hamiltonian such that Schrödinger’s equation

for t ≥ t0 becomes

Ĥ0 |Ψ(t)⟩ = i
d

dt
|Ψ(t)⟩ . (5)

The time-dependent wave function in the absence of the external field oscillates around the

solution at time t0, |Ψ(t0)⟩ =
∑

n kn(t0) |n⟩, as given by

|Ψ(t)⟩ = e−iĤ0(t−t0) |Ψ(t0)⟩ =
∑
n

kn(t0)e
−iEn(t−t0) |n⟩ , (6)

where |n⟩ denotes a normalized eigenfunction of the unperturbed Hamiltonian, Ĥ0 |n⟩ =

En |n⟩.44,45 This formulation is exact when the electronic continuum is excluded, e.g., by

choosing a fixed, finite basis as commonly done in quantum chemistry. Actual simulations

are not performed in the energy eigenbasis but in, e.g., a basis of Slater determinants,

implying that the coefficients kn(t0) are not known.

In order to obtain the electronic absorption spectrum averaged over all molecular ori-

entations relative to the electric field, the time-dependent electric dipole moment µu(t) =

⟨Ψ(t)|µ̂u|Ψ(t)⟩ is calculated in three separate simulations with the electric field polarized in

each of the three Cartesian directions (u = x, y, z). The absorption cross-section is then

obtained from the Fourier transform of the dipole moments, µ̃u(ω), as46

S(ω) =
4πω

3c
Im

[
µ̃x(ω)F̃ ∗(ω)

|F̃ (ω)|2
+

µ̃y(ω)F̃ ∗(ω)

|F̃ (ω)|2
+

µ̃z(ω)F̃ ∗(ω)

|F̃ (ω)|2

]
, (7)
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where c is the speed of light. The resulting spectrum contains both linear (one-photon

transitions between the ground and excited states) and nonlinear (multi-photon transitions

between the ground and excited states, and one- and multi-photon transitions between ex-

cited states) absorptions, as recently stressed by Guandalini et al. 11 We note that only the

induced dipole moment, that is the total dipole moment with the static ground-state part

subtracted, contributes to the absorption cross section but, for notational convenience, we

will only distinguish between that and the total dipole moment when it is strictly required.

Since the dipole moment is calculated on a finite discrete time grid, the Fourier transforms

are replaced by discrete Fourier transforms, thus introducing artificial periodic boundary

conditions. To avoid artefacts from these, the dipole moment is multiplied by a damping

factor before the discrete Fourier transform, i.e.,

µ̃u(ω) = F [µu(t)e−γ|t|] =
1

2π

∫ ∞

0

µ(t)ei(ω+iγ)tdt, (8)

where we have used that the induced dipole moment vanishes for t < 0. The Fourier

transform thus becomes a Laplace transform. The parameter γ ∈ R+ can be interpreted

as a common (inverse) lifetime of all excited states, giving rise to Lorentzian line shapes in

the simulated absorption spectra.47 The discrete Fourier transform, however, requires a very

large, often prohibitive, number of time steps to achieve sufficient spectral resolution. In

the following sections, we will describe an extrapolation technique aiming at high resolution

with short simulation time.

2.2 The expected form of the electric dipole moment

Once the external field is turned off, the time-dependent electric dipole moment evolves

according to µu(t) = ⟨Ψ(t)| µ̂u |Ψ(t)⟩, where |Ψ(t)⟩ is defined in Eq. (6). The dipole moment
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oscillates with the Bohr frequencies ωnm = En − Em according to

µu(t) =2
∑
n>m

{
Re [⟨n| µ̂u |m⟩ k∗

n(t0)km(t0)] cos(ωnm(t− t0))

− Im [⟨n| µ̂u |m⟩ k∗
n(t0)km(t0)] sin(ωnm(t− t0))

}

+
∑
n

|kn(t0)|2 ⟨n| µ̂u |n⟩ ,

(9)

for time t ≥ t0.
48 The function form of the approximated dipole moment µ̄u(t) ≈ µu(t) will

therefore be given by

µ̄u(t) = cu0 +

Nu
ω∑

i=1

[
cui sin(ωu

i (t− t0)) + cuNu
ω+i cos(ωu

i (t− t0))
]
, (10)

where Nu
ω is the number of participating frequencies ωu

i , each frequency with two independent

linear coefficients cui and cuNu
ω+i. If we can determine these frequencies and their corresponding

real coefficients from a short dipole time series, we obtain a continuous dipole function and,

hence, infinite spectral resolution.

As will be described in detail below, we estimate the participating frequencies using the

poles of a Fourier-Padé approximant, while the linear coefficients are determined using linear

regression in a subsequent step.

2.3 Estimating Bohr frequencies

In order to estimate the frequencies of the dipole moment, we will investigate the singular

points of the Fourier-Padé approximant, originally introduced in real-time quantum simu-

lations by Bruner et al. 22 In general, the Padé approximant is used to accelerate the con-

vergence of a truncated power series. The discrete Fourier transform can be written as the

power series

µ̃u(ω) =
∆t

2π

Nt−1∑
n=0

µu(tn)zn, (11)
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where z depends on the frequency according to

z ≡ z(ω) = e(iω−γ)∆t. (12)

The diagonal Fourier-Padé approximates the Fourier transform using two polynomials Pu(z)

and Qu(z) of degree M = (Nt − 1)/2,

[M/M ]µu(ω) =
∆t

2π

Pu(z(ω))

Qu(z(ω))
, (13)

where the coefficients of the polynomials create a Toeplitz linear system. For details see Ref.

22. The Fourier-Padé poles, denoted zup , are found by

Qu(zup ) = 0, (14)

where the damping parameter γ is set to zero, as the damping parameter removes the

singularities of the spectrum. The Bohr frequencies are positive and real-valued, while the

frequencies corresponding to roots of Qu(z) will be complex. The number of roots of Qu(z),

(which amounts to M roots), should also significantly exceed the number of Bohr frequencies.

The potential frequencies are given by

ωu
p =

∣∣∣∣∣ ln
(
zup
)

∆t

∣∣∣∣∣ , (15)

where ln
(
zup
)

returns the principal value of the logarithm. Only roots Im(zup ) > 0 are

considered, as the complex conjugate root theorem states that complex roots will form

conjugate pairs. These conjugate pairs yield duplicates of the real-valued frequencies. Real-

valued roots zup yield purely imaginary frequencies, and are therefore also excluded. The

potential frequencies ωu
p discard the imaginary component and should represent extrema of

the Fourier-Padé spectrum, not singular points like zup .
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Estimating the potential frequencies uses the Python NumPy49 library to compute the

eigenvalues of the companion matrix50 of the polynomial Qu(z) to determine its roots. This

method exhibits poor scaling with respect to the number of time points Nt, representing a

computational bottleneck of the dipole-moment µ̄u(t) fitting procedure. In real-time simu-

lations using very small time steps, one may safely increase the step length on the dipole

data used to create the Fourier-Padé approximant to alleviate the computational cost. As

shown by Mattiat and Luber,51 the convergence of the Fourier-Padé approximant is mostly

impacted by the trajectory length Nt∆t, and not the time step itself. However, the discrete

Fourier transform, and hence also the Fourier Padé, is periodic with a cycle length of 2π/∆t.

Peaks above π/∆t will fold back due to anti-symmetry and appear as negative duplicates

polluting the spectrum. Therefore, it is crucial to keep the time step ∆t < π/ωmax, where

ωmax is the largest significant frequency in the signal.

The potential frequencies ωu
p must be classified as either an estimated frequency or a

redundant root. The classification is based on the assumption that ln
(
zup
)
/(i∆t) should have

a significant imaginary component if ωu
p is a redundant root, while it should lie close to the

real axis if ωu
p corresponds to an actual Bohr frequency. This further means that Qu(z(ωu

p ))

should be close to zero and that [M/M ]µu(ωu
p ) should be large for estimated frequencies.

Hence, we create a two-dimensional representation rup of the prospective frequencies ωu
p given

by

[rup ]x = 1 −
X(ωu

p ) − minωu
q

[
X(ωu

q )
]

maxωu
q

[
X(ωu

q )
]
− minωu

q

[
X(ωu

q )
] , (16)

[rup ]y =
Y (ωu

p ) − minωu
q

[
Y (ωu

q )
]

maxωu
q

[
Y (ωu

q )
]
− minωu

q

[
Y (ωu

q )
] , (17)

where the unnormalized features are defined as

X(ωu
p ) = log10

( ∣∣[M/M ]µu(ωu
p )
∣∣ ), (18)

Y (ωu
p ) = log10

( ∣∣Qu(z(ωu
p ))

∣∣ ). (19)
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The base-10 logarithm is used to manage the extreme scaling of both features, as prospective

frequencies should cause Qu(z(ωu
p )) to approach zero and hence be a nearly singular point of

[M/M ]µu(ωu
p ). The features are constructed such that estimated frequencies should be close

to rup = (0, 0), while redundant roots should be closer to rup = (1, 1).

We use the K-means clustering algorithm (see e.g. 52,53), implementation from the

Python SciKit-Learn54 library, with K = 2 to classify prospective frequencies. The 2-

means clustering algorithm is a computationally inexpensive way to separate a set into two

categories. The centroid for the cluster of potential frequencies should be closer to (0, 0),

whereas the centroid for the redundancy cluster should be closer to (1, 1).

2.4 Determining the linear coefficients

Once the frequencies are estimated, the linear coefficients are determined using linear regres-

sion. The coefficients are optimized by minimizing the cost function,55

R(cu) =
Nt−1∑
n=0

[µu(tn) − µ̄u(tn; cu)]2 . (20)

Using the general form of the dipole moment in Eq. (9), the linear coefficients may be

optimized using a simple least squares optimization. The only restraint on the optimization

of these coefficients is that they are real. This fitting procedure is general for any type of

external field, F (t). However, as shown by Hauge,48 restricting the coefficients is crucial to

avoid over-fitting the dipole moment.

The form µ̄u(t) in Eq. (10) is based on the full dipole moment, correct through all orders

in perturbation theory and is independent of the electric field. In this work, we will use a

Dirac delta-type impulse8 of strength κ,

F (t) = κδ(t), (21)
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which has an infinitely wide frequency distribution and thus generates the full absorption

spectrum for the given polarization direction. This implies that t0 = 0. Further, we assume

that the electric field strength is sufficiently weak, such that we may regard the interaction

operator V̂ (t) as a time-dependent perturbation and assume that the interaction only in-

duces one-photon transitions from the ground state—i.e., a linear absorption spectrum. The

electric dipole moment should then be of the form µu(t) ≈ µ
(0)
u + µ

(1)
u (t), where the zeroth

order dipole moment corresponds to the ground-state value, µ
(0)
u = µu(t = 0). We will

now investigate an analytical expression for the first-order correction to the dipole moment

induced by a weak Dirac delta impulse.

We start with the exact expression for the linear response function,6

⟨⟨µ̂u; V̂u(ω)⟩⟩ω+iγ = −2F̃ (ω)
∑
n̸=0

|⟨0| µ̂u |n⟩|2
ωn0

(ω + iγ)2 − ω2
n0

, (22)

where we have used the Fourier transform of the interaction operator V̂ (t),

V̂u(ω) = µ̂uF̃ (ω), F (ω) =
κ

2π
. (23)

The linear response function and the first-order correction to the dipole moment are related

by ⟨⟨µ̂u; V̂u(ω)⟩⟩ω+iγ = F [µ
(1)
u (t)e−γ|t|]. Since µ

(1)
u (t < 0) = 0, we get the relation

∫ ∞

0

µ(1)
u (t)e−(γ−iω)tdt = −2κ

∑
n̸=0

|⟨0| µ̂u |n⟩|2
ωn0

(ω + iγ)2 − ω2
n0

. (24)

Using well-known Laplace transforms, it is readily verified that the first-order dipole correc-

tion must be a linear combination of sine waves48

µ(1)
u (t) =

∑
n̸=0

Bu
n sin(ωn0t), Bu

n = 2κ|⟨0| µ̂u |n⟩|2. (25)

We have also used that the first-order perturbation correction to the dipole moment should
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only include one-photon transitions. This further means that the approximated dipole mo-

ment, when using a weak Dirac delta impulse, should have the form

µ̄u(t) = cu0 +

Nu
ω∑

i=1

cui sin(ωu
i t), (26)

where all sine coefficients are positive.

The coefficients of µ̄u(t), approximating the dipole moment from the Dirac delta impulse,

are optimized using the least absolute shrinkage and selection operator (LASSO) 56 method.

The coefficients are determined according to

cuLASSO = argmin
cu

{
1

2
R(cu) + λ

∑
i

|cui |

}
, (27)

where λ is the shrinkage parameter restricting the magnitude of the coefficients, cui . In

contrast to the ordinary linear least-squares algorithm, the LASSO method is iterative and

therefore somewhat less computationally efficient. In return, this makes it possible to enforce

positive coefficients, as in the implementation by SciKit-Learn.54 This makes the method less

prone to over-fitting.

2.5 Molecular orbital decomposition

The electric dipole moment can be written as a sum of contributions from elementary molec-

ular orbital (MO) transitions,8

µu(t) =
∑
ia

µia
u (t), (28)

where i and a label occupied and virtual MOs, respectively. The components µia
u (t) are

then approximated separately. This MO decomposition can divide a dense spectrum into

a series of sparser spectra and aid in the assignment of absorption lines.8 Clustering the

MO components into groups can be used to offset the increased memory consumption.57 For

the fitting method, creating clusters with well-separated frequencies could also reduce the
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accumulation of errors when summing the component fits.

When fitting the individual components, the assumptions on the sign of the linear coef-

ficients are no longer valid. As is clear from the underlying theory and as demonstrated in

practice by Bruner et al.,22 the same frequencies may be found in several components µia
u ,

and their corresponding partial spectra may contain negative peaks. Only the full spectrum,

i.e., the sum of the components, is guaranteed to contain positive peaks exclusively. The

ordinary least squares method must therefore be used when optimizing the linear coefficients

of the individual components, which may introduce additional errors due to over-fitting in

each component.

Alternatively, the fitting algorithm may estimate the frequencies of each component sep-

arately and then optimize the linear coefficients for the full dipole moment. This way, the

additional coefficient restrictions can be used in the optimization. In our experience, however,

this produces a vast number of estimated frequencies leading to problems with over-fitting

even when enforcing positive linear coefficients.

2.6 Convergence criterion

The goal of the fitting method is to accurately construct the function µ̄(t) using the shortest

possible dipole trajectory. A given trajectory is divided into two parts, a fitting domain and

a verification domain. The linear coefficients are optimized using only the fitting domain,

while the error is calculated on the verification domain. When estimating the frequencies,

however, the entire available trajectory is used. Measuring the error in the fitting domain

gives the interpolation error, which is artificially low in cases of over-fitting, whereas the

error in the verification window indicates the reliability of the extrapolated dipole moment.

The error of the fit is estimated using one minus the coefficient of determination, R2, i.e.,

Eu = 1 −R2 =

∑
n [µu(tn) − µ̄u(tn)]∑

n [µu(tn) − µm
u ]

, (29)
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where µm
u is the mean value of the induced dipole moment. The error measure is unitless

and independent of the magnitude of the dipole moment. The fitting method can be run in

parallel with real-time simulations, which are terminated once Eu drops below a pre-defined

threshold value. The computational cost of the fitting method is not insignificant, and we

recommend that it is run once per time intervals of 50−100 a.u. when used to automatically

terminate the real-time simulation.

Computing the error according to Eq. (29) provides an error estimate of the fit as a

whole. In our experience from testing the algorithm with ideal multi-sinusoidal signals, the

error of the fit depends primarily on the frequency estimation. Significant deviations in

the estimated linear coefficients were only observed if there were frequencies missing and/or

poorly estimated. In the case of ideal signals, there would only be a significant error in the fit

if the frequency estimation failed. Real dipole data contains noise introduced by numerically

integrating in time. How this affects the distribution of error is unknown, though it is

reasonable to believe that the main source of error still lies in the frequency estimation.

The error measure Eu cannot distinguish error contributions from different parts of the

spectrum, preventing termination once the desired frequency region is converged. In order

to focus on valence excitations in the low-frequency region, we apply a low-pass (smoothing)

filter to remove frequencies above a cut-off frequency ωmax from the dipole moment in the

time domain. We used a Butterworth filter, implemented by SciPy,58 which removes the

high-energy part of the spectrum while leaving the lower-energy part almost unchanged. If

bound core excitations are the main targets, a high-pass filter must be used instead.

3 Computational details

We test the dipole extrapolation scheme using RT-TDDFT simulations, supplemented by

a few RT-TDCIS simulations to demonstrate its applicability to wave-function-based theo-

ries. The RT-TDDFT simulations are performed using the ReSpect program,59 while the
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RT-TDCIS calculations are performed using the Hylleraas Quantum Dynamics (HyQD) soft-

ware.60 The RT-TDDFT and RT-TDCIS simulations are performed with analytic integration

at t = 0 a.u., as described in Ref. 8. The subsequent time steps are performed numerically

using the Magnus integrator for the RT-TDDFT simulations8 and the three-stage Gauss-

Legendre integrator61 as described in Ref. 62 with the residual norm convergence criterion

10−14 a.u. for the implicit equations for the RT-TDCIS simulations.

The RT-TDCIS simulations are performed with time step ∆t = 0.01 a.u. and field

strength κ = 10−3 a.u. The RT-TDDFT simulations for the organic molecules CH4, CH2O,

CH3OH, C2H6, and C6H6 are performed with time step ∆t = 0.01 a.u. and field strength

κ = 10−4 a.u., while ∆t = 0.01 a.u. and κ = 10−3 a.u. are used for CO2, H2O, and NH3. For

the smallest systems, He, H2, Be, and LiH, ∆t = 0.1 a.u. and κ = 10−3 a.u. are used.

Molecular geometries are found in the Supporting Information. The simulations were

performed in Dunning’s cc-pVXZ and aug-cc-pVXZ, X = D,T, basis sets63–65 (uncontracted

in the case of RT-TDDFT calculations). The RT-TDDFT simulations were performed using

the PBE0 exchange–correlation potential66–69 in the adiabatic approximation.

Simulations are performed for all three Cartesian directions for all systems, even in cases

where point-group symmetry could have been easily exploited to reduce the computational

effort to one or two directions. While this is mainly done to make automation simple (identi-

cal treatment for all systems), it also provides a simple check that the extrapolation algorithm

does not significantly break point-group symmetry due to numerical noise in the input dipole

trajectories.

Our implementation of the dipole-extrapolation algorithm is freely available at https:

//github.com/HyQD/absorption-spectrum.
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4 Results

All reference spectra in this paper are produced from low-pass filtered electric dipole moments

with a trajectory length of 4000 a.u., such that the spectral resolution becomes ∆ω = 1.6 ·

10−3 a.u.. In this paper, the resolution of the fitted spectrum S̄(ω) is the same as its reference

spectrum. This is to allow direct comparisons of the two spectra, though the resolution of

S̄(ω) could be made arbitrarily fine. The Fourier transform of the approximated dipole

moment µ̄u is calculated according to

µ̃u(ω) = − 1

2π

∑
i

cui
ωu
i

(ω + iγ)2 − (ωu
i )2

. (30)

The half-life parameter was always set to γ = 0.5 · 10−3π, and the spectra were cut at an

estimated ionization energy of 0.5 a.u. − ϵHOMO, where the energy of the highest occupied

molecular orbital ϵHOMO of all systems are listed in the Supporting Information.

Using the low-pass filter will leave the lower energy part of the absorption spectrum

unaltered, while the higher energy part is removed and set to zero. Differences between

filtered and unfiltered spectra are shown in the Supporting Information. The low-pass filter

does not give a clean cut-off at the cut-off frequency ωmax but rather a gradual lowering of

the peak intensity around ωmax. The cut-off frequency should therefore be set somewhat

higher than the desired range of the spectrum. We have used ωmax = 4 a.u. for all systems.

When fitting the dipole moment, the available trajectory is from when the external field

is turned off at t = 0 to time t = T u
ver. The linear coefficients are determined on the time

interval [0, T u
fit], where T u

fit = 0.75T u
ver. The frequencies are estimated on the entire available

trajectory [0, T u
ver] but with a limit on the total number of data points supplied to the Padé,

set to 5 ·103. The reduction in points, if exceeding the limit, is done by effectively increasing

the time step ∆t used (by an integer factor) when creating the Padé. The error Eu is only

evaluated on (T u
fit, T

u
ver]. The error in the spectrum ES is calculated the same way as in the

time domain, as given in Eq. (29).
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4.1 Performance on a selection of systems

For each spatial direction, the convergence of the fit is tested every 50 a.u. in time of the tra-

jectory length, starting from Tmin = 100 a.u.. The simulation is terminated when the fit has

converged below a given threshold or when the trajectory length reaches Tmax = 1000 a.u.,

which corresponds to a target minimum spectral resolution of 0.006 a.u. The convergence

criterion was set to Eu < 10−3, a strict threshold corresponding to a near-perfect fit. The

criterion was set based on preliminary investigations.48 Since the real-time calculations on a

given system using three spatial directions of the external field are independent, the trajec-

tory length needed for a converged fit might vary between the three simulations.

The required trajectory length of each spatial direction T u
ver and their corresponding

verification error Eu as well as the error in the spectrum ES are listed in Tables 1 and 2.

The fitting of the dipole moment from RT-TDCIS calculations is shown in Table 1, while

the fitting of RT-TDDFT data is found in Table 2. Figures of the approximated spectra of

all systems can be found in the Supporting Information.

Table 1: Convergence times and corresponding errors of systems from RT-TDCIS calcula-
tions.

basis T x
ver T y

ver T z
ver Ex Ey Ez ES

[a.u.] [a.u.] [a.u.]

CH2O aug-cc-pVDZ 450 600 650 8 · 10−6 8 · 10−4 1 · 10−3 1 · 10−3

CO2 cc-pVDZ 100 100 100 8 · 10−5 8 · 10−5 3 · 10−6 2 · 10−4

aug-cc-pVDZ 250 250 200 6 · 10−5 6 · 10−5 3 · 10−4 2 · 10−3

aug-cc-pVTZ 300 300 250 2 · 10−4 2 · 10−4 1 · 10−4 2 · 10−3

H2O aug-cc-pVDZ 150 200 300 1 · 10−5 2 · 10−4 7 · 10−5 3 · 10−4

NH3 aug-cc-pVDZ 350 300 300 4 · 10−5 7 · 10−4 7 · 10−6 3 · 10−3

The fitting method reached the strict threshold for most systems, with a maximum

spectral error of ES ≤ 3 ·10−3. For all converged systems, the approximated functions for the

dipole moment µ̄u(t) reliably reproduce its reference spectrum. The systems with very sparse

spectra (He, H2, and Be) converged instantly (Tver = 100 a.u.), providing approximated

spectra indistinguishable from their reference spectra. In these cases, the fitting method

19



Table 2: Convergence times and corresponding errors of systems from RT-TDDFT calcula-
tions.

basis T x
ver T y

ver T z
ver Ex Ey Ez ES

[a.u.] [a.u.] [a.u.]

Be aug-ucc-pVTZ 100 100 100 1 · 10−8 1 · 10−8 1 · 10−8 6 · 10−6

C2H6 aug-ucc-pVDZ 750 800 550 6 · 10−4 7 · 10−4 5 · 10−4 8 · 10−4

aug-ucc-pVTZ 1000 1000 950 5 · 10−2 3 · 10−2 2 · 10−5 6 · 10−3

C6H6 aug-ucc-pVDZ 1000 1000 550 3 · 10−2 4 · 10−2 7 · 10−4 4 · 10−2

CH2O aug-ucc-pVDZ 450 650 700 4 · 10−6 8 · 10−4 1 · 10−4 5 · 10−4

aug-ucc-pVTZ 650 900 1000 2 · 10−4 4 · 10−4 2 · 10−3 8 · 10−4

CH3OH aug-ucc-pVDZ 1000 1000 1000 2 · 10−1 8 · 10−1 4 · 10−2 8 · 10−2

aug-ucc-pVTZ 1000 1000 1000 3 · 10−1 8 · 10−1 4 · 10−1 2 · 10−1

CH4 aug-ucc-pVDZ 200 200 200 8 · 10−4 7 · 10−4 6 · 10−4 2 · 10−3

aug-ucc-pVTZ 350 350 350 4 · 10−4 3 · 10−4 3 · 10−4 3 · 10−3

CO2 aug-ucc-pVDZ 350 350 250 4 · 10−4 4 · 10−4 1 · 10−4 5 · 10−4

H2O aug-ucc-pVDZ 200 250 300 2 · 10−6 3 · 10−6 3 · 10−4 3 · 10−4

H2 aug-ucc-pVTZ 100 100 100 1 · 10−7 1 · 10−7 8 · 10−8 5 · 10−6

He aug-ucc-pVTZ 100 100 100 9 · 10−8 9 · 10−8 1 · 10−7 9 · 10−6

LiH aug-ucc-pVDZ 100 100 300 1 · 10−5 3 · 10−5 3 · 10−4 3 · 10−4

NH3 aug-ucc-pVDZ 350 400 300 2 · 10−4 4 · 10−4 7 · 10−4 1 · 10−3

achieved a speedup of 10 times compared to the max trajectory length of Tmax = 1000 a.u.,

or 40 times compared to computing the reference spectra (using 4000 a.u.). The reduction

in computational cost achieved by using the fitting method is relative to the desired spectral

resolution. We would argue that the least unambiguous way to assess the speedup is to

compare the convergence times T u
ver with the simulation time that would have been used if

the fitting method was not used, i.e. the max trajectory length. Should the method converge

at the preset max trajectory length, one may argue that no simulation time was spared. In

this case, one still achieves arbitrary improvement in the spectral resolution.

Systems with relatively sparse spectra (CH4, CO2, H2O, LiH, and NH3) also converged

nicely with short dipole trajectories (T u
ver ≤ 350 a.u.). As the spectral density increases, the

fitting method struggles to converge. Systems like C2H6 and CH2O only converged when

using a double-zeta basis set, while the fitting of C6H6 and CH3OH did not achieve errors

below the low threshold.
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The CH2O molecule with a double-zeta basis set converged for both real-time methods.

The spectra of the fit in both cases are nearly indistinguishable from their reference spectra.

A comparison between the approximated and reference spectrum from RT-TDDFT calcula-

tions is shown in Fig. 1. The RT-TDDFT triple-zeta case nearly reached the error threshold

(Ez = 2 · 10−3), also providing a very low spectral error (ES = 8 · 10−4).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
[a.u.]

0.0

2.5

5.0

7.5

10.0

S(
)[

a.
u.

]

Figure 1: Spectrum of CH2O using the aug-ucc-pVDZ basis in a RT-TDDFT simulation.
The reference spectrum is in solid blue, while the yellow dashed line shows the spectrum of
the fitted functions. The fitting error was Ex = 4 · 10−6, Ey = 8 · 10−4, and Ez = 1 · 10−4.

Among the converged systems, NH3 from RT-TDCIS calculations showed the largest error

compared to its reference spectrum (ES = 3 · 10−3). Its spectrum is shown in Fig. 2, and

was the approximated spectrum with the most visible deviation from its reference spectrum

among the converged systems. The approximated spectrum shows a deviation in a peak at

ω ≈ 0.75 a.u., but the rest of the peaks correspond well to the reference spectrum.

The fitting method only partially converged for C6H6, as well as C2H6 and CH2O with

triple-zeta basis, meaning that error of the fit was below the set threshold in only one or two

of the spatial directions. Still, the spectral error in all three cases is quite low. The result of

the fitting of benzene is shown in Fig. 3, which had the largest spectral error (ES = 4 · 10−2)

of the three.

The trajectory length needed for the fitting method to converge strongly depends on the

spectral density. We observed a trend in that the fitting becomes increasingly difficult as

the spectral density increases. Increasing either the number of electrons in the system or
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Figure 2: Spectrum of NH3 using the aug-ucc-pVDZ basis in a RT-TDDFT simulation. The
reference spectrum is in solid blue, while the yellow dashed line shows the spectrum of the
converged fitted functions. This was the poorest approximated spectrum of all converged
cases. The fitting error was Ex = 2 · 10−4, Ey = 4 · 10−4, and Ez = 7 · 10−4.
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Figure 3: Spectrum of C6H6 using the aug-ucc-pVDZ basis in a RT-TDDFT simulation. The
reference spectrum is in solid blue, while the yellow dashed line shows the spectrum of the
fitted functions. The fitting error was Ex = 3 · 10−2, Ey = 4 · 10−2, and Ex = 7 · 10−4.

the size of the basis set will in general require longer real-time simulations before the fitting

method converges. The trend with increasing basis set size is clearly seen from the fitting of

CO2 from RT-TDCIS calculations. The simulation using the cc-pVDZ basis set converges

faster (T u
ver = 100 a.u.) than when using the larger basis sets like the aug-cc-pVDZ basis set

(T u
ver ≤ 250 a.u.) or aug-cc-pVTZ basis set (T u

ver ≤ 300 a.u.).

Only the fit of CH3OH did not get errors below the convergence threshold in any of the

spatial directions. This was true for both the double and tripe-zeta basis (from RT-TDDFT

calculations). The result using a triple-zeta basis set is shown in Fig. 4 and is the case with
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the highest error in the time domain, Eu ∼ 10−1. There is a significant deviation from the

reference spectrum, though the main features are intact. Of all systems in this paper, this

gave the worst approximation to the reference spectrum. Despite this, the spectrum S̄(ω)

still provides a reasonable coarse approximation.
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Figure 4: Spectrum of CH3OH using the aug-ucc-pVTZ basis in a RT-TDDFT simulation.
The reference spectrum is in solid blue, while the yellow dashed line shows the spectrum of
the fitted functions. The fitting error was Ex = 3 · 10−1, Ey = 8 · 10−1, and Ey = 4 · 10−1.

These results are promising in all cases as the converged fit seems to reproduce its refer-

ence spectrum reliably with only minor deviations in the peak intensities. The error of the

fit Eu also correlates with the spectral error, ES. This predictability is crucial if the con-

vergence criterion is used to automatically terminate real-time simulations. Our results also

indicate that the convergence criterion used in this study is stricter than necessary. A slight

relaxation in the criterion might lead to faster convergence without significantly impacting

the quality of the approximated spectrum.

For the estimated dipole moment, the frequencies and their corresponding linear coef-

ficients are known. For a successful fit, one may therefore obtain the transition probabil-

ity |⟨0| µ̂u |n⟩|2 of a transition with energy En − E0 directly from the linear coefficient, as

|⟨0| µ̂u |n⟩|2 = Bu
n/(2κ). This could be used to calculate the oscillator strength and create

stick spectra. However, estimated frequencies in different spatial directions but correspond-

ing to the same transition will have a small error associated with the frequencies. In order

to compute the oscillator strength, one would therefore have to assess which estimated fre-
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quencies across spatial directions correspond to the same transition.

The convergence of the dipole moment fitting depends primarily on the frequency esti-

mation. When the fit does not converge, it follows that the Fourier-Padé approximant is

not sufficiently converged to accurately capture the Bohr frequencies. The quality of the

Fourier-Padé depends on the dipole trajectory length tN rather than the number of steps

or step length.51 However, there is no given final time tN ensuring convergence, the neces-

sary trajectory length depends on the spectral density. High spectral density can cause the

Fourier-Padé to fail, even for relatively long simulations. The general Padé approximant is

prone to instabilities due to problems with near-degeneracy of the linear system. As pointed

out by Cooper et al.,70 the Fourier-Padé used in real-time spectroscopy is known to struggle

with dense spectra. The fitting method introduces a measure of the error Eu which does not

rely on any reference spectrum. This introduces a more reliable way of estimating the error

in the approximated spectrum.

4.2 Fitting using MO decomposition

We assessed the performance of the fitting procedure used to extrapolate the components

of the dipole moment of C6H6 decomposed to MO pairs µ̄ia
u in the RT-TDDFT calculation.

Instead of creating a fitting function for each individual MO pair, which would increase the

memory overhead, we clustered the components µ̄ia
u into groups of ten. These groups are

formed so that the overall sparsity of spectra obtained for each cluster is maintained. This is

accomplished by spreading the individual constituents of the cluster across the energy range.

A fitted function of each cluster was then created from the sum over the MO pairs that the

cluster contains. The total error is measured for the full dipole moment, µu(t). Some of the

MO pairs were omitted entirely, making the MO decomposition work as a low-pass filter.

When fitting components, the low-pass filter is therefore not needed.

Fitting the decomposed signal, however, did not improve the convergence compared to

when the full dipole moment was used for extrapolation. Simulations for both directions
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µx and µy reached the max trajectory length (t = 1000 a.u.) without the fitting error going

below the error threshold. The errors (Ex = 1 · 10−2 and Ey = 1 · 10−2) were only slightly

lower compared to fitting without the MO decomposition. The last spatial direction µz

converged at Tver = 650 a.u. (Ez = 4 · 10−4), which is somewhat slower than without MO

decomposition. The spectral error was ES = 9 · 10−3, which corresponds to a low spectral

error.

Although the MO decomposition did not lead to accelerated convergence of the fitting

method, we still observed improvements. For example the simulation with T u
ver = 600 a.u.

has a lower error of the fit for the decomposed dipole moment (Ex = 6 · 10−2, Ey = 4 · 10−2

and Ez = 1 · 10−3) for all spatial directions compared to the fit on the full dipole moment,

(Ex = Ey = 3 · 10−1 and Ez = 2 · 10−3). The decomposed fit in Fig. 5 (ES = 3 · 10−2) is

visibly improved compared to the fit using the full dipole moment in Fig. 6 (ES = 2 · 10−1).
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Figure 5: Spectrum of C6H6 using the aug-ucc-pVDZ basis in a RT-TDDFT simulation. The
reference spectrum is in solid green, while the orange dashed line shows the spectrum of the
fitted functions using molecular orbital decomposition from T u

ver = 600 a.u..

It is important to note that the scope of our testing of the fitting method using MO

decomposition was limited. Previous success using the Fourier-Padé approximant in com-

bination with the MO decomposition on RT-TDDFT data suggests that this in many cases

is very effective.22 Our study, however, raises cause for caution regarding the use of the

Fourier-Padé approximant: The Padé can struggle, even when using MO decomposition.

The unknown amount of error introduced to the final spectrum by this procedure remains
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Figure 6: Spectrum of C6H6 using the aug-ucc-pVDZ basis in a RT-TDDFT simulation. The
reference spectrum is in solid blue, while the yellow dashed line shows the spectrum of the
fitted functions from T u

ver = 600 a.u..

an open problem that the user should be aware of when analyzing spectra with the Fourier-

Padé method with the MO decomposition.

The particular form of the components µpq
u is also very dependent on the quantum me-

chanical method used to compute the time-dependent wave function. Using MO decompo-

sition on the electric dipole moment from RT-TDCCSD calculations leads to large overlaps

in frequencies among different components.48 The usefulness of such decomposition might

vary between the different quantum mechanical frameworks.

5 Conclusion

We have developed a novel method for creating functions approximating the electric dipole

moment from real-time calculations. The fitted functions for the dipole moment in the

three spatial directions can then be used to produce absorption spectra with arbitrary high

resolution. Real-time calculations of absorption spectra require the use of the discrete Fourier

transforms, demanding long simulation times to obtain high spectral resolution. In our work,

we have shown that the length of the real-time simulations, and hence the computational

cost, can be greatly reduced by the developed fitting method.

We introduced a quantitative error measure to evaluate the convergence of the fit. For
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all systems in this work, a converged fit reliably reproduced the reference spectrum from

long real-time calculations. A convergence criterion of 10−3 seems to be quite strict, and

further studies should be conducted to investigate the impact of slightly higher errors on

the estimated spectrum. In order to reduce the computational cost of calculating absorption

spectra, the real-time calculations should be automatically terminated once the convergence

criterion is reached.

In this work, we set the verification window to be 25% of the available dipole trajectory.

The critical step of the method is determining the frequencies, which always uses all available

data. For the linear optimization, the verification window should include an entire period of

the smallest frequency in the signal, as an insufficiently large verification window may lead

to misleading error estimates. In future work, the verification window should depend on an

estimate of the smallest frequency in the signal based on differences in the molecular orbital

energies.

The fitting method converged with as little as 100 a.u. long trajectories in time for systems

with sparse spectra. Convergence slows down as spectral density increases, even leading

to failure of convergence in some cases. The current version of the fitting method shows

encouraging results for smaller systems, although aspects of the method require further

investigation.

Our testing of the fitting method using molecular orbital decomposition of a single system

gave mixed results. The decomposition did not enable the fit to meet the convergence

criterion, although we observed improvements in the approximated spectrum. This motivates

the need for further investigations.

An apparent weakness of the current implementation is the way of estimating frequencies.

Future versions should not rely on the Fourier-Padé but rather investigate other methods of

estimating frequencies. This could include other methods for harmonic inversion or letting

the function form of the fitted dipole moment be a truncated Fourier series based on an

estimation of the fundamental frequency. The same frequencies can appear in all spatial
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directions, which could be exploited to improve the frequency estimation. In particular, in

cases where the frequencies are successfully estimated in one spatial direction, knowledge of

these existing frequencies could be used to alleviate the search in the other spatial directions

with potentially higher spectral density. Improving the frequency estimation is crucial for

stabilizing the fitting method for systems with high spectral density.

This work has focused on the Dirac delta impulse, though the general fitting algorithm

may be used on systems with any type of external field. Using a laser pulse targeting a

specific spectral region may provide both an upper and lower bound when estimating the

frequencies. Any a priori information about the frequencies should be exploited by the fitting

algorithm. Additionally, the Dirac delta impulse targets all excitation energies, maximizing

the spectral density. It is not unlikely that a narrow-band laser pulse would somewhat

alleviate the fitting process by reducing the spectral density.
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