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Abstract—We address the problem of state feedback trajectory
tracking of the composite quadrotor-gimbal platform using the
dual quaternion framework by extending the previuous result
in [1] to the composite case. More precisely; we model the
composite system using dual quaternion coordinates and derive
the error dynamics which by inserting a PD+ based control law
has equilibrium points that is shown to be uniformly practical
asymptoticly stable (UPAS).

Index Terms—Dual-Quaternion, UAV, Nonlinear Control,
Composite System

I. INTRODUCTION

Pose control of a rigid body in 3-D space is an important
challenge with broad impact to a number of mechanical
systems including, but not limited to; satellites, autonomous
underwater vehicles, unmanned aerial vehicles and robot ma-
nipulators [2]. The commonly used Newton-Euler framework
completely describe the motion of a rigid body in six-degrees-
of-freedom (6-DOF), however the rotational and translational
movement is often considered separately, thus control al-
gorithms are designed separately. Concurrent position and
attitude control is especially relevant in applications such as
formation flying, aerial towing and near-earth environment
inspection such as power-line inspection. In these scenarios
it is imperative that the 6-DOF coupled motion of a rigid
body is taken into account [3]. The advantages realizing
simultaneous 6-DOF control, as suppose to 3+3 DOF, are
greatest in systems where translational and rotation motion is
highly coupled [4]; e.g. underactuated systems as fixed-wing
aerial vehicles and quadrotors. Further, several authors state
that dual quaternions is the most compact and efficient way to
express motion i 3-D space [5]–[8], e.g. in [9] the author notes
that dual quaternion algebra, which are isomorphic to the even
subalgebra of Euclidean projective geometric algebra of order
three, is the smallest known algebra that can model Euclidean
transformations in a structure preserving manner. Moreover,
pose control laws based on dual quaternions includes the
coupling between rotation and translation [10], [11], and as
it is noted in [12], dual quaternions allow pose control laws
to be written compactly as a single control law. There are
however some disadvantages; due to topological constraints it
is impossible to design a continuous feedback that globally
stabilizes the pose of a rigid body [13] and the unit dual

quaternion group is endowed with a double representation of
every pose in the configuration manifold which may lead to
unwinding.
There excists some application of dual quaternions to com-
posite systems; in [14] dual quaternions is used for modeling
and control of an unmanned aerial manipulator consisting of
a quadrotor serially coupled with a three-link manipulator,
however, dual quaternions is only used for kinematic control
and quadrotor dynamics in terms of dual quaternions is not
considered. In [15] and [16] the authors present a hierarchical
control law for quadrotor stabilization and aerial manipulator
tracking. The dual quaternion logarithm is used to generate the
desired force vector and subsequently the desired attitude tra-
jectory, however, they do not consider Coriolis acceleration or
centrifugal acceleration in their dynamics model. Quadrotor-
gimbal composite systems has been studied previously in
litarature; in [17] the authors present a nonlinear velocity
controller that achieves global uniform ultimate boundedness
of the velocity errors in the gimbal camera frame. In recent
work we presented a novel control strategy for the quadrotor
platform using the dual quaternion framework for the problem
of trajectory tracking, uniform practical asymptotic stability if
the equlibrium points was shown using a PD+ based control
law [1]. In the presented work, we address the problem of
state feedback trajectory tracking of the composite quadrotor-
gimbal platform using the dual quaternion framework by
extending the previuous result in [1] to the composite case.
More precisely; we model the composite system using dual
quaternion coordinates, augment it using a additional reference
frame, derive the error dynamics which by insterting a PD+
based control law has closed loop equilibrium points that
uniformly asymptoticly stable, which implies uniform practical
asymptotic stability of the real system.

II. PRELIMINARIES

A. Notation and reference frames

Throughout this paper scalar values are denoted in normal
face, vectors in lowercase boldface while matrices are written
in capital boldface letters. The time derivative is denoted as
ẋ = dx

dt , the Euclidean norm is denoted by ‖·‖ while the
supremum norm is denoted as |·|∞. Note that In×n denotes
an n×n identity matrix while 0n×m denotes an n×m matrix



of zeros. Different reference frames is used throughout this
paper, denoted by superscripts; Fb is the quadrotor body frame
defined with its x-axis pointing forward between two of the
quadrotors motors1, the z-axis is pointing downward and its y-
axis completing the right-hand system. Fg denotes the gimbal
frame defined in a similar manner with its x-axis pointing
forward and z-axis down, Fd denotes the desired frame and
Fn is the standard North-East-Down (NED) frame which is
assumed to be inertial. The rotation matrix from Fb to Fn is
denoted as Rn

b ∈ SO(3), where

SO(3) := {R ∈ R3×3 : R>R = I3×3,det(R) = 1} (1)

is the special orthogonal group of order three. In this work
we use quaternions to parametrize SO(3), and the equivalent
attitude quaternion representing rotations from Fb to Fn is
denoted as qn,b. The homogeneous transformation matrix from
Fb to Fn is denoted as Tn

b ∈ SE(3), where

SE(3) :=

{
T∈R4×4 :T=

[
R p

01×3 1

]
,R∈SO(3),p∈R3

}
(2)

is the group of proper Euclidean motion in three dimensional
space. In this work we will use dual quaternions to parametrize
SE(3), and the equivalent pose dual quaternion is denoted
q̂n,b. Angular velocity is denoted ωa

b,c ∈ R3, ie. the angular
velocity of Fc relative Fb referenced in Fa. For any arbitrary
vectors v1, v2 ∈ R3, we denote the cross-product operator as
S(v1)v2 = v1 × v2. A function α : R0≥ → R0≥ is of class K
if α is strictly increasing, continuous and α(0) = 0. Moreover,
α is of class K∞ if, in addition, it is unbounded.

B. Quaternions and dual quaternions

The set of quaternions can be defined as

H :={q = η + ε1i+ ε2j + ε3k : η, ε1, ε2, ε3 ∈ R} (3)

with i, j, k being the well known quaternions basis elements.
Quaternions constitute a real vector space which is isomorphic
to R4 through the isomorphism ζ : H→ R4 defined as

ζ(η + ε1i+ ε2j + ε3k) =

[
η
ε

]
(4)

with ε = [ε1 ε2 ε3]>. The product of two quaternions, q =
[ηq ε

>
q ]> and p = [ηp ε

>
p ]>, is calculated as

p⊗ q =

[
ηpηq − ε>p εq

ηpεq + ηqεp + S(εp)εq

]
(5)

while the quaternion conjugate is given as q∗ := [η −ε>]>.
The subset of quaternions that possess norm equal to one are
known as unit quaternions, Hu := {q ∈ H : ‖q‖ = 1} and
topologically they form the 3− sphere S3 in R4 [18],

S3 := {q ∈ R4 : ‖q‖ = 1}, (6)

which under quaternion multiplication forms an associative
and distributive, but non-abelian Lie Group Spin(3) [19]. This

1This corresponds to the x-configuration of the quadrotor as opposed to the
pluss-configuration, the choice of which is arbitrary.

group has its inverse defined by the quaternion conjugate, it is
a double cover of SO(3), and thus the map γ : S3 → SO(3)
is a 2-to-1 homomorphism, defined as γ(q) = {±q}. Unit
quaternions can be used to represent rigid body attitude and
the attitude kinematics is modeled by the differential equation

q̇n,b = T(qn,b)ω
b
n,b (7)

where q̇n,b ∈ R4, ωb
n,b ∈ R3 and T(qn,b) ∈ R4×3 is defined

as

T(q) =
1

2

[
−ε>

ηI3×3 + S(ε)

]
. (8)

Vectors in R3 can be represented using pure quaternions, q ∈
Hp = {q ∈ H : η = 0}, by a trivial isomorphism. For two
pure quaternions, v,u ∈ R4, the cross product is just the cross
product between the vectors in R3, such that

q× p =

[
0 01×3

03×1 S(εp)

]
q := Sq(p)q. (9)

The set of dual numbers is defined as

D := {ẑ = zp + εzs : zp, zd ∈ R} (10)

with ε := {ε 6= 0, ε2 = 0} being the dual operator,
not to be confused with the quaternion vector element ε.
Dual quaternions are a combination of quaternions and dual
numbers, they can be seen as a quaternion where each element
is a dual number or conversely a dual number where each
element is a quaternion. We employ the latter and define the
set of dual quaternions as

DH := {q̂ ∈ H× D : q̂ = qp + εqd, qp,qd ∈ H} (11)

where qp is denoted as the primary part and qd is denoted
the dual part. Dual quaternions can be seen to constitute
a real vector space which is isomorphic to R8 through the
isomorphism ζ̂ : DH→ R8 defined as

ζ̂(qp + εqd) =

[
qp

qd

]
. (12)

The product of two dual quaternions is calculated as

q̂⊗ p̂ = qp ⊗ pp + ε(qp ⊗ pd + qd ⊗ pp) (13)

which can be seen to be a semi-direct product between the
primary and dual part. The dual quaternion conjugate is given
as

q̂∗ = q∗p + εq∗d (14)

where (·)∗ is the quaternion conjugate. The subset of dual
quaternions that satisfy the norm constraint ‖q̂‖ = 1 is denoted
the set of unit dual quaternions

DHu := {q̂∈DH : qp∈Hu,qp⊗q∗d+qd⊗q∗p =0}. (15)

It can be shown that under multiplication unit dual quaternions
form the group S3nR3 which double covers SE(3) [20], such
that

S3 nR3 := {q̂ ∈ R8 : qp ∈ S3,qs ∈ R4}. (16)



Vectors in R6 can be represented using pure dual quaternions,
q̂ ∈ DHp = {q̂ ∈ DH : qp,qs ∈ Hp}. For two pure dual
quaternions, v̂, û ∈ R8, the cross product is defined as

v̂× û = vp × up + ε(vp × ud + vd × up)

=

[
Sq(vp) 0
Sq(vd) Sq(vp)

]
û = Ŝ(v̂)û.

(17)

III. MODELING AND PROBLEM STATEMENT

In the remaining we omitt explicit statements on the use of
isomorphisms between R6 and R8 for the sake of brevity.

A. Quadrotor-Gimbal system model

The pose of the quadrotor is represented using a dual
quaternion, q̂n,b ∈ R8, defined as

q̂n,b = qn,b + ε
1

2
pn ⊗ qn,b = qn,b + ε

1

2
qn,b ⊗ pb (18)

where pn,pb ∈ R4 and qn,b ∈ S3. By a similar relation as in
(7) the dual quaternion kinematics is modeled as

˙̂qn,b = T̂(q̂n,b)ω̂
b
n,b (19)

where ω̂b
n,b ∈ R6 is the velocity screw of the quadrotor2

defined as ω̂b
n,b = ωb

n,b + εvb with vb = ṗb + S(ωb
n,b)pb.

The matrix T̂(q̂n,b) ∈ R8×6 is defined as

T̂(q̂n,b) =

[
T(qp) 04×3
T(qd) T(qp)

]
(20)

with T(·) given in (8). In this work we model dynamics
by employ the approach presented in [21]. Expanding the
dual quaternions into R8 using the isomporhisim ζ̂ allows for
screws to be mapped into co-screws by multiply them with
the inertia matrix, named the dual inertia matrix, defined as

M̂
b

=


0 01×3 1 01×3

03×1 03×3 03×1 mI3
1 01×3 0 01×3

03×1 Jb 03×1 03×3

 (21)

where J = diag{Jxx, Jyy, Jzz} is the inertia matrix and m
is the mass of the quadrotor. The dynamic model for the
quadrotor in the dual quaternion framework then becomes

M̂
b ˙̂ωb

n,b = f̂
b

u − f̂
b

g − Ŝ(ω̂b
n,b)M̂

b
ω̂b

n,b (22)

where f̂
b

u = fbT + ετb is the dual control force3 given as

fbT =


0
0
0
T

 τb =


0
τx
τy
τz

 (23)

and f̂
b

g = q∗n,b ⊗ fng ⊗ qn,b + ε0 is the gravitational force.
Similarly; assuming that the gimbal is rigidily attached to the

2From screw theory this is known as a twist, i.e. the angular velocity around
an axis and the linear velocity along it.

3From screw theory this is known as a wrench, i.e. the combination of
force and torque acting on a rigid body

quadrotor, the pose, kinematics, and dynamics of the gimbal
frame relative the body frame is represented as

q̂b,g = qb,g + ε
1

2
pb
g ⊗ qb,g = qb,g + ε

1

2
qb,g ⊗ pg

g

˙̂qb,g = T̂(q̂b,g)ω̂g
b,g

M̂
g ˙̂ωg

b,g = f̂
g

u − Ŝ(ω̂g
b,g)M̂

g
ω̂g

b,g

(24)

where pb
g ∈ R4 is a constant vector describing the gimbal

position in Fb and f̂
g

u = 0 + ετg .
Combining (18) and (24) the quadrotor-gimbal composed
system pose is given as

q̂n,g = q̂n,b ⊗ q̂b,g. (25)

Further, deriving the velocity screw of the composed system
to be ω̂g

n,g = q̂∗b,g⊗ω̂
b
n,b⊗ q̂b,g +ω̂g

b,g the equations of motion
of the composed system is stated as

˙̂qn,g = T̂(q̂n,g)ω̂g
n,g

˙̂ωg
n,g = q̂∗b,g ⊗ ˙̂ωb

n,b ⊗ q̂b,g + Ŝ(ω̂g
n,b)ω̂

g
b,g + ˙̂ωg

b,g.
(26)

B. Problem formulation

The tracking control problem can be stated as; let q̂n,d :
R≥0 → R8 be a given, two-times continuously differentiable
bounded time-varying desired trajectory, i.e.

max{|q̂n,d|∞, |ω̂
d
n,d|∞, | ˙̂ωd

n,d|∞} ≤ βd (27)

Define the tracking error in dual quaternion coordinates as

q̂e := q̂∗n,d ⊗ q̂n,g = qe + ε
1

2
qe ⊗ pg

e

:= qe,p + εqe,d =

[
ηe
εe

]
+ ε

[
ηed
εed

] (28)

and, due to the double cover S3 nR3 of SE(3), define

q̂e± :=

[
(1∓ ηe)
εe

]
+ ε

1

2
qe ⊗ pg

e (29)

with error kinematics and dynamics

˙̂qe± =T̂e(q̂e±)ω̂g
e

˙̂ωb
e =q̂∗b,g ⊗ (M̂

b
)−1(̂f

b

u + f̂
b

g − Ŝ(ω̂b
n,b)M̂ω̂b

n,b)⊗ q̂b,g

+ Ŝ(ω̂g
n,b)ω̂

g
b,g + (M̂

g
)−1(̂f

g

u − Ŝ(ω̂g
b,g)M̂

g
ω̂g

b,g)

− ˙̂ωg
n,d

(30)

where ω̂g
e = ω̂g

n,g − ω̂
g
n,d and

T̂e(q̂e±) =

[
Te±(qr) 03×4

T(qd) T(qr)

]
(31)

with
Te±(qr) =

1

2

[
±ε>

ηI3×3 + S(ε)

]
. (32)

Then, design a feedback control law, ûg (̂f
b

u, f̂
g

u), that stabilizes
the origin for the system (30).



Remark 1. The quadrotor is underactuated with four actua-
tors for six degrees of freedom, while the composite system is
overactuated with seven actuators.

Remark 2. Following [22], we define two sets q̂e+ ∈ S3
e+ n

R3 := {[1 − ηe, ε>e , q>e,d]> : ηe ≥ 0, q̂e ∈ S3 n R3} and
q̂e− ∈ S3

e− n R3 := {[1 + ηe, ε
>
e , q>e,d]> : ηe ≤ 0, q̂e ∈

S3 nR3}. Thus, q̂e± ∈ S3
e+ nR3 ∪ S3

e− nR3 = S3
e nR3 :=

{[1− |ηe|, ε>e , q>e,d]> : q̂e ∈ S3 nR3}.

IV. MAIN RESULTS

A. Virtual frames

As the quadrotor is underactuated we introduce a virtual
frame that maps two of the rotational actuators onto the
translational error, facilitating control design. The pose of
frame Fc is defined as

q̂g,c = q̂∗b,g ⊗ q̂b,c (33)

with
q̂b,c = qb,g + ε

1

2
∆b ⊗ qb,g (34)

where the constant vector ∆b = [0 0 0 ∆]>, ∆ ∈ R. Note
that the kinematics and dynamics of this frame can be found
to be

˙̂qg,c = T̂(q̂g,c)ω̂
c
g,c

ω̂c
g,c = ω̂c

b,c − q̂∗g,c ⊗ ω̂
g
b,g ⊗ q̂g,c

˙̂ωc
g,c = ˙̂ωc

b,c − q̂∗g,c ⊗ ˙̂ωg
b,g ⊗ q̂g,c − Ŝ(ω̂c

b,g)ω̂c
g,c

(35)

where ˙̂ωc
b,c = ˙̂ωg

b,g . Using this frame we compose a augmented
system as

q̂n,c = q̂n,b ⊗ q̂b,g ⊗ q̂g,c (36)

and derive its kinematics

˙̂qn,c = T̂(q̂n,c)ω̂
c
n,c (37)

with ω̂c
n,c = ω̂c

n,b + ω̂c
b,g + ω̂c

g,c. Further, we derive the
dynamics of the composed system and after inserting (35) one
finds

˙̂ωc
n,c =q̂∗b,c ⊗ (M̂

b
)−1(̂f

b

u + f̂
b

g − Ŝ(ω̂b
n,b)M̂ω̂b

n,b)⊗ q̂b,c

+ Ŝ(ω̂c
n,b)ω̂

c
b,c + (M̂

g
)−1(̂f

g

u − Ŝ(ω̂g
b,g)M̂

g
ω̂g

b,g).

(38)

By the contruction of q̂b,c we now have that

q̂∗b,c ⊗ (M̂
b
)−1f̂

b

u ⊗ q̂b,c =


q∗b,c ⊗ (Jb)−1τb ⊗ qb,c

q∗b,c ⊗

 ∆τy/Jyy
−∆τx/Jxx
T/m

⊗ qb,c


which shows that the quadrotor rotational actuators has been
mapped onto the translational error. Defining a control screw
for the composed system as

ûc(̂f
b

u, f̂
g

u) =


(Jg)−1τg

q∗b,c ⊗

 ∆τy/Jyy
−∆τx/Jxx
T/m

⊗ qb,c

 (39)

we restate (38) suitable for control design

˙̂ωc
n,c =ûc − q̂∗b,c ⊗ (M̂

b
)−1(̂f

b

g + Ŝ(ω̂b
n,b)M̂ω̂b

n,b)⊗ q̂b,c

+ Ŝ(ω̂c
n,b)ω̂

c
b,c − (M̂

g
)−1(Ŝ(ω̂g

b,g)M̂
g
ω̂g

b,g) + δ(ûc)

(40)

where

δ̂(ûc) =

q∗b,c ⊗

τx/Jxxτy/Jyy
0

⊗ qb,c

0

 . (41)

B. Error kinematics

With the new augmented system we redefine the tracking
error, error kinematics and dynamics as

q̂e = q̂∗n,d ⊗ q̂n,c := qe + ε
1

2
qe ⊗ pc

e (42)

with error kinematics and dynamics

˙̂qe± =T̂e(q̂e±)ω̂c
e

˙̂ωc
e =ûc−q̂∗b,c⊗(M̂

b
)−1(̂f

b

g+ω̂b
n,b ×M̂

b
ω̂b

n,b)⊗q̂b,c

+ Ŝ(ω̂c
n,b)ω̂

c
b,c − (M̂

g
)−1(Ŝ(ω̂g

b,g)M̂
g
ω̂g

b,g)

+ δ̂(ûc)− ˙̂ωc
n,d

(43)

It has been shown in [1] that achieving asymptotic tracking
for the augmented system is equivalent to achieving practical
asymptotic tracking for the real system.

C. PD+ controller

The following proposition establishes uniform asymptotic
stability of the closed-loop augmented system under a modi-
fied PD+ controller.

Proposition 1. Let q̂eq ∈ S3
e n R3 and sgn(ηe,p(t0)) =

sgn(ηe,p(t)) for all t ≥ t0, let the desired trajectory, q̂n,d,
satisfy (27), then the equilibrium points (q̂e±, ω̂

c
e) = (0, 0) of

the system (43), in closed-loop with the control law

ûc = q̂∗b,c ⊗ (M̂
b
)−1(̂f

b

g + Ŝ(ω̂b
n,b)M̂

b
ω̂b

n,b)⊗ q̂b,c
− Ŝ(ω̂c

n,b)ω̂
c
b,c − δ̂(ûc) + q̂∗e ⊗ ˙̂ωz

n,z ⊗ q̂e + Ŝ(ω̂c
n,z)ω̂c

e

+ (M̂
g
)−1(Ŝ(ω̂g

b,g)M̂
g
ω̂g

b,g)− Kpε̃− Kdω̂e

(44)

where ε̃> = 2q̂>eqT̂e(q̂eq), Kp, Kd are positive feedback control
gain matrices, are uniformly asymptotically stable (UAS).

Proof. In the following we only consider, without loss of
generality, the positive equilibrium point, i.e. q̂eq = q̂e+

and T̂e(q̂eq) = T̂e(q̂e+). The closed-loop kinematics and
dynamics, resulting from inserting (44) into (43), is

˙̂qeq = T̂e(q̂eq)ω̂c
e

˙̂ωc
e = −Kpε̃−Kdω̂

c
e

(45)

Consider the radially unbounded Lyapunov function candidate

V (q̂eq, ω̂
c
e) = q̂>eqKpq̂eq +

1

2
(ω̂c

e)
>ω̂c

e. (46)



We show that there exist functions α, α ∈ K∞ such that
α(x) ≤ V (x) ≤ α(x). Defining χ = [q̂>eqT̂e(q̂eq) (ω̂c

e)
>]>

and utilizing Lemma (3.2) in [1], we obtain

pm‖χ‖2 ≤ V (q̂eq, ω̂
c
e) ≤ pM‖χ‖2 (47)

for some pM > pm > 0. Thus choosing α(q̂eq, ω̂
c
e) =

pm‖χ‖2 and α(q̂eq, ω̂
c
e) = pM‖χ‖2 ensures the existence of

such functions. Evaluating the time derivative of V along the
closed-loop trajectories generated by (45) yields

V̇ (q̂eq, ω̂
c
e) =2q̂>eqK̂pT̂e(q̂eq)ω̂c

e

+ (ω̂c
e)
>(−K̂pε̃− K̂dω̂

c
e)

=(K̂pε̃)
>ω̂c

e − (ω̂c
e)
>K̂pε̃− (ω̂c

e)
>K̂dω̂

c
e

=− (ω̂c
e)
>K̂dω̂

c
e ≤ 0.

(48)

We conclude, by Theorem 4.8 in [23], that the equilibrium
point (q̂eq, ω̂

c
e) = (0, 0) is uniformly stable and the solutions

are uniformly bounded.
To show uniform asymptotic stability we invoke Matrosov’s

theorem, as stated in [24], by introducing the auxiliary function

W (q̂eq, ω̂
c
e) = ε̃>ω̂c

e = 2q̂>eqT̂e(q̂eq)ω̂c
e (49)

which is continuous in both arguments and depends on time
through the bounded reference function q̂d. Differentiation of
the auxiliary function yields

Ẇ = 2 ˙̂q>eqT̂e(q̂eq)ω̂c
e + 2q̂>eq

˙̂Te(q̂eq)ω̂c
e + ε̃> ˙̂ωc

e (50)

and after inserting (45) one can varify that on the set E =
{V̇ = 0} = {ω̂c

e = 0},

Ẇ = −ε̃>Kpε̃ (51)

That is, Ẇ is non-zero definite on E. Thus all conditions
of Matrosov’s theorem are satisfied, and (q̂e±, ω̂

c
e) → (0, 0)

asymptotically. The proof for the negative equilibrium point,
q̂eq = q̂e− and T̂e(q̂eq) = T̂e(q̂e−) is performed in the same
way. It follows that the dual equilibrium points q̂eq ∈ S3

e nR3

are UAS.

D. Practical stability and damping

In the above section we establish practical stability of
the equilibrium points of the closed loop augmented system,
there is however no damping for the two rotational degrees
of freedom that is used to solve the translational tracking
problem. To counter this we add a damping term to the
controller in Propostion 1 defined as

ω̂t = 0 + εS(ωc
n,b)∆

c (52)

such that the closed loop dynamics now become

˙̂ωc
e = −Kpε̃−Kdω̂

c
e − ω̂t. (53)

Re-evaluating 46 we have that

V̇ (q̂eq, ω̂
c
e) = −(ω̂c

e)
>K̂dω̂

c
e − (ω̂c

e)
>ω̂t

= −(ω̂c
e)
>K̂dω̂

c
e − (ω̂c

e0)>ω̂t − (ω̂t)
>ω̂t

(54)

Fig. 1. Quaternion attitude error of the system

where we use the fact that ω̂c
e = ω̂c

e0 + ω̂t and ω̂c
e0 is the

dual velocity error of the original system. Strictly speaking
this makes the above stated proof invalid however in practice
it may be argued that since ω̂c

e0 converges to −ω̂t and is
oscillating around zero the only valid equilibrium point is that
of ω̂c

e0 = 0. This is not shown in the strict mathematical sense
and is left for future work.

V. SIMULATIONS

In this section, simulation results for a quadrotor-gimbal
platform tracking a trajectory are presented to demonstrate
the performance of the presented control law in Proposition 1.
The quadrotor model is based upon the UiTRotor quadrotor
that have a mass of 1.3kg, and moments of inertia for the
quadrotor given as Jb = diag{0.04 0.04 0.5}kgm2 and for
the gimbal Jg = diag{0.00023 0.00023 0.00045}kgm2. The
control gains is given as Kp = diag{1 1 1 1 1 0.1 0.1 0.1},
Kd = diag{1 2 2 2 1 0.4 0.4 2}. The initial condition for the
quadrotor system is

q̂n,b(t0) = q̂I + ε
1

2
q̂I ⊗ [0 0 5 − 5]>

ω̂b
n,b(t0) = [0 0.1 0.2 0 0 0 0 0]>

and ∆ = 1. We employ a straight-line trajectory with a
constant angular velocity reference, similar to that found in
[25], defined as

pn
d (t) = [0 ((75/4)− (3/4)t) 1 − 10]>

ωd
nd(t) = [0 0.01 0.03 0.2]>

with initial condition qn,d = qI . Figure 1 shows the quaternion
attitude error for the gimbal; as the gimbal is assumed fully
actuated this error goes to zero fairly quick. Figure 2 show
the position error for the augmented system; as expected the
position error does not completely converge to zero as implied
by the practical stability property.

VI. CONCLUSION AND FUTURE WORK

We proposed a new method to solve the trajectory tracking
problem for the underactuated quadrotor platform, including
a PD+ based state feedback control law for solving the



Fig. 2. Position error of the system

tracking problem under this method. It was shown that the
equilibria of the closed-loop augmented system are uniformly
asymptotically stable, which implied that the equilibria of the
closed-loop real system are practically asymptotically stable.
Simulations demonstrate the theoretical results, however, they
revealed that further work is necessary in order for the method
to be implemented on a real quadrotor.
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