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Abstract The increasing use of omics data in epidemiology enables many novel
study designs, but also introduces challenges for data analysis. We describe the pos-
sibilities for systems epidemiological designs in the Norwegian Women and Cancer
(NOWAC) study and show how the complexity of NOWAC enables many beautiful
new study designs. We discuss the challenges of implementing designs and analyz-
ing data. Finally, we propose a systems architecture for swift design and exploration
of epidemiological studies.

Keywords Systems epidemiology | Norwegian Women and Cancer | study
designs | hypothesis exploration | computer systems

INTRODUCTION

Analytical observational epidemiology was, and primarily still is, about disease
risk estimation. In the past, most studies used simple case-control designs with
data from questionnaires, registers, and health records. The analyses relied on Cox
and classical survival analysis methods. Because case-control designs are prone to
selection and recall bias, prospective cohorts with nested designs are increasingly
used, but typically still focus on risk estimation. However, there is a shift in epide-
miology towards more basic research in which we study how diseases affect bio-
logical systems at a biomolecular level over time - for example, to understand the
dynamics of human carcinogenesis.

This shift was motivated by the sequencing of the human genome, officially
completed in April 2003 (The Human Genome Project), which led to the incorpo-
ration of genetic variants into epidemiological studies, primarily single nucleotide
polymorphisms (SNPs). SNPs are ideal as exposures because they do not change
over a lifetime. Hence, risks can be estimated using classical statistical methods.
There are also many hospital and research biobanks with samples usable for SNP
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analyses, such as biobanks incorporated in the European Prospective Investigation
into Cancer and Nutrition (EPIC) (Bingham and Riboli 2004). In the ensuing dec-
ade, considerable resources were spent on genome-wide association studies
(GWAS), but the studies repeatedly failed to find robust, replicable associations
between SNPs and common diseases (Lund and Dumeaux 2008). The focus, there-
fore, shifted to functional genomics to find biological markers associated with
environmental exposures, lifestyle, age, or disease.

In 2008, Lund and Dumeaux (Lund and Dumeaux 2008) introduced systems
epidemiology and proposed the globolomic design. Systems epidemiology incor-
porates functional genomics and observes how diseases affect human biological
systems over time. The globolomic design extends the existing prospective design
by integrating functional genomics analyses from blood and tissue. In 2015, Lund,
with collaborators, introduced a processual approach to systems epidemiology
(Lund et al. 2015). The processual approach differs from traditional risk-related
research in that we view disease as a multi-stage process and use functional
genomics to observe disease-associated changes over time. In connection with the
new direction in epidemiology, there was a need for new statistical methods. An
example is a statistical method for longitudinal gene expression analysis using the
concept of curve groups (Lund et al. 2016, Chapter 8), developed in cooperation
with the Norwegian Computing Center.

Omics (Vailati-Riboni et al. 2017) plays an essential part in systems epidemiol-
ogy. The different omics are, unlike genes, affected by exposures and diseases. By
integrating omics in nested case-control studies, we can find altered levels of gene
expressions or methylation that are biological markers of the disease. For example,
studies have discovered changes in pre-diagnostic DNA methylation associated
with breast and lung cancer risk (Baglietto et al. 2017, Fasanelli et al. 2015, van
Veldhoven et al. 2015). Other studies have found changes in the inflammatory
transcriptome in adults related to early-life socioeconomic status (Castagne et al.
2016). We can also use other types of biological data that contain changes associ-
ated with a disease, including epigenetics, gene expressions, proteins, and metab-
olites. Finally, we can combine different types of omics and observe them together
in a multi-omics approach (Hasin et al. 2017).

In systems epidemiology, we observe how diseases affect human biological sys-
tems at the molecular level over time in order to gain more knowledge about the
mechanisms involved throughout the natural history of a disease. The develop-
ment of cancer, for example, is a multi-stage process (Foulds L 1958, Grizzi and
Chiriva-Internati 2006). The omics may be affected differently at different stages
of the process. Thus, the temporal aspects are essential — for example, the time to



2. The Beauty of Complex Designs

diagnosis. Systems epidemiology can help to bridge the gap between epidemiology
and research in biological sciences. The study findings can provide input into
research on molecular level biological systems, which can enhance our under-
standing of diseases, e.g. through pathway analysis (Garca-Campos et al. 2015).
We can, therefore, see systems epidemiology as a shift in epidemiology from
applied research towards basic research. The emphasis on the dynamic nature of
biological systems and processes in systems epidemiology can be seen as a coun-
terpart to systems biology, which is a discipline that seeks to determine how com-
plex biological systems function by integrating experimentally derived informa-
tion through mathematical and computing solutions (Institute of Systems and
Synthetic Biology).

We can integrate systems epidemiological designs into existing prospective
studies if the studies include omics and relevant questionnaire data. The Norwe-
gian Women and Cancer study is an example of a complex prospective study with
extensive data from questionnaires and registers, nested studies, different types of
preserved biological samples, and omics data.

However, many opportunities remain unexplored due to the time-consuming
and expensive steps required to conduct a full systems epidemiological project. We
could reduce the problem by making it possible to quickly design studies and
explore potential hypotheses at an early stage, before starting thorough research
projects.

In this paper, we show that many novel systems epidemiological studies are pos-
sible by utilizing existing data from population-based prospective cohort studies.
We also propose a computer systems architecture enabling the swift design of stud-
ies and exploration of hypotheses.

COMPLEX DESIGNS

Systems epidemiological study designs can be nested within existing cohort stud-
ies, such as the Norwegian Women and Cancer (NOWAC) study. The novel studies
thus become part of a larger, complex design. Here, we describe the NOWAC study
and data types, and we show that the existing cohort enables many novel study
design possibilities. We give a stepwise example of a systems epidemiological
design process. We also provide examples of two other variations of study designs
to show that there are several ways to design studies. Lastly, in this section we dis-
cuss the potential for realizing more of the potential for designing studies and
exploring hypotheses.
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NORWEGIAN WOMEN AND CANCER STUDY

In this paper, we use the Norwegian Women and Cancer (NOWAC) Study (Lund
et al. 2008) to describe the systems epidemiological design process. NOWAC is a
population-based prospective cohort study approved by the Regional Committee
for Medical Research Ethics and the Norwegian Data Inspectorate (P REK NORD
141/2008 Biobanken KVINNER OG KREFT). It was initially designed for breast
cancer research and has later been used to research other types of cancer. The
cohort includes 172 556 Norwegian women born between 1926-1965 (Gram et al.
2013). Invitations to the study were sent by mail in different batches for different
time periods (The Norwegian Women and Cancer Study, NOWAC). Most of the
women were recruited between 1991-1997 (179 387 invited, 102 540 recruited)
and 2003-2006 (130 577 invited, 63 232 recruited) (Lund et al. 2008). All of the
invited women had been randomly drawn from the Norwegian Central Person
Register. Each woman in the study has participated in surveys with questionnaires
covering a wide range of topics, from smoking, alcohol, diet, and physical activity
to the use of oral contraceptives and hormonal replacement therapy, reproductive
history, and diseases in the family.

The women have answered follow-up surveys with intervals of between four to
six years, resulting in a total of one to four answered questionnaires per woman.
The latest follow-up was in 2017. NOWAC periodically updates data with infor-
mation from the Norwegian Cancer Registry and the Cause of Death Registry.

There are also blood and tissue samples. The number of women in NOWAC
born 1943-1957 is about one-third of all Norwegian women born in those years,
and between 2003-2006, the NOWAC postgenome cohort study (Dumeaux et al.
2008) collected blood samples from about 50 000 of these participants. At the time
of blood sampling, the participants filled out an accompanying two-page question-
naire. The samples were collected using the PAXgene™ Blood RNA System (PreA-
nalytiX GmbH, CH-8634 Hombrechtikon, Switzerland) with buffers specially
designed for the conservation of RNA (Barnung et al. 2018).

Other types of samples also exist for a smaller portion of the women, such as
biopsies from both malignant tumors (Dumeaux V 2017) and healthy tissue
(Chapter 4). NOWAC produced its first microarray-based gene expression dataset
in 2009 and later miRNA, DNA methylation, metabolomics, and RNA-Seq data-
sets (Fjukstad 2019).

The samples have been preserved with the future in mind. Assessment of the
mRNA quality in whole blood samples after 15 years has been reassuring (data not
shown). We are still early in the post-genomic era, and the omics field is rapidly
evolving. In the future, new or improved types of assays will be developed. We can
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then use the preserved samples together with these assays. Also, tissue and blood
samples can be analyzed in new ways as new areas of interest emerge in cancer
research. For example, the immune system’s role in cancer is promising (de Visser
et al. 2006). In the future, other areas may attract attention.

Systems epidemiology’s use of biological samples from human participants has
a number of advantages compared to the alternatives. In biomedical research, for
example, it is common to conduct experiments either on live laboratory animals
(in vivo) or in Petri dishes and test tubes (in vitro). It is reasonable to assume that
there are relevant differences between humans and laboratory mice that must be
taken into account when studying human diseases (Breschi et al. 2017, Mestas and
Hughes 2004). In their daily lives, humans experience very different exposures
compared to laboratory mice. Systems epidemiological designs make it possible to
investigate gene expression profiles resulting from the complex real-life situations
of the participants, with hundreds of different exposures that interact with genetic
predispositions to cancer (Lund and Dumeaux 2008).

A prospective study, such as NOWAC, will often start as a cross-sectional study
in which data collection is done at a defined time. The study will usually involve
surveys about the past and data originally collected for other purposes. Cross-sec-
tions of the cohort can be made, but the temporality desired in a prospective study
is still missing. For each following year, some percentage of the participants will be
affected by cancer or another disease, which forms the basis for the prospective
aspect of the study. Additionally, the cohort needs to be followed up. Follow-ups of
a cohort can involve mailing follow-up questionnaires, updating data from disease
and cause-of-death registers, and possibly blood and tissue sampling.

The NOWAC study was designed as a prospective cohort study from the begin-
ning. The aim of the study was initially to research hormonal contraceptives and
breast cancer risk, but the surveys included questions covering a far broader scope.
This is the reason why NOWAC can be used to research many other cancers and
risk factors. In addition to the original study, there are different nested studies
within NOWAC. These are mostly case-control studies. An advantage of nesting
case-control studies in prospective cohorts is the reduction of recall and selection
bias. Other study designs can be nested, as well. Some studies exist that only use
the controls from a nested case-control study.

We can use the data in NOWAC for many novel epidemiological studies (Figure
2.1). Before any diagnosis, most participants have answered multiple surveys and
donated blood samples. Data from the surveys give an insight into the participants’
prior exposures and risk factors related to lifestyle, family history, socioeconomic
status, and health status. This information is supplemented with data from passive
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follow-up based on cancer and death register data, and active follow-up based on
collaboration with 11 major Norwegian hospitals and the Norwegian Breast Can-
cer Group (NBCG). Blood samples were collected and stored in a way that makes
new functional genomics analyses possible. Because the blood was collected before
diagnosis, the time between blood sampling and diagnosis varies for different
cases. In addition to the pre-diagnostic blood samples, some post-diagnostic sam-
ples were collected as well. NOWAC also includes tissue samples from hospital
biobanks for many of the participants that developed cancer. The study even has
four hundred biopsies from healthy women; see Chapter 4. The blood and tissue
samples are analyzed using several omics technologies. All this data can be com-
bined in many different ways, enabling many system epidemiology studies, which
we will show in the following section.

(
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recruitment blood sample data registry data

Tissue samples
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Figure 2.1. NOWAC cohort overview; biological samples and data types.

DESIGNING SYSTEMS EPIDEMIOLOGICAL STUDIES

Here, we describe how novel systems epidemiological studies can be designed
using data from NOWAC. We first describe limitations of the data material before
moving on to the many possible combinations of data that exist. We then provide
an example of the design process.

Limitations

Before we describe the many possibilities in a prospective cohort, we first discuss
the limitations. One type of limitation is when the data material does not contain
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the necessary information. A trivial example is that a cohort without male partic-
ipants probably does not have the data needed for prostate cancer research.

When it comes to questionnaire data, it is important to be aware that not all
groups respond to surveys to the same extent. The validity of studies concerning
high alcohol consumption can be problematic because people who suffer from
alcoholism answer questionnaires to a lesser extent than others. Consequently,
data on this group may be insufficient. However, studies involving other groups
can still be valid. The validity of the questionnaire items can also be of concern—
have the participants understood the questions? Furthermore, the types of data
obtainable from samples are limited by the technology used for collection and cold
storage. To conserve RNA in blood, we must use technologies such as PAXgene or
similar.

The size of the cohort is another limiting factor. In studies involving subgroups,
statistical power can often become a problem due to too few participants. One way
of counteracting the problem is through international collaborations. The Euro-
pean Prospective Investigation into Cancer and Nutrition (EPIC) (Bingham and
Riboli 2004) is one such international collaboration. EPIC is one of the largest pro-
spective cohort studies in the world. It has 521 000 participants and has been fol-
lowed for almost fifteen years. The cohort is composed of other cohorts from ten
European countries, including NOWAC.

A significant problem internationally is the follow-up of mortality and disease.
In Norway and the other Nordic countries, follow-up is easier thanks to public reg-
ister data. All Nordic countries have a central person register, cause-of-death reg-
ister, disease registers, and other public registers. Although not perfect in every
respect, the Nordic registers have long been celebrated as a ‘gold mine’ for research
(van der Wel et al. 2019).

The many possible studies

When we design a study, there are many types of choices that we can make depend-
ing on the research hypothesis. The different types of choices comprise a high
number of possible studies when combined.

Figure 2.2 shows the intersection of seven different types of choices as separate
dimensions. There are many options for each dimension, and the intersection of
the dimensions results in an ample decision space where each combination is a
potential study design. In the following, we describe the different choice dimen-
sions.
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The first dimension (1) concerns choices related to the study design’s time
aspect, which is an integral part of most epidemiological study designs. In system
epidemiological designs, we define a timeline dimension explicitly. We can divide
the timeline into the time before diagnosis, time of diagnosis, or time after diag-
nosis. For some samples, such as biopsies taken at diagnosis, the time will coincide
with the time of diagnosis, but we can combine this with other samples taken
before or after diagnosis. We can also further divide the timeline into intervals, e.g.
0-1 years before diagnosis, 2-3 years before diagnosis, and 3-5 years before diagno-
sis, which is useful for statistical analyses.

The second dimension (2) is the exposures and risks dimension. Many different
types of exposures can increase the risk of a condition. In NOWAC’s prospective
questionnaires, we find information about each participant’s risk factors, such as
lifestyle, use of medication, conditions in the family, number of births, and much
more. Additionally, genetic variants can be viewed as risk factors that can be iden-
tified by analyzing blood samples.

The third dimension (3) is the different types of measurements and assays that
we can choose. In the NOWAC context, each assay is an omics or multi-omics
assay — for example methylation, gene expressions, and metabolomics.

However, there are more than three dimensions. Instead of adding more axes,
we label the remaining dimensions with lower case letters a-d on a cube (see label
4 in the figure). Each cube in the figure will have these four additional choice
dimensions, which differentiate the many possible studies.

The fourth dimension (4a) represents the possible diagnoses that can be studied.
In NOWAC, we have information about various diagnoses from the Norwegian
Cancer Registry and the Cause of Death Registry.

The fifth dimension (4b) is the participant selection dimension. This dimension
concerns the criteria for choosing and grouping participants for the study. A typi-
cal example is a case-control study in which we select cases from the cohort based
on criteria that we choose. We then choose controls nested in the cohort matched
on the cases. The criteria that we use to match controls to cases can vary from
study to study, while selecting controls with the same sex and similar age since the
case is quite common. There will usually be far more possible controls than cases
available for selection in a study. A ratio of about a thousand to one is not uncom-
mon. The statistical power is dependent on the number of available cases and the
number of controls drawn for each case.

The sixth dimension (4c) is the sample type dimension. Usually, it matters where
the analyzed sample was acquired from; it can be a blood sample, a tissue sample,
or a sample of specific types of immune cells. We can compare results from differ-
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ent sample types from each participant, such as comparing methylation levels in
peripheral blood and tumor tissue.

The seventh dimension (4d) applies to stratification and de-confounding. The
purpose is to adjust for underlying factors that skew the results, and we usually use
exposure and risk factor data for this. An example of how we can adjust for smok-
ing exposure when analyzing biomarkers for lung cancer is given in a later descrip-
tion of a three-level study design.

We have now described the many available choices that exist when designing
studies. Each dimension consists of many options, and the number of possible
studies becomes very large when we combine different dimensions. The reason for
the high number of combinations is that the number of options for each dimension
must be multiplied together. The total number of combinations then becomes:
(The number of ways to arrange the timeline) * (The number of exposures) * (The
number of available measurements and assays, e.g. for single or multi-omics) * (The
number of available diagnoses) * (The number of ways to select participants) * (All
sample types and relevant combinations) * (The de-confounding and stratification
factors)

After we have chosen the study parameters from the described dimensions, we
will have a clearer understanding of the selection of data we need for a study. The
next step is to apply the data selection to systems epidemiological designs.

a) Diagnosis dimension

¢) Sample types dimension

Figure 2.2. The different dimensions that can be combined for each study design.

Each cube has additional dimensions

b) Participant selection dimension
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Applying data to systems epidemiological designs

After deciding on the parameters and data for our study, we apply the data within
a systems epidemiological design. We now give a stepwise example of a systems
epidemiological design process using existing data from a prospective cohort
study with omics data, such as NOWAC.

In systems epidemiology, imagine that we organize our sample data points along
several axes, where one is the timeline (Figure 2.3). We usually split the timeline
into the time before diagnosis, of diagnosis, and after diagnosis. It is also possible
to split the timeline by an event other than the diagnosis. The decision on how to
split the timeline was described earlier as one of the dimensions from which we
choose our study parameters.

Time of diagnosis

A
\/

Time to diagnosis Time after diagnosis

Figure 2.3. Time to diagnosis, time of diagnosis, and time after diagnosis.

Each sample in our data has a temporal distance to the time of diagnosis (Figure
2.4). We therefore place the data points on the timeline relative to how long before
or after diagnosis the sample was collected. The second axis is a value axis. The val-
ues of the data points can be the raw measured values, such as the expression levels
for a gene, but they are often the results of a function that takes one or more meas-
ured values as parameters. For example, the vertical position of the data point may
represent the difference between cases and controls (Formula 2.1).

f (xcase > Xetrl ) - 10g2 (xcase) - 10g2 (xctrl)

Formula 2. In the formula, x is a case-control pair’s expression levels for a gene or
other omics value.
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Figure 2.4. Sample data points positioned by distance from diagnosis. The value
axis does not have to be linear; it can be logarithmic or other.

Next, we can group data points into strata that we are interested in comparing (Fig-
ure 2.5). By observing data points at a group level, we can envision a curve or tra-
jectory for each stratum (Figure 2.6). If we compare the trajectories and find sig-
nificant differences between the strata, this could potentially be of importance not
only for future research on differential diagnosis or prognosis, but also for under-
standing which biological systems are involved.

It is not mandatory to stratify by grouping data points as described. If the data
point values come from a function that represents a comparison of different sam-
ples, then this too is a type of stratification. When using Formula 1 for data point
values, the height of the curve is a case-control comparison. Consequently, multi-
ple levels of stratification can be achieved through a combination of grouping and
use of functions.

Time of diagnosis

L Metastasis O
Stratification [ O

\' ()
O (@)

No metastasis

A
\

Time to diagnosis Time after diagnosis

Figure 2.5. Stratification of data points. In this example, the white-filled circles rep-
resent women with metastasis, and the grey-filled circles represent women without.
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Figure 2.6. An illustration of estimated curves or trajectories for each stratum. The
curves for the two strata are different.

Because the measured values are from biological processes that interact as part of
a system, it is interesting to compare the curves of many types of values simultane-
ously (Figure 2.7). The figure shows three curves per stratum, one for each type of
gene expression.

Time of diagnosis

Metastasis

t
1
No metastasis 1
1

< " »
-

Figure 2.7. For each biological sample, we can measure the levels of many different
expressed genes. For each, we can imagine a separate curve per strata. In the illus-
tration, only the expression levels for “Gene 1” differ between the two strata. Note
that we are not restricted to gene expressions. Other omics can be used.

However, the reality is more challenging than illustrated in Figure 2.7. For exam-
ple, we can measure the expression levels for 19 950 protein-coding genes from
each blood sample and present each expressed gene as a separate curve along the
timeline. Curves for other omics can be included as well, such as methylation. The
results can thus consist of thousands of intersecting curves per stratum, which is
too much information to be presented as an overview of the data. Therefore, we
must use other techniques for analyzing the data. Many methods exist for analyz-
ing high-dimensional omics data. Usually we use methods related to clustering or
dimensionality reduction techniques for high-dimensional data (Breschi et al.



2. The Beauty of Complex Designs

2017). Examples of dimensionality reduction techniques include principal compo-
nent analysis (PCA), multidimensional scaling (MDS), and t-distributed stochas-
tic neighbor embedding (tSNE). An alternative approach is to map the omics data
to a biological context, e.g. we can map gene expressions to where they occur in
biological pathways. We are also interested in including the temporal aspect as part
of the data analysis, which is a hallmark of systems epidemiology.

We have now described how studies can be designed by applying existing cohort
data, for example, a combination of questionnaire data and high-dimensional
molecular data from NOWAC. The steps in the design process described in this
section can be summarized as:

o Establish an axis for the time to diagnosis (or another event) and an axis for
values
o Define strata
— For example, cases with spread or without spread
o Calculate data point values and position them in the coordinate system
— The basis for the values is analyzed samples, taken from different participants
at different times. Pre-diagnostic samples acquired from the cases will usually
have different distances to the time of diagnosis
— The data point values can be the raw measured values from samples, but more
often we use derived values from computations and statistical methods that
include values from case-control pairs
» Imagine curves for each similar type of data point belonging to the same stratum
— For example, all data points for a specific mRNA that involve cases with
spread belong to the same curve
o For high-dimensional data, there will be too many curves to comprehend, and
advanced clustering or dimensionality reduction techniques are thus needed
o Compare the strata to find differences
— Statistical methods, data explorations, and visualizations

TWO ALTERNATIVE TYPES OF STUDY DESIGN

In the previous section we based the studies on comparing cases and controls, but
there are other possibilities. Here we describe two design variations.

The NOWAC study has tissue samples that we can analyze and compare to
peripheral blood. That is, we compare samples from different locations in the same
person instead of between cases and controls. NOWAC includes case-control pairs
for which diagnostic blood and tissue samples exist both for cases and matching
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controls, which means that women allowed health-care professionals to take biop-
sies of healthy tissue for research purposes. For these participants, we can design
studies that compare tissue and blood samples and also include the case-control
aspect (Dumeaux et al. 2017).

Figure 2.8 It is also possible to define study designs with more than one level of
nesting. For example, we can create a three-level design comprised of the cohort, a
nested case-control study, and a cross-sectional study that only includes the con-
trols (Figure 2.8). The following case exemplifies this type of design: For some dis-
eases, such as lung cancer, a large percent of the cases has a history of smoking
exposure. As a result, it can be hard to separate the early biological effects of cancer
from the effects of smoking. We can solve this problem by first finding biomarkers
for smoking exposure in the controls. In the cross-sectional study, the controls are
stratified based on exposure data from the cohort’s prospective questionnaires.
The gene expressions are then analyzed to find the biological markers of smoking.
In the parent case-control study, the findings can be used for de-confounding pur-
poses to prevent smoking markers from being misinterpreted as cancer markers.
A study similar to this has been conducted by (Baiju et al. 2020) as part of the Id-
Lung project. The same type of design was used by to demonstrate altered gene

expression levels in the NOWAC cohort associated with coffee consumption (Bar-
nung et al. 2018).

Case-control

Cross-sectional .
Omics

Non-smokers

O O Smokers

O Participant diagnosed with the disease

O Participant without the disease

Figure 2.8. An illustration of a three-level design. Case-control pairs are selected
from the prospective cohort. The cross-sectional study selects controls from the
case-control study. The controls are stratified by exposure, which in this case is
smoking status. The smoking statuses are calculated from the cohort study’s ques-
tionnaires, and the biological samples are also from the cohort. The gene expres-
sion data is part of the case-control study. The cross-sectional study analyzes the
gene expressions to find exposure markers.
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TOWARDS REALIZING THE POTENTIAL

We have shown that it is possible to combine data in numerous ways to design
many different studies. Unfortunately, a lot of time and resources are needed to
carry out full epidemiological studies. Consequently, many opportunities that lie
in the prospective cohorts may be left unrealized.

If, instead, we had carried out lightweight studies in a simple way in advance
wherein we could quickly explore potential hypotheses, then we could have had a
better starting point when deciding whether it would be worth going ahead with
larger projects.

To realize more of the potential that lies in the NOWAC data and similar studies,
we suggest that a computer system should be created that supports the rapid design
of studies, analysis of data, and exploration of hypotheses. In the following sec-
tions, we propose a computer systems architecture for this purpose.

COMPUTER SYSTEMS ARCHITECTURE

In systems epidemiology, we design complex studies with many types of data,
including high-dimensional molecular data. Computer systems are essential for
managing data and performing computations. In the previous section we dis-
cussed the possibility of a computer system helping to realize more of the potential
in cohort data by enabling the users to explore different hypotheses quickly. How-
ever, no such unified system presently exists for systems epidemiology.

Here, we propose a systems architecture that enables the swift design of studies,
analysis of data, and exploration of hypotheses. The aim is to explore different
hypotheses quickly at a preliminary stage of research, or explained with a meta-
phor: “We wish to explore the data by swimming and delving into it.” (Lund 2019,
personal communication)

There exists a range of software tools and systems that are used in systems epi-
demiology. Examples are tools that are concerned with processing omics data in
pipelines, data management, or reproducibility in science. Fjukstad et al. 2018
(Chapter 3) used a combination of such tools to organize data storage and docu-
mentation and to standardize the analysis of gene expression data in NOWAC.
Various unrelated tools and scripts for statistical analyses of omics also exist. None
of these tools and systems constitute a unified system for the swift design of stud-
ies, epidemiological analysis, and exploration of hypotheses. We present a high-
level, conceptual architecture for this missing system.

37



38

Arnes an

d Bongo | Advancing Systems Epidemiology in Cancer

Figure 2.9 shows a conceptual view of the proposed system’s architecture. The
system is illustrated as having a pipelined architecture in which one part’s output

becomes the next part’s input. The arrows between the parts represent the flow of

Design study

data. Each part may be composed of loosely coupled subsystems.

Structure results
for further
exploration and
visualization

Apply statistical
methods and
computations

Fill study design
with data

C— >

Data storage

Figure 2.9. A high-level conceptual view of a computer system for systems epide-
miology.

In addition to designing each part of the system, we must design good abstractions
for the interfaces between them. We can view most of the system’s parts as separate
black boxes; the outside does not know the details of how the part functions on the
inside. The outside can only interact with it through limited interfaces and is not
permitted to manipulate its inner state and workings directly. An abstraction is a
well-defined view or model that only includes what is relevant and excludes all that
is irrelevant. The art is to define abstractions that are correct for use, flexible and
general enough to include relevant variations, yet simple and coherent. We com-
monly prefer interfaces and data structures with these properties. We implement
them by using the available features for declaring data types, functions, and sche-
mas in our programming languages, software frameworks, and environments. The
conscious use of abstractions when designing systems is an important tool for
avoiding accidental complexity, and it provides the system with clean and simple-
to-understand fagades (Kleppman 2017). Abstractions also help to clearly separate
the system’s different concerns and make it more flexible to changes.

First, we provide an example use case describing the system from the
researcher’s point of view. Next, we discuss the five main parts of the system. We
additionally touch upon the importance of reproducibility in science.
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Example use case: Design a study in an interactive notebook

In this section, we describe how the researcher can use the system through an
interactive notebook. Interactive notebooks are increasingly popular in data sci-
ence and scientific computing. The notebooks enable researchers to create
dynamic documents containing a mix of text and runnable code fragments. We
use the notebooks as interactive development environments and share them with
others. Two examples of notebook environments are R Notebook (Chapter 3.2 in
Xie et al. 2019) and (The Jupyter Notebook). We provide a casual use case (Cock-
burn 2000) describing a notebook approach to designing studies.

A researcher wants to design a study in order to explore a hypothesis. The
researcher has already opened a notebook and loaded the required packages
belonging to the system. The researcher types in and runs a simple command (or
function-call) telling the system to create a workspace for the study. The system
creates a data structure representing an empty workspace, which becomes availa-
ble in the researcher’s notebook. Included in the workspace is a default study
design specification. The researcher specifies the study’s overall design by adding
groups and stratifications to the design specification. The system keeps a data
structure representing this design within the study design specification. The
researcher specifies the data sets that will be used, including the target versions.
The system keeps this information in the workspace. The researcher then defines
queries for the different groups and strata. The system keeps the queries but does
not yet run them to fetch data. At this point, the researcher wants to inspect the
data, which is an optional step. The system runs the queries on demand and makes
the data available. After inspecting the data, the researcher defines how data will
be analyzed by composing statistical methods and computations from standard or
custom packages. These can be associated with specific groups or strata, and
sequences of computations can be defined. The system keeps this in the work-
space. The researcher instructs the system to execute the entire study, and the sys-
tem executes the study by fetching necessary data and running computations as
specified. It does this by delegating work to the storage and computational systems,
such as data lakes and Apache Spark. It makes the resulting data available in the
researcher’s notebook environment. The researcher can then further explore and
visualize the results with other tools.

The researcher can save the workspace at any point. Previously saved work-
spaces can be loaded and run. The researcher can modify individual parts of the
workspace and execute the updated study.
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Design study

To easily specify new study designs, we must provide a user interface (UI) to the
system that is user-friendly and practical. Several options exist:

o A graphical UI for specifying study designs

o A human-readable text-based format for defining studies (XML, JSON, YAML)

o A software package integrated into a development environment commonly used
in the researcher’s field (R-studio)

» A domain-specific language (DSL) for defining study designs

Regardless of how we present the study design specification UI to the researcher,
the specified designs must internally be represented in a machine interpretable
manner that is useable later for the automatic execution of the study. The study
design specifications describe what the researcher wishes to do, but not the details
of how. The exact decision on how data retrieval and execution is performed is left
to other parts of the system. This type of abstraction ensures that changes in imple-
mentation details, or even the replacement of whole subsystems, can be contained
to the parts that retrieve data and execute the study without requiring changes to
other parts. Equally important, the abstraction makes it possible automatically to
optimize how the study is performed.

Data storage

Data is central in epidemiological research, but managing all the technical aspects
of data is complicated and bears little relevance to the researcher’s aims. For exam-
ple, a considerable amount of time is spent on data wrangling due to impractical
data structures or lack of consistent structures. Each project typically operates on
smaller, custom data sets that have been extracted manually from the primary data
sets. The data sets are stored in simple text-based formats on shared disks. The
included fields and names are inconsistent across data sets. Sometimes the
researchers will make personal copies of the data set file, with various changes that
they have made. With the advent of multi-omics, the amount of data can poten-
tially become very large, which will require a more professional approach to data
management. The system should hide the technical details surrounding data and
instead provide the researchers with simple, uniform data access.

Today, a variety of production-quality data storage solutions are available. It is
crucial to investigate which type of solution best suits the system because there are
significant differences between them. Examples of storage types are:
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o Relational database management systems (RDBMS), including data ware-
houses: PostgreSQL, MS-SQL

o Key-value stores: Redis, Memcached

o Column stores or column formats: Cassandra, Parquet

o Graph databases: Neo4j, OrientDB

o Filesin distributed file systems: Hadoop Distributed File System (HDFS), Tachyon

o A combination of the above, termed polyglot persistence (Sadalage and Fowler
2013)

o Data lakes (Miloslavskaya and Tolstoy 2016): Azure Data Lake, AWS Data Lake

A layer of abstraction should be created for easy and uniform access to the data,
hiding the underlying data structures and storage systems. By abstracting the
underlying storage mechanisms away from the rest of the system, it is easier to
evolve or replace the storage solution as we discover opportunities for improve-
ments. ADAM (Massie et al. 2013) is a set of formats, APIs, and processing stage
implementations for genomic data. It has a layered design with a “narrow waist” in
the middle, also termed an hourglass model (Beck 2019). The narrow-waist layer
consists of a data schema, implemented with Apache Avro (The Apache Avro Pro-
ject) that separates the details of the storage layers from the overlying layers. A
similar approach may prove useful in our system.

Fill study design with data

After specifying a study design, the researcher must be able to query and retrieve
the data for the study. First, one or more data sources are chosen. We should enable
access to the data in a uniform manner and structure the data according to stand-
ard schemas. Next, the researcher defines queries that select and transform data for
the study’s different groups and strata, such as cases, controls, with spread, without
spread. The queries are attached to the study design specification.

From the technical side, the queries should be attached to the study design but not
immediately executed. The system should be allowed to run queries in the same con-
text as the computations. This can prevent inefficient spilling of data to disk between
the steps. It can also enable automatic query optimizations. There are several options
for query languages, e.g., the query syntax could be SQL-like or fluent (Fowler 2005).
LINQ (Torgersen 2007) or Resilient Distributed Datasets (RDD) (Zaharia et al.
2012) are examples that support deferred execution and both types of syntaxes.

The resulting data must have a structure recognizable by the computational and
statistical methods in the next step of the workflow. Again, we need good abstractions.
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Computations and statistical methods

The researcher should be able to choose from ready-made calculations and statis-
tical methods and possibly define custom ones. Functions for common computa-
tions and statistical methods can be packaged in a reusable manner that is inde-
pendent of a particular study. The statistical methods for curve groups (Lund E
2016) and classify strata (Holden 2015) are candidates for such packages. Novel
statistical methods for systems epidemiology will likely be developed in the future.
The system must support both ready-made packages, as well as custom packages.
A statistician can implement functions, possibly in collaboration with scientific
programmers, and epidemiologists can then apply the functions in various studies.
A challenge is to define standards for functions and packaging that covers the
needs of existing and future statistical methods.

The computations involved in omics analysis are often time-consuming and
resource-heavy. Care should be taken to choose an underlying platform that per-
forms well for the computations encountered in systems epidemiology. Apache
Spark (Zaharia et al. 2010) is a unified analytics engine for large-scale data process-
ing that could be used as an integral part of the system. Recent versions of Spark
support R (The R Project for Statistical Computing), which is a programming lan-
guage and environment for statistical computing often used in epidemiology.

Structure results for further exploration and visualization

After applying computations and statistical methods, it should be easy for the
researcher to explore and visualize the data further. Because many general-pur-
pose tools and software packages already exist that are excellent for data explora-
tion and visualization, the results generated by the system should be usable within
the context of such software packages and tools. We can achieve this by structuring
data in a standard format so that the researcher can either use the result datasets
directly or import them into their software tool of choice, such as an R environ-
ment.

Reproducibility

It has been claimed that there is a reproducibility crisis in science. Nature (Baker
2016) asked 1576 researchers questions about reproducibility. They found that
90% answered that there was either a slight or significant crisis. More than 70%
had tried and failed to reproduce other scientists’ experiments. More than half of
the scientists had experienced that they were unable to reproduce their own exper-
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iments. There are several reasons for the crisis — for example, selective reporting or
low statistical significance. At other times it can be challenging to know how to
repeat the experiment correctly. In the latter case, we can benefit from having a
system that can automatically rerun previous experiments using the same steps
and data.

The system’s study design specifications, dataset selections, queries, and statisti-
cal methods can be saved together as a complete workflow. As long as the under-
lying data stay unchanged, the experiments can be reloaded and automatically
repeated. The system must track changes to data and support data versioning. By
specifying target data versions for the workflows, we can ensure that the experi-
ment’s data stays the same between runs.

CONCLUSION

We have described the complex NOWAC study, the many different types of data,
and that the data can be combined in a large number of ways. The many combina-
tions allow us to create many new system epidemiological study designs. We have
also given a step-by-step example of a system epidemiological design.

The beauty of complex studies such as NOWAC is the opportunities for new
studies that arise. However, opportunities can be lost because extensive studies are
time-consuming and costly. By finding a quick way to create designs using existing
data, we can perform initial explorations to investigate if a hypothesis is worth
researching more extensively.

As a solution, we have proposed a computer systems architecture to support the
swift design of system epidemiological studies and exploration of hypotheses.
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