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Abstract. The standard semantics of separation logic is restricted to
finite heaps. This restriction already gives rise to a logic which does
not satisfy compactness, hence it does not allow for an effective, sound
and complete axiomatization. In this paper we therefore study both the
general model theory and proof theory of the separation logic of finite and
infinite heaps over arbitrary (first-order) models. We show that we can
express in the resulting logic finiteness of the models and the existence of
both countably infinite and uncountable models. We further show that a
sound and complete sequent calculus still can be obtained by restricting
the second-order quantification over heaps to first-order definable heaps.

1 Introduction

Separation logic [Rey02], in the sequel also referred to by SL, extends first-
order logic with the separating connectives of conjunction and implication for
reasoning about programs which feature the dynamic allocation of variables
that are stored at locations of that part of the memory called the ‘heap’. The
separating conjunction allows to specify properties of a partition of the heap
into two disjoint sub-heaps. The separating implication (also called ‘the magic
wand’) allows to express properties of disjoint extensions of the heap. Both
separating connectives involve a second-order quantification over heaps (which
are represented by binary relations).

In this paper we study both the model theory and the proof theory of SL.
The standard model of SL (as introduced in [Rey02]) extends the standard model
of arithmetic with the so-called ‘points-to’ relation which provides a formaliza-
tion of the heap in terms of the graph of a finitely-based partial function. This
function assigns to each location of the heap its stored value, or is undefined if
the location is not allocated. In the standard semantics of SL (here also called
weak SL), the domains of heaps are finite, that is, only finitely many locations
are allocated. Reasoning about finite heaps however requires an infinitary logic
because the logic of finite heaps, and that of finite model theory in general, does
not satisfy the compactness property: it is straightforward to express for each
natural number that the domain of the heap contains at least that number of
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elements. It follows that every finite subset of this infinite set of sentences is
satisfiable, but clearly no finite heap satisfies the entire set.

To study the generalmodel andproof theory of full SL1 we (1) extend its seman-
tics to arbitrary first-order models and (2) generalize the notion of a heap to a par-
tial function on the underlying domain of the given (first-order) model: no restric-
tions are imposed on the cardinality of the domain of heap, in contrast to weak SL
which restricts to finite heaps. Our main model-theoretic results are that in this
general setting we can express: (1) finiteness of models, (2) well-foundedness of the
points-to relation, and (3) existence of countably infinite and uncountable models.
As a consequence we have that full SL satisfies neither compactness nor the down-
ward and upward Löwenheim-Skolem theorems (see [CK13]). Non-compactness
implies that there does not exist an effective, sound and complete proof theory for
SL. In fact, we will show that the well-foundedness of the points-to relation can
already be expressed in full SL using only separating conjunction. Consequently,
full SL without separating implication is already non-compact. For full SL without
separating implication but in which separating conjunction only occurs positively,
the fragment which we call separation logic light (SLL), we do have compactness,
but its semantic consequence relation is not compact and therefore also does not
allow for an effective, sound and complete proof theory.

The question thus arises whether there exists an alternative interpretation of
SL that does allow for an effective, sound and complete proof theory. Clearly, the
main complexity of SL stems from the (second-order) quantification over heaps
(or sub-heaps, as in the case of the separating conjunction). For second-order
logic a sound and complete axiomatization can be obtained by generalizing its
semantics by means of so-called general models. Such models extend first-order
models with a set of possible interpretations of the second-order variables. For
example, instead of interpreting a monadic predicate over all possible subsets
of the given first-order domain, a general model restricts its interpretation to a
given set of such subsets. This generalization of the semantics of second-order
logic allows for a sound and complete axiomatization by restricting to so-called
Henkin models. A Henkin model is a general model for second-order logic which
additionally satisfies the comprehension axiom

∃R∀x1, . . . , xn(R(x1, . . . , xn) ↔ φ(x1, . . . , xn))

for any second-order formula φ(x1, . . . , xn) which does not contain the n-ary
relation symbol R. In the arithmetic comprehension axiom φ(x1, . . . , xn) is first-
order.

Generalizing the semantics of SL accordingly in terms of a given set of possi-
ble heaps, which does not necessarily contain all heaps, we can formulate in SL
the following version of the arithmetic comprehension axiom

�(∀x, y((x ↪→ y) ↔ φ(x, y)))
1 Here we adopt the terminology for second-order logic [Vää01], where the semantics

of full second-order logic does not impose any restrictions on the cardinality of the
interpretation of the predicates/relations, in contrast toweak second-order logic which
restricts to finite interpretations (of the predicates/relations).
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which expresses the existence of a heap such that its graph, as denoted by the
points-to relation ↪→, satisfies the ‘pure’ first-order formula φ(x, y) (i.e., φ does
not involve the separation connectives and the points-to relation). The �-
modality (formally defined in Sect. 3) expresses the existence of a heap which
satisfies the associated formula. Such an instance of the arithmetic comprehen-
sion axiom holds if there exists a heap which is characterized by the formula
φ(x, y). We cannot generalize this axiom to arbitrary SL formulas because it is
not obvious how to avoid contradictions like �(∀x, y((x ↪→ y) ↔ ¬(x ↪→ y))).
Simply requiring that the points-to relation does not occur in φ(x, y) does not
work because the separating connectives implicitly refer to it. Therefore, we
introduce a new interpretation of SL that restricts the (second-order) quantifi-
cation to first-order definable heaps. For this new interpretation we introduce a
sequent calculus which is sound and complete. The completeness proof is based
on the construction of a model for a consistent theory (a theory from which
false is not derivable), following [Hen49]. From the completeness proof we further
derive that this new interpretation satisfies both compactness and the downward
Löwenheim-Skolem theorem. By the seminal theorem of Lindström we then infer
that this new interpretation is as expressive as first-order logic.

Related Work. The model theory of SL has been focused mainly on finite heaps.
For example, the computability and complexity results in [CYO01] depend on
this assumption. Surprisingly, in [BDL12] the authors show that weak SL is as
expressive as weak second-order logic [Man96], which is a semantics of second-
order logic where quantification is restricted to finite relations. In [DD16] this
result is further refined by the restriction to two variables and the separat-
ing implication (no separating conjunction) which still is as expressive as weak
second-order logic. In [EIP20] the satisfiability problem for SL with k record
fields has been studied for finite heaps, but over arbitrary first-order models.
A tableaux method for a propositional fragment of SL has been developed in
[GM10] which has been proven sound and complete. Extensions to first-order SL
are discussed assuming finite heaps. In fact, the tableaux method introduced is
based on a labelling mechanism for encoding finite heap structures.

In contrast, when investigating complete proof systems for SL the assump-
tion of the finiteness of heaps has to be dropped, thus allowing for infinite
heaps, because, as already observed above, finiteness leads to non-compactness.
Our general model theory shows that this generalization of SL, full SL, is also
non-compact, and therefore does not allow for a finitary sound and complete
logic either. Consequently, to obtain such a logic one either has to syntacti-
cally restrict SL or further abstract or generalize its semantics. In [DLM21], for
example, a sound and complete sequent calculus is described for a quantifier-free
subset of SL. On the other hand, examples of further abstractions and gener-
alizations are [HT16] and [Pym02], and both describe a finitary logic which is
sound and complete. In [Pym02], models are based on very general preordered
commutative monoids and there is no points-to relation. In [HT16], special com-
mutative monoids called separation algebras are used to give semantics to the
separating connectives. The elements of such separation algebras represent heaps
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as relations on the underlying (first-order) domain. This allows for a standard
set-theoretic interpretation of the points-to relation. However, the semantics of
separating conjunction is defined in terms of the abstract monoid, and as such
is decoupled from the set-theoretic interpretation of the points-to relation. For
example, a first-order specification (using plain conjunction) of an enumeration
of the elements of the domain of a (finite) heap as a set does not in general
correspond with an enumeration using separation conjunction.

A sound and complete axiomatization of the points-to relation in the general
context of first-order SL respecting its standard set-theoretic interpretation thus
remains a main challenge.

Second-order logic allows for a straightforward translation of the (weak or
full) semantics of SL, and one can use second-order logic to reason about validity
in SL. This approach is followed for example by the IRIS project [JKJ+18] which
formalizes the semantics of weak SL in the higher-order logic of Coq [HH14]. By
restricting the semantics of the separating connectives to (first-order) definable
heaps, our approach instead transforms a compositional second-order logical
description of the semantics of SL into corresponding rules of a standard first-
order sequent calculus. The resulting calculus allows us to reason, in a natural
manner, in first-order logic about the (hierarchical) heap structures generated
by the rules for the separating connectives. As such it does not involve the
additional tree structures of the so-called bunched contexts of the sequent calculi
of [HT16] and [Pym02]. Also [Kri08] avoids the use of bunched contexts in a
modal sequent calculus for propositional SL, which is proven sound. However it
is incomplete because it provides limited support for equational reasoning about
the modal contexts (so-called ‘worlds’) associated with the SL formulas.

Plan of the Paper. In the next section we introduce the syntax and semantics
of full SL. In Sect. 3 we investigate the expressiveness of full SL. Section 4 intro-
duces a restriction of the semantics to definable heaps. In Sect. 5 we introduce
the sequent calculus, and discuss soundness and completeness. Finally, in the
conclusion section we wrap up, and discuss some future work.

2 Separation Logic

In this section we introduce the syntax of SL and define its classical seman-
tics with respect to arbitrary first-order models. For an intuitive introduction to
separation logic, see [Rey05]. Given a first-order signature of function and pred-
icate symbols2 and a countably infinite set of first-order variables x, y, z, . . ., the
first-order terms of this signature are denoted by t, t′, . . ..

We have the following inductive definition of formulas of separation logic.

Definition 1 (Syntax of SL). We define

p ::= (t1 = t2) | R(t1, . . . , tn) | (¬p) | (p ∧ q) | ∃x(p) | (p ∗ q) | (p −∗ q)

2 We allow for a countably infinite set of such symbols.
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where R is a n-ary relation symbol. As a special case we have the binary ‘points-
to’ relation symbol ↪→ (also called the weak/loose points-to).

Let M = (D, I) denote a first-order model, where D denotes the non-empty
domain and I provides an interpretation of the function and predicate symbols
as functions and relations over D. A valuation s assigns elements of the domain
D of M to the first-order variables x, y, z, . . .. We omit the standard inductive
definition of the value Is(t) of a term t. Given a model M = (D, I), we denote
by M,h, s |= p that p holds in the model M , under the interpretation h ⊆ D×D
of the binary relation symbol ↪→, where h denotes a so-called heap, represented
as the graph of a partial function with finite domain.

Definition 2 (Semantics of SL). We have the following main cases.

– M,h, s |= (t ↪→ t′) if and only if 〈Is(t), Is(t′)〉 ∈ h.
– M,h, s |= (p ∗ q) if and only if M,h1, s |= p and M,h2, s |= q, for some heaps

h1, h2 ⊆ D × D such that h = h1 ∪ h2 and h1 ⊥ h2.
– M,h, s |= (p −∗ q) if and only if M,h′, s |= p implies M,h ∪ h′, s |= q, for all

heaps h′ ⊆ D × D such that h ⊥ h′.

Other cases are the Tarksi-style semantics of classical logic [Yan01, Table 5.2].

In the above definition we use the set-theoretic operation of union of binary
relations as sets of pairs. On the other hand, by h1 ⊥ h2 we denote that the
domains of the relations h1 and h2 are disjoint3. As such, we can introduce
the strict/tight points-to relation �→ of SL, defined by M,h, s |= t �→ t′ if
and only if h = {〈Is(t), Is(t′)〉}, as a derived concept: it can be expressed by
(t ↪→ t′) ∧ ∀x, y((x ↪→ y) → (x = t ∧ y = t′)). The concept emp of the empty
relation can also be expressed by ∀x, y(x �↪→ y). Intuitionistic SL only allows
for the weak/loose points-to relation. The strict version cannot be expressed in
intuitionistic SL because of its monotonicity property that the truth of a formula
is preserved by extensions of the domain of the heap [Rey00]. In this article we
focus on classical separation logic only.

Let (xi ↪→ −) abbreviate ∃y(xi ↪→ y). The sentences φn defined by

∃x1, . . . , xn((x1 ↪→ −) ∗ . . . ∗ (xn ↪→ −))

then state that there exist at least n allocated elements of the underlying domain
of the given first-order model. Note that the semantics of the separating con-
junction implies that xi �= xj for i �= j. It is also possible to formulate the same
property using propositional conjunction instead of separating conjunction by
explicitly stating this fact, that the variables are not aliases. Now collect all φn

in a set. Clearly, every finite subset of this set of sentences is satisfied by a finite
heap, but that there does not exist a finite heap satisfying all these sentences.

3 The domain of an arbitrary relation R ⊆ D × D is the set d ∈ D for which there
exists a d′ ∈ D such that 〈d, d′〉 ∈ R. Note that for heaps h1 ⊥ h2 is equivalent to
h1 ∩ h2 = ∅.
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This simple counterexample to compactness provides the basic motivation to
study the above semantics of SL extended to unbounded heaps, i.e. heaps which
potentially have an infinite domain.

Further, for technical convenience only, we generalize the semantics to arbi-
trary binary relations. For an arbitrary (binary) relation R ⊆ D × D on the
underlying domain D of the given first-order model, we define M,R, s |= p as
above, where the interpretation of the separating connectives ranges over arbi-
trary subsets of D × D. In fact, in this generalized semantics, which we call
relational SL, we can model the restriction to heaps simply by syntactically
restricting the separating implication to assertions of the form (p ∧ fun) −∗ q,
where fun denotes the assertion ∀x, y, z((x ↪→ y ∧ x ↪→ z) → y = z). Let p′

denote the result of restricting syntactically all occurrences of the separating
implication in p to heaps (as described above). It follows that the evaluation of
p′ ∧ fun is restricted to heaps.

It is worthwhile to observe here that there exists a straightforward formaliza-
tion of relational SL in second-order logic. For any formula p as defined above we
define inductively the second-order formula p(R), where R is a binary relation.

Definition 3 (Logical formalization of relational SL).
We have the following main cases.

– (t ↪→ t′)(R) = R(t, t′),
– (p ∗ q)(R) = ∃R1, R2(R = R1 � R2 ∧ p(R1) ∧ q(R2)),
– (p −∗ q)(R) = ∀R1, R2((R2 = R1 � R ∧ p(R1)) → q(R2)).

Here we denote by R = R1 � R2, for any binary relation symbols R,R1, R2,
the conjunction of the formulas ∀x, y(R(x, y) ↔ (R1(x, y) ∨ R2(x, y))) and
∀x, y, z(¬R1(x, y) ∨ ¬R2(x, z)). We denote by M, s |= φ the standard truth defi-
nition of a second-order formula φ, where the evaluation s additionally interprets
the second-order variables. Correctness of this translation, that is, M,R, s |= p
if and only if M, s[R := R] |= p(R) (where s[R := R] denotes the update of s
which assigns to the binary variable R the relation R), can be established by a
straightforward induction on p.

3 Model Theory: Compactness and Countability

To explore the general model theory of SL we introduce the modalities �p and �p
as abbreviations of true ∗ (emp∧ (true −∗ p)) and ¬(true ∗ ¬p), respectively4.
For M = (D, I) we have M,R, s |= �p if and only if M,R′, s |= p, for every
R′ ⊆ D×D. Further, we have M,R, s |= �p if and only if M,R′, s |= p, for every
sub-relation R′ of R (that is, R′ ⊆ R). By �p we denote the formula ¬�¬p. It
follows that M,R, s |= �p if and only if M,R′, s |= p, for some R′ ⊆ D × D.

Characterizing Finite Models. The above �-modality allows to express that the
domain D of a model M = (D, I) is finite, by asserting that every injective
4 We note that � and � are, respectively, � and ♦ in [HT16]. However in [HT16] they

are introduced not as abbreviations but as primitive concepts.
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function f : D → D is a surjection: Let inj be the conjunction of the formulas
fun (as defined above), ∀x, y, z((x ↪→ z ∧ y ↪→ z) → x = y), and ∀x∃y(x ↪→ y).
We have that M,R, s |= inj if and only if R : D → D is injective (note that the
domain of R is D because M,R, s |= ∀x∃y(x ↪→ y)). And so M,R, s |= �(inj →
∀x∃y(y ↪→ x)) if and only if D is finite. Note that the occurrences of ↪→ in the
scope of the �-modality are universally bounded, and the interpretation of ↪→
thus ranges over all R ⊆ D × D.

Characterizing Countable Infinity. We next show that countability of the under-
lying domain of a model can be expressed, using the above two modalities. We
will be working with chains related by ↪→, and in that sense we speak of a pre-
decessor of x, being any y such that (y ↪→ x), and successor of x, being any y
such that (x ↪→ y). Let enum be the conjunction of the following formulas:

– the above formula inj ,
– the formula ∃!x∀y(y �↪→ x)5, which states the existence of a unique minimal

element (that is, an element that has no predecessor),
– the formula �(emp ∨ ∃x((x ↪→ −) ∧ ∀y((y ↪→ −) → (y �↪→ x))), which

expresses that the points-to relation ↪→ is well-founded.

Note that a relation R is well-founded iff every (non-empty) sub-relation of R has
a minimal element (with respect to that sub-relation). This fact can be expressed
by the use of the formula enum. Let M,R, s |= enum. We show that R encodes an
enumeration 〈dn〉n of D (still we have M = (D, I)). We define the sequence 〈dn〉n

by induction on n: for d0 we take the (unique) minimal element, and for dn+1 we
take the unique element d ∈ D such that 〈dn, d〉 ∈ R. Note that inj implies that
every element of D has a unique ‘successor’ and that dn+1 �∈ {d0, . . . , dn}. Well-
foundedness ensures that every element of D appears in the enumeration 〈dn〉n.
Because otherwise we can construct an infinite descending chain of elements
not appearing in the enumeration 〈dn〉n (since d0 denotes the unique minimal
element with respect to the functional interpretation R of ↪→, it follows that for
any d ∈ D which does not appear in the enumeration 〈dn〉n there exists a d′ ∈ D
which also does not appear in the enumeration 〈dn〉n and 〈d′, d〉 ∈ R).

We thus have that M,R, s |= enum implies that the domain of M is countably
infinite. The formula �enum further abstracts from the current interpretation of
the points-to relation ↪→, so that if the domain of M is countably infinite then
M,R, s |= �enum, for arbitrary R (and s).

The class of uncountable models is characterized by ¬(�enum ∨ fin), where
fin denotes the above formula which characterizes the class of finite models.

Summarizing, the logic of full SL is neither compact nor does it satisfy the
Löwenheim-Skolem theorem because it can distinguish between countable and
uncountable models. Further, we observe that the above expressiveness results
do not depend on the interpretation of the points-to relation as an arbitrary
relation. That is, these results also hold for the semantics restricted to (infinite)
heaps.
5 ∃!xp is an abbreviation of ∃x(p ∧ ∀y(p[y/x] → y = x)), where p[y/x] denotes the

substitution of x by y.
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Interestingly, since we can express that the points-to relation ↪→ is well-
founded (see above), even restricting to the separating conjunction gives rise
to non-compactness: given a countably infinite set of individual constants cn,
n ≥ 0, let Γ consist of the above formula �(emp∨∃x((x ↪→ −)∧∀y((y ↪→ −) →
(y �↪→ x))) and the formulas cn+1 ↪→ cn, n ≥ 0. Clearly, every finite subset of
Γ is satisfiable but Γ itself is not. Note that we do not need to require that all
the ci �= cj , for every i �= j, because in case the formulas cn+1 ↪→ cn, n ≥ 0, are
satisfied and additionally ci = cj holds, for some i �= j, we have a loop in the
interpretation of ↪→. Further, restricting SL to separating conjunction also does
not satisfy the upward Löwenheim-Skolem theorem, because, as argued above,
M,R, s |= enum implies (infinite) countability of the domain of M .

Separation Logic Light. What about further restricting to positive occurrences of
the separating conjunction? Since we then can push negation inside, this restric-
tion can be formally defined by the following syntax describing SLL (‘separation
logic light’):

p ::= (¬)R(t1, . . . , tn) | (p ∨ q) | (p ∧ q) | ∃x(p) | ∀x(p) | (p ∗ q)

Here R denotes either a n-ary relation symbol or the points-to relation ↪→.
Thus, in this version of SL, negation can only be applied to atomic formulas.
To show that the notion of satisfiability of SLL is compact, we introduce the
following first-order translation p@R, where R is a binary predicate different from
↪→, ◦ denotes conjunction/disjunction, and Q denotes the existential/universal
quantifier.

(¬)R(t1, . . . , tn)@R′ = (¬)R(t1, . . . , tn)
(t ↪→ t′)@R = R(t, t′)
(p ◦ q)@R = p@R ◦ q@R
Qx(p)@R = Qx(p@R)
(p ∗ q)@R = R = R1 � R2 ∧ p@R1 ∧ q@R2

The binary relation symbols R1 and R2 are ‘fresh’. It follows that p is satisfiable
if and only if p@R is satisfiable. More precisely, M,R, s |= p if and only if
there exists a (first-order) model M ′ such that M ′, s |= p@R. Consequently,
compactness of first-order logic implies compactness of SLL: Let Γ be an infinite
set of formulas of SLL and Γ ′ = {p@R | p ∈ Γ}6, for some binary relation
symbol R. If every finite subset of Γ is satisfiable, so is every finite subset of Γ ′.
By the compactness of first-order logic Γ ′ is satisfiable, and so is Γ . Along the
same lines it follows that if Γ is satisfiable then there exists a model M = (D, I)
such that D is countable and M,R, s |= p, for every p ∈ Γ .

Note however that compactness of the satisfiability relation does not imply
that the (semantic) consequence relation is compact. In fact, non-compactness
of the consequence relation for SLL follows directly from the above argument
6 Note that Γ ′ may require the introduction of an infinite number of fresh (binary)

relation symbols. This is however no problem because first-order logic allows for a
countably infinite set of function and relation symbols.
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involving well-founded relations: Let Γ denote the set formulas cn+1 ↪→ cn,
n ≥ 0. It follows that Γ |= true ∗ (¬emp ∧ ∀x((x ↪→ −) → ∃y(y ↪→ x))).
But clearly, there does not exist a finite subset Γ0 of Γ such that Γ0 |= true ∗
(¬emp ∧ ∀x((x ↪→ −) → ∃y(y ↪→ x))).

Some Open Problems. The question remains whether restricting to separating
conjunction satisfies the downward Löwenheim-Skolem theorem. A counterex-
ample to the downward Löwenheim-Skolem theorem would be the expressibility
of uncountable models. This seems to require the �p modality (and thus the
separating implication).

Another interesting question is whether we can express finiteness of the
domain of the current interpretation of the points-to relation, that is, does there
exist a formula p in SL such that M,R, s |= p if and only if the domain of the
relation R is finite?

A main open problem is a formalization of the relation between full SL and
second-order logic. Intuitively, one of the main differences is the local perspec-
tive of SL, which is determined by the current heap. Remarkably, as already
mentioned in the introduction, [BDL12] presents a rather intricate encoding
of (dyadic) weak second-order logic into weak SL. Apparently this restriction
to finite heaps allows to break the local perspective. Our conjecture however
is that full SL is strictly less expressive than (dyadic) second-order logic. To
illustrate how subtle this difference may be, consider the following extension of
separation logic with a binding operator ↓R(p) which binds the binary vari-
able R in the evaluation of p to the current interpretation of the points-to
relation. In other words, it corresponds to a bounded (second-order) quantifi-
cation ∃R((R = ↪→) ∧ p), where, R = ↪→ abbreviates the first-order formula
∀x, y(R(x, y) ↔ (x ↪→ y)). Alternatively, we can directly define M,R, s |= ↓R(p)
if and only if M,R, s[R := R] |= p. This definition thus assumes an extension of
the valuation s to (binary) second-order variables. The expressive power of this
binding operator lies in that it allows to ‘break the spell’ of the local perspec-
tive since the bound binary variable allows in the local context of the current
interpretation of the points-to relation to refer to those ‘outer’ ones that have
generated it (by the separating connectives). This extension of SL allows for a
simple, compositional translation of (dyadic) second-order logic. We have the
following main case which translates ∃R(φ), where φ a dyadic second-order for-
mula (which is assumed not to contain occurrences of the points-to relation of
SL), into the SL formula �(↓R(p)).

4 Separation Logic of Definable Binary Relations

In this section we restrict the interpretation of the separating connectives to
first-order definable binary relations. By φ we now denote a first-order formula
which does not contain occurrences of the points-to relation ↪→ of SL. We omit
the standard inductive truth definition M, s |= φ of a first-order formula φ.

By φ(x1, . . . , xn) we denote that the free (first-order) variables of φ are among
the distinct variables x1, . . . , xn. A formula φ(x, y) is called a binary formula.
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A binary formula is also simply denoted by φ, omitting its free variables x and
y. Given a model M = (D, I), and a first-order formula φ(x, y), we denote
by RelM (φ) the relation {〈s(x), s(y)〉 | M, s |= φ} ⊆ D × D. Note that the
evaluation of φ(x, y) only depends on the values of its free variables x and y,
that is, M, s |= φ if and only if M, s′ |= φ, where s(x) = s′(x) and s(y) = s′(y).
By φ(t, t′) we denote the result of replacing in φ(x, y) the variables x and y by
t and t′, respectively (if necessary renaming bound variables to ensure that the
variables of t and t′ do not become bound).

Definition 4 (First-order definability). Given a model M = (D, I), a rela-
tion R ⊆ D × D is first-order definable if R = RelM (φ), for some binary for-
mula φ(x, y).

Note that, given a model M = (D, I), I(R) = RelM (R), that is, for any
binary relation symbol R its interpretation I(R) is trivially a first-order definable
relation. We generalize the definition of R = R1�R2 to arbitrary binary formulas:
we denote by φ = φ1�φ2 that the binary formulas φ1(x, y) and φ2(x, y) represent
a partition of the binary formula φ(x, y) which is expressed by the conjunction
of ∀x, y(φ(x, y) ↔ (φ1(x, y) ∨ φ2(x, y))) and ∀x, y, z(¬φ1(x, y) ∨ ¬φ2(x, z)). The
latter formula, which states that the domains of the binary relations represented
by φ1(x, y) and φ1(x, y) are disjoint, we abbreviate by φ1 ⊥ φ2.

In the sequel we denote by M,R, s |= p the restriction of the relational seman-
tics of full SL (Definition 2 extended to binary relations) such that instead of
quantifying over arbitrary binary relations, the separating connectives involve
quantification over first-order definable binary relations. It is worthwhile to
observe here that, as for Henkin models of second-order logic [Hen50], the implicit
second-order quantification depends on the underlying signature of function and
relation symbols. Extending or restricting the signature affects the semantics of
formulas of the ‘old’ signature.

5 Sequent Calculus

To reason about the implicit quantification over definable (binary) relations, we
introduce rooted assertions of the form p@φ, where φ denotes a binary formula
and p is a formula of SL (see Definition 1). We define M, s |= p@φ if and only if
M,R, s |= p, where R = RelM (φ). The variables x and y of the binary formula
φ(x, y) are thus implicitly bound by the @-operator, that is, M, s |= p@φ if and
only if M, s′ |= p@φ, for any s and s′ such that s(z) = s′(z), for any free variable
occurring in p.

Note that the separating connectives are interpreted in terms of relations
which are definable by first-order formulas which do not involve the points-to
relation ↪→. This allows for the following alternative predicative definition7 of
the semantics of the separating connectives in rooted assertions (used in both
the soundness and completeness proofs). Here ψ ⊥ φ, for the binary formulas
ψ(x, y) and φ(x, y), denotes the formula ∀x, y, z(¬ψ(x, y) ∨ ¬φ(x, z)).
7 For a foundational discussion concerning predicativity, see [Cro17].
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Fig. 1. Sequent calculus. The binary relation symbols R1, R2 and R introduced in the
rules L∗ and R−∗ are ‘fresh’. In the points-to rules p denotes a basic formula (which
does not contain occurrences of the separating connectives).

Lemma 1. We have

– M, s |= (p ∗ q)@φ if and only if there exist binary formulas φ1 and φ2 such
that M, s |= φ = φ1 � φ2, M, s |= p@φ1, and M, s |= q@φ2.

– M, s |= (p −∗ q)@φ if and only if M, s |= ψ ⊥ φ and M, s |= p@ψ implies
M, s |= q@(φ ∨ ψ), for all binary formulas ψ.

We now develop a calculus for sequents A1, . . . , An ⇒ B1, . . . , Bm, where
each Ai, i = 1, . . . , n, and Bj , j = 1, . . . , m, is constructed from first-order
formulas and rooted assertions, which can be further composed using propo-
sitional connectives and quantification of first-order variables. This calculus is
an extension of standard first-order sequent calculus (including cut), where the
standard rules are applicable with respect to top-level propositional connectives
and quantifiers. Figure 1 shows the left and right rules for separating conjunction
and implication. These rules closely follow the translation in Definition 3 of SL
into second-order logic, eliminating the explicit second-order quantification by
applying the standard proof rules for second-order quantification (which them-
selves are straightforward generalizations of the rules for first-order quantifica-
tion, instantiating the second-order variables by formulas). The binary relation
symbols R1, R2 and R introduced in the rules L∗ and R−∗ are ‘fresh’ binary
relation symbols, that is, they must not appear in the formulas of the conclusion
of the rules.
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We also have rules which allow classical reasoning under rooted assertions:
(p ◦ q)@φ ↔ (p@φ) ◦ (q@φ), where ◦ denotes binary propositional connec-
tives, e.g., conjunction, disjunction, and implication, (¬p)@φ ↔ ¬(p@φ), and
(∃xp)@φ ↔ ∃x(p@φ) (and similarly (∀xp)@φ ↔ ∀x(p@φ)). Further, we have
∀x, y(φ ↔ ψ) → (p@φ ↔ p@ψ). It is straightforward to validate these rules,
but we omit the details of the semantics M, s |= A, which follows the standard
Tarski-style classical semantics, given the semantics of rooted assertions which
may appear in the place of atomic formulas.

In the so-called ‘points-to’ rules of Fig. 1 the formula p does not involve occur-
rences of the separating connectives. Such a formula of SL we call basic. Note that
it differs from pure first-order formulas in that basic formulas additionally may
involve the points-to relation. For such formulas we denote by p[φ/ ↪→], for any
binary formula φ(x, y), the result of replacing every atomic assertion (t ↪→ t′) in
p by φ(t, t′), which is a pure first-order formula. It follows that M, s |= p[φ/ ↪→]
if and only if M,RelM (φ), s |= p, for any basic formula p.

Example Proofs

Γ ⇒ q@R,R1 ⊥ R2 Γ ⇒ q@R, p@R1 Γ, q@(R1 ∨ R2) ⇒ q@R

R = R1 � R2, p@R1, (p −∗ q)@R2 ⇒ q@R
L−∗

(p ∗ (p −∗ q))@R ⇒ q@R
L∗

⇒ (p ∗ (p −∗ q))@R → q@R

⇒ ((p ∗ (p −∗ q)) → q)@R

As a first example of the use of the sequent calculus, above we have a derivation
of the sequent ⇒ ((p ∗ (p −∗ q)) → q)@R which represents the validity of
(p ∗ (p −∗ q)) → q. This derivation essentially consists of an application of the
rule L∗ followed by an application of the rule L−∗. In this derivation Γ denotes
the formulas R = R1 � R2, p@R1 generated by the application of rule L∗. The
second premise of the application of the rule L−∗ is derivable from an instance
of the axiom Γ,A ⇒ A,Δ. Note that ψ (in the L−∗ rule) is instantiated with R1.
The first and third premise follows from the fact that R = R1 � R2 reduces to
R1 ⊥ R2 and R = R1 ∪ R2 (that part of the proof is not shown above).

Next we show how to use the calculus in reasoning about the equivalence
of weakest preconditions that arise in the practice of verifying the correct-
ness of heap manipulating programs. Let p denote the weakest precondition
(u ↪→ −)∧ (z = 0 � u = v � v ↪→ z) of the heap update [u] := 0 which ensures the
postcondition v ↪→ z after assigning the value 0 to the location denoted by the
variable u (here φ�b�ψ abbreviates (b∧φ)∨ (¬b∧ψ)) (in [dBHdG23] a dynamic
logic extension of SL is introduced which generates this weakest precondition).
The standard rule for backwards reasoning in [Rey02] gives the weakest precon-
dition (u �→ −) ∗ (u �→ 0 −∗ v ↪→ z), which we denote by p′. These preconditions
are equivalent because both are the weakest.

Surprisingly, a proof of the implication p′ → p however exceeds the capability
of all the automatic SL provers in the benchmark competition for SL [SNPR+19].



The Logic of Separation Logic: Models and Proofs 419

In particular, of the automatic provers, only the CVC4-SL tool [RISK16] sup-
ports the fragment of SL that includes the separating implication connective.
However, from our own experiments with that tool, we found that it produces
an incorrect counter-example and reported this as a bug to one of the main-
tainers of the project (Andrew Reynolds). In fact, the latest version, CVC5-SL,
reports the same input as ‘unknown’, indicating that the tool is incomplete. In
the case of (semi) interactive SL provers (such as Iris [JKJ+18], and VerCors
[AH21,MRH22] that uses Viper [MSS16] as a back-end) we sought out expertise
and collaborated in our search for a tool-supported proof of the above equiva-
lence. Even after personally visiting the Iris team in Nijmegen (lead by Robbert
Krebbers) and the VerCors team in Twente (lead by Marieke Huisman), we
were unable to guide the tools to produce a proof of p′ → p. The problem here
seems similar to that of [HT16], in that their semantics of separating connectives,
which are formalized in terms of abstract monoids, are not compatible with the
set-theoretic interpretation of the points-to relation.

In fact, the equivalence between the above two formulas can be expressed in
quantifier-free separation logic, for which a complete axiomatization of all valid
formulas has been given in [DLM21]. In the sequent calculus we can express the
equivalence of p and p′ in terms of the sequent fun(R) ⇒ (p ↔ p′)@R. Here R is
an arbitrary binary relation symbol used to represent the current interpretation
of the points-to relation. We abbreviate ∀x, y, z((R(x, y) ∧ R(x, z)) → y = z)
by fun(R). A proof of the above sequent amounts to proving the sequents
fun(R), p′@R ⇒ p@R and fun(R), p@R ⇒ p′@R. Below we present a high-
level proof of the first sequent, abstracting from some basic first-order reasoning
in the calculus.

By an application of L∗ to derive the sequent fun(R), p′@R ⇒ p@R it suffices
to derive

fun(R), R = R1 � R2, (u �→ −)@R1, (u �→ 0 −∗ v ↪→ z)@R2 ⇒ p@R

for some fresh R1 and R2. Let ψ(x, y) denote the binary formula x = u ∧ y = 0.
Further, let Γ denote the set of formulas fun(R), R = R1 � R2, (u �→ −)@R1.
By an application of the rule L−∗ it then suffices to prove the following sequents
(from Γ ⇒ Δ we can derive Γ ⇒ A,Δ by right-weakening). First we prove
Γ ⇒ R2 ∩ ψ = ∅: By the points-to rules the rooted assertion (u �→ −)@R1

(appearing in Γ ) reduces to ∃z(R1(u, z) ∧ ∀x, y(R1(x, y) → x = u ∧ y = z))
(the forall-part of the formula is due to the ‘strict’ points-to which states that
the domain contains u as its only location). Further, R2 ∩ ψ = ∅ logically boils
down to ¬∃x, y(R2(x, y) ∧ (x = u ∧ y = 0)), that is, ¬R2(u, 0), which in basic
first-order logic follows from ∃zR1(u, z) and the assumptions R = R1 � R2 and
fun(R).

Second, we prove Γ ⇒ (u �→ 0)@ψ: By the points-to rules (u �→ 0)@ψ
(using the expanded definition φ of u �→ 0 and the definition of the substitution
φ[ψ/ ↪→]) reduces to (u = u)∧(0 = 0)∧∀x, y((x = u ∧ y = 0) → (x = u ∧ y = 0))
which is equivalent to true.
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And, finally, we prove Γ, (v ↪→ z)@(R2 ∨ ψ) ⇒ p@R: First note that (again,
by the points-to rules)

((u ↪→ −) ∧ (z = 0 � u = v � v ↪→ z))@R

reduces to
(∃zR(u, z)) ∧ (z = 0 � u = v � R(v, z)))

The assertion ∃zR(u, z) clearly follows from the assumptions R = R1 � R2 and
(u �→ −)@R1 in Γ . To prove z = 0 � u = v � R(v, z), we first reduce the assump-
tion (v ↪→ z)@(R2 ∨ ψ) to R2(v, z) ∨ (v = u ∧ z = 0). Now, if v = u then
¬R2(v, z), because of the assumptions fun(R), R = R1 � R2 and (u �→ −)@R1.
So we have that z = 0. Otherwise, we have R2(v, z), and thus R(v, z), because
R = R1 � R2.

Soundness and Completeness. We denote by � Γ ⇒ Δ that there exists a proof
of the sequent Γ ⇒ Δ. To define |= Γ ⇒ Δ, let σ denote a substitution which
assigns to every binary relation symbol R of the sequent Γ ⇒ Δ a binary formula
φ. Such a substitution σ simply replaces occurrences of R(t, t′) by φ(t, t′), where
σ(R) = φ(x, y). By |= Γ ⇒ Δ we then denote that M, s |= ∧

Γσ (that is,
M, s |= Aσ, for every A ∈ Γ ) implies M, s |= ∨

Δσ (that is, M, s |= Bσ, for
some B ∈ Δ), for every M, s and every substitution σ.

In the soundness proof below we use these substitutions to instantiate the
fresh binary relation symbols introduced in the rules L∗ and R−∗. Note that
updating the interpretation of these symbols (as provided by M) would affect
the semantics of the separating connectives if binary formulas would refer to
these fresh binary relation symbols (note that they are only supposed not to
appear in formulas of the conclusion of the rules L∗ and R−∗).

We generalize the above notions of derivability and validity to possibly infi-
nite Γ : Γ � Δ indicates that � Γ ′ ⇒ Δ, for some finite Γ ′ ⊆ Γ , and Γ |= Δ indi-
cates that for every substitution σ we have that M, s |= Γσ (that is, M, s |= Aσ,
for every A ∈ Γ ) implies M, s |= Bσ, for some B ∈ Δ.

Theorem 1 (Soundness). We have that � Γ ⇒ Δ implies |= Γ ⇒ Δ.

Proof. We prove that the rules for the separating connectives preserve validity.
The points-to rules are sound because M,RelM (φ), s |= p if and only if M, s |=
p[φ/ ↪→], for any basic formula p (note that p[φ/ ↪→] is a pure first-order formula
which does not depend on the heap).

L∗: Let M, s |= Γσ and M, s |= (pσ ∗ qσ)@φσ. We have to show that M, s |=∨
Δσ. By Lemma 1, there exist φ1 and φ2 such that M, s |= (φσ) = φ1 � φ2,

M, s |= pσ@φ1, and M, s |= qσ@φ2. Let σ′ = σ[R1, R2 := φ1, φ2]. Since R1

and R2 are fresh and as such do not appear in Γ, (p ∗ q)@φ, it follows that
M, s |= Γ ′σ′, where Γ ′ = Γ, φ = R1 � R2, p@R1, q@R2. By the validity of the
premise we thus obtain that M, s |= ∨

Δσ′. Since R1 and R2 also do not appear
in Δ, we conclude that M, s |= ∨

Δσ.
R∗: Let M, s |= Γσ and suppose that M, s �|= ∨

Δσ. From the validity of
the premises it then follows that M, s |= φσ = (φ1 � φ2)σ, M, s |= pσ@φ1σ, and
M, s |= qσ@φ2σ, By Lemma 1 we conclude M, s |= (pσ ∗ qσ)@φσ.
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L−∗: Let M, s |= Γσ and M, s |= (pσ −∗ qσ)@φσ, and suppose that M, s �|=∨
Δσ. From the validity of the first two premises it then follows that M, s |=

φσ ⊥ ψσ and M, s |= pσ@ψσ. By Lemma 1 again, it follows that M, s |=
qσ@(φσ ∨ ψσ). By the validity of the third premise we thus derive that M, s �|=∨

Δσ, which a contradicts our assumption.
R−∗: Let M, s |= Γσ and suppose that M, s �|= ∨

Δσ. We have to show that
M, s |= (pσ −∗ qσ)@φσ. Let ψ be such that M, s |= ψ ⊥ (φσ) and M, s |= pσ@ψ.
Further, let R be a fresh variable and σ′ = s[R := ψ]. It follows that M, s |= Γ ′σ′,
where Γ ′ = Γ,R ⊥ φ, p@R and M, s �|= ∨

Δσ′. And so we derive from the validity
of the premise of the rule that M, s |= qσ@(φσ ∪ ψ). Since ψ was arbitrarily
chosen, by Lemma 1 again we conclude that M, s |= (pσ −∗ qσ)@φσ. ��

As a corollary we obtain that Γ � Δ implies Γ |= Δ.
Following the completeness proof of first-order logic as described in [Hen49],

it suffices to show that every consistent set of formulas is satisfiable (the so-
called ‘model existence theorem’). A set of formulas Γ is consistent if Γ �� ∅. We
first show that every consistent set of formulas can be extended to a maximal
consistent set. To this end we assume an infinite set of ‘fresh’ binary relation
symbols R that do not appear in Γ . We construct for any consistent set Γ a
maximal consistent extension Γ∞, assuming an enumeration of all formulas A
(which also covers all first-order formulas). We define Γ0 = Γ and Γn+1 satisfies
the general rule: if Γn, An �� ∅ then Γn ∪ {An} ⊆ Γn+1, otherwise Γn+1 = Γn.
Additionally, in case An is added and An is of the form ∃xA or a rooted assertion
(p ∗ q)@φ or ¬(p −∗ q)@φ, we also include corresponding witnesses in Γn+1:

– If An is of the form ∃xA we additionally add A(y), where A(y) results from
replacing all free occurrences of x in A by the fresh variable y which does not
appear in Γn.
Note that A(y) can indeed be added consistently because from Γn, A(y) � ∅ we
would derive Γn,∃xA � ∅, which contradicts the assumption that Γn,∃xA �� ∅.

– If An is of the form (p ∗ q)@φ we additionally add the formulas φ = R1 �
R2, R1 ⊥ R2, p@R1, and q@R2, where R1 and R2 are fresh (e.g., not appearing
in Γn).
Note that these formulas can indeed be added consistently because from
Γn, φ = R1�R2, R1 ⊥ R2, p@R1, q@R2 � ∅ we would derive Γn, (p ∗ q)@φ � ∅
(by rule L∗).

– If An is of the form ¬(p −∗ q)@φ (which is equivalent to ¬((p −∗ q)@φ)) we
additionally add the formulas R ⊥ φ, p@R(x, y), and ¬q@(φ∨R), where R is
fresh (e.g., not appearing in Γn).
Note that these formulas can indeed be added consistently because from
Γn, R ⊥ φ, p@R(x, y),¬q@(φ ∨ R) � ∅ we would derive Γn � (p −∗ q)@φ
(by rule R−∗), which contradicts the assumption that Γn,¬(p −∗ q)@φ �� ∅.

We define Γ∞ =
⋃

n Γn. By construction Γ∞ is maximal consistent. Given
a maximal consistent set of formulas Γ , let MΓ = (D, I), where D is the set
of equivalences classes [t] = {t′ | t = t′ ∈ Γ}. For any function symbol f and
relation symbol R (excluding the points-to relation ↪→) we define
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– I(f)([t1], . . . , [tn]) = [f(t1, . . . , tn)],
– I(R)([t1], . . . , [tn]) = true if and only if R(t1, . . . , tn) ∈ Γ .

The above interpretation of the function and relational symbols is well-
defined because its definition does not depend on the choice of the representatives
(this follows from the equality axioms).

Given a maximal consistent set of formulas Γ and the model MΓ = (D, I),
a corresponding valuation s assigns to every variable x an equivalence class [t].
However, in the sequel we will represent such a valuation by a substitution s
which simply assigns to each variable a term. The value Is(x) of a variable x
then is given by the equivalence class [s(x)] of the term s(x).

Given a substitution s, for any term t and formula A (of the sequent calculus)
we denote by ts and As the result of replacing every free occurrence of a (first-
order) variable x in t and A by s(x). Note that (p@φ)s = ps@φ, because the
meaning of p@φ does not depend on the free variables x and y of the binary
formula φ(x, y).

Given a maximal consistent set of formulas Γ and the model MΓ = (D, I),
it follows that Is(t) = [ts], for every term t and substitution s.

Lemma 2. Given a maximal consistent set of formulas Γ and the model MΓ =
(D, I), we have M, s |= A if and only if As ∈ Γ , for every formula A and
substitution s.

Proof. The proof proceeds by induction on the following well-founded ordering
A < B on formulas of the sequent calculus: Let #A = (n,m), where n denotes
the number of occurrences of the separating connectives and the @-binding oper-
ator of A and m denotes the number of occurrences of the (standard) first-order
logical operations of A. Then A < B if #A < #B, where the latter denotes
the lexicographical ordering on N × N (w.r.t. the standard ‘smaller than’ order-
ing on the natural numbers). We treat the following main cases (for notational
convenience M denotes the model MΓ ).

– Let M, s |= A, where A denotes the formula (p ∗ q)@φ. By Lemma 1 there
exist φ1 and φ2 such that M, s |= φ = φ1�φ2, M, s |= p@φ1 and M, s |= q@φ2.
From the induction hypothesis it follows that ps@φ1, qs@φ2, φ = φ1 �φ2 ∈ Γ
(note that the first-order formula φ = φ1 �φ2 does not contain free variables,
and thus is not affected by the substitution s). So we derive by rule R∗
that Γ � (ps ∗ qs)@φ. By maximal consistency of Γ , we then conclude that
(ps ∗ qs)@φ ∈ Γ , that is, As ∈ Γ .
On the other hand, let As ∈ Γ . That is, (ps ∗ qs)@φ ∈ Γ . By construction
φ = R1 � R2, ps@R1, qs@R2 ∈ Γ , for some witnesses R1 and R2. By the
induction hypothesis it then follows that M, s |= p@R1 and M, s |= p@R2.
Further, the induction hypothesis gives M, s |= φ = R1 �R2 (again, note that
the formula φ = R1 �R2 has no free variables, and thus is not affected by the
substitution s). We conclude by Lemma 1 that M, s |= (p ∗ q)@φ.

– Let M, s |= A, where A denotes the formula (p −∗ q)@φ. Suppose As �∈ Γ .
By the maximal consistency of Γ , we then have ¬(ps −∗ qs)@φ ∈ Γ . By
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construction R ⊥ φ, ps@R,¬qs@(φ ∨ R) ∈ Γ , for some witness R, which
contradicts M, s |= (p −∗ q)@φ (after application of the induction hypothesis
and using Lemma 1 again).
On the other hand, let As ∈ Γ . To show that M, s |= (p −∗ q)@φ, let
M, s |= φ ⊥ ψ and M, s |= p@ψ, for some binary formula ψ. By the induction
hypothesis we have that φ ⊥ ψ, ps@ψ ∈ Γ . Suppose that qs@(φ∨ψ) �∈ Γ , that
is ¬qs@(φ ∨ ψ) ∈ Γ (Γ is maximal consistent), and thus Γ, qs@(φ ∨ ψ) � ∅.
Applying rule L−∗ we then derive Γ, (ps −∗ qs)@φ � ∅, which contradicts the
consistency of Γ ((ps −∗ qs)@φ ∈ Γ ). So we have that qs@(φ∨ψ) ∈ Γ , that is,
M, s |= q@(φ ∨ ψ), by the induction hypothesis. Since ψ is chosen arbitrarily,
it follows by Lemma 1 that M, s |= (p −∗ q)@φ.

– Let A be a formula p@φ, where p denotes a basic formula. Let R = RelM (φ).
We then have M, s |= p@φ iff (by definition)
M,R, s |= p iff (straightforward induction on p)
M, s |= p[φ/ ↪→] iff (induction hypothesis for p[φ/ ↪→])
ps[φ/ ↪→] ∈ Γ iff (by the points-to rules)
ps@φ ∈ Γ . Note that applying the substitution s to p@φ and p[φ/ ↪→] results
in ps@φ and ps[φ/ ↪→]. ��

The downward Löwenheim-Skolem property follows. It should be noted that
we cannot remove from the constructed model the binary relation symbols which
are introduced as witnesses, as these determine the notion of first-order defin-
ability.

Theorem 2 (Completeness). We have that Γ |= Δ implies Γ � Δ.

Compactness follows. We thus derive (by Lindström’s theorem [Vää10]) that
this version of SL is as expressive as first-order logic.

6 Conclusion

We investigated the expressiveness of full SL over arbitrary first-order models.
We have shown that restricting the quantification over first-order definable heaps
gives rise to a semantic consequence relation that can be captured by a sound
and complete extension of the standard sequent calculus for first-order logic.

The main question remains what is the exact relationship between full SL
which allows for infinite heaps and second-order logic. In [KR04] a translation is
given of general second-order logic in a first-order logic with spatial conjunction.
Spatial conjunction (as defined in [KR04]) allows to split a global set of arbitrary
relations. As such it goes beyond the local scope of separating conjunction which
is restricted to the points-to relation. We conjecture that second-order logic is
strictly more expressive than full SL.
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