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A Taxonomy of Semantic Information in Robot-Assisted Disaster
Response

Tianshu Ruan1∗ Hao Wang1 Rustam Stolkin1 and Manolis Chiou1

Abstract— This paper proposes a taxonomy of semantic
information in robot-assisted disaster response. Robots are
increasingly being used in hazardous environment industries
and emergency response teams to perform various tasks.
Operational decision-making in such applications requires a
complex semantic understanding of environments that are re-
mote from the human operator. Low-level sensory data from the
robot is transformed into perception and informative cognition.
Currently, such cognition is predominantly performed by a
human expert, who monitors remote sensor data such as robot
video feeds. This engenders a need for AI-generated semantic
understanding capabilities on the robot itself. Current work
on semantics and AI lies towards the relatively academic end
of the research spectrum, hence relatively removed from the
practical realities of first responder teams. We aim for this
paper to be a step towards bridging this divide. We first review
common robot tasks in disaster response and the types of
information such robots must collect. We then organize the
types of semantic features and understanding that may be useful
in disaster operations into a taxonomy of semantic information.
We also briefly review the current state-of-the-art semantic
understanding techniques. We highlight potential synergies, but
we also identify gaps that need to be bridged to apply these
ideas. We aim to stimulate the research that is needed to adapt,
robustify, and implement state-of-the-art AI semantics methods
in the challenging conditions of disasters and first responder
scenarios.

I. INTRODUCTION

Detecting and understanding semantic information (i.e. the
meaning of things) could enhance robots’ abilities to perform
complex tasks. Humans can intuitively understand semantics,
infer context, and incorporate it into “situational awareness”
(SA). In contrast, semantic understanding (i.e. the process
of understanding semantic information) in robotics remains
a challenging and open research problem.

The term semantics is derived from the Greek verb
σημαίνω [sēmainō] meaning “to signify” or “to mean”1.
Typically in robotics and Artificial Intelligence (AI), seman-
tics refers to the understanding of things, environments, and
situations. Garg et al. define “semantics in a robotic context
to be about the meaning of things: the meaning of places,
objects, other entities occupying the environment, or even the
language used in communicating between robots and humans
or between robots themselves” [1]. Additionally, in computer
vision, the Australian Institute for Machine Learning (AIML)
states that “semantic vision seeks to understand not only

This work was supported by EPSRC grants EP/R02572X/1,
EP/P01366X/1, and EP/P017487/1.

1Extreme Robotics Lab (ERL), University of Birmingham, UK
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1https://www.britannica.com/science/semantics/Historical-and-

contemporary-theories-of-meaning

what objects are present in an image but, perhaps even more
importantly, the relationship between those objects” [2].

In the context of this paper, we define semantics as:
extracting and conveying an understanding of environments,
to both robots and humans, in terms of information about
entities and both explicit and implicit relationships between
entities. For utility, our working definition aims to be some-
what explicit and restrictive in terms of understanding of
the environment. It comprises two key features of the envi-
ronment: entities and the relationships between them. Note
that this implies two levels of information and abstraction,
i.e. relationships are abstract concepts that link two or more
physical entities.

In this paper, we focus on semantics in disaster and
emergency response, and tasks in hazardous environments.
Robots are increasingly being used in hazardous or “ex-
treme environment” industries and have become increasingly
embedded in emergency response teams. Robots perform a
wide range of tasks, including reconnaissance and remote
inspection in hard-to-reach or dangerous zones, as well as
heavy-duty manipulation or transporting tasks. For safety
reasons, humans should be located remotely from hazardous
zones, but must rapidly assess the circumstances where a
robot is operating. With currently deployed robots being
mostly teleoperated and lacking advanced AI capabilities, it
is notoriously difficult for human operators to gain SA from
limited video and sensor data [3].

Semantic understanding is an important element in build-
ing a clear SA that is crucial for humans, robot autonomy
[4], and Human-Robot Interaction (HRI) [5]. Given onboard
semantic understanding capabilities, a remote robot could:
i) make better and more complex autonomous decisions;
and/or ii) provide enhanced information to assist human
operators with clear and rapid SA. Currently, much of
semantics-related AI research is focused on semantic image
understanding [1], typically using deep neural networks, such
as “semantic segmentation” [6], [7], or object detection and
recognition [8], [9]. Related research also includes semantic
Simultaneous Localization and Mapping (SLAM) [10] and
3D reconstruction of a scene while identifying and labeling
types of materials [11].

However, despite advances in disaster response robotics,
and parallel growth in AI research on semantic under-
standing, there has been comparatively little transfer from
one domain to the other. Partly this is because rapid AI
advances in semantics are recent developments and the
technology remains predominantly “low-TRL” (Technology
Readiness Level). In contrast, disaster environments are



profoundly unstructured and difficult. “High-consequence”
rescue tasks demand extremely robust, high-TRL equipment
[3]. Additionally, applications of e.g. semantic segmentation
in computer vision have tended to focus on domains such as
driverless cars, which offer a large market and capture more
attention than the specialized first responder domain.

This paper offers a step towards linking AI semantics
research with disaster robotics R&D. Contributions include:
i) identifying end-user semantic information needs and po-
tential synergies; ii) identifying semantics research gaps to be
bridged; iii) framing a coherent structure for thinking about
these issues, in terms of a taxonomy that connects the work
of these two research communities. Specifically, we address
the following three research questions:

• RQ1) What semantic information is useful in the robotic
disaster response operation?

• RQ2) How semantic information is structured in the
robotic disaster response domain?

• RQ3) What AI-extracted semantic information can be
feasibly used in disaster robotics field deployments and
how can we obtain it?

II. COMMON TASKS FOR ROBOTS IN DISASTER
RESPONSE

We first survey robot deployments in the response and
recovery phases [12], [13] of disasters from the perspective
of commonly executed tasks. A variety of different robotic
platforms have been deployed after disasters, e.g. floods,
earthquakes, hurricanes, mudslides, or nuclear incidents. This
discussion here is not meant to be exhaustive, but rather
indicative, to facilitate identifying useful semantics linked
to required robot tasks.

Unmanned Aerial Vehicles (UAVs) can perform tasks
that include mapping floods, additional flood risk estimation
[14], damage, or ground search [15]. Furthermore, UAVs
can offer high-resolution remote imagery when satellites
or manned aircraft are unavailable [16] and help inspect
dams, bridges, buildings, or monitor the risk potential of
consecutive disasters [17].

Unmanned Ground Vehicles (UGVs) are often used to
gain access to environments that are dangerous for humans
to reach [18]. UGVs can be assigned to build 3D maps of
the interior of buildings [19], assess damage to buildings
[20], monitor temperature [21], radiation levels [22], retrieve
samples (e.g. contamination) [3], or search for victims [23].
In addition to reconnaissance tasks, UGVs are deployed to
install devices, serve as communications relay stations, or
provide camera views to control other robots [3]. In addition,
heavy-duty UGVs can be used for cutting or moving struc-
tures and debris, or, e.g., removing inflammable gas cylinders
from industrial buildings during fires.

Unmanned Surface or Underwater Vehicles (USVs and
UUVs) are deployed after floods and hurricanes [12], oil
spills, or shipwrecks. They can deploy cameras and sonars
to detect damage to structures, locate submerged debris [23],
estimate the volume of water in rivers and streams [16], and
deliver supplies [24].

Fig. 1. The relationship between the low-level semantics and raw data.

We summarize key tasks in response and recovery phases
into four main categorizes:

• Exploration and reconnaissance (ER) tasks such
as mapping, hazardous material (HAZMAT) detection,
sampling, and structural inspection [3], [16], [17], [19],
[23].

• Auxiliary tasks such as acting as a mobile beacon or
communications relay/repeater [3], [25]

• First-aid tasks such as in situ medical assessment and
medically sensitive extrication [12].

• Heavy-duty tasks such as rubble removal, shoring
unstable rubble, providing logistic support, fire extin-
guishing, switching the valves and breaching obstacles
[21], [26].

III. SEMANTIC INFORMATION TAXONOMY

Here we present our proposed taxonomy which is based
on the semantic information needed in the common tasks
(See Section II). We group the corresponding semantics into
two main categories from the perspective of the human’s
understanding of different abstractions: low-level semantics
and high-level semantics. Low-level semantics refers to infor-
mation that is obvious and readily available with less effort
to humans (e.g. object detection). High-level semantics refers
to an abstract understanding of the environment that humans
need further evaluation to infer (e.g. risk of hazardous situa-
tions). Lastly, we discuss the relationship between low-level
semantics, high-level semantics, context, and the methods to
obtain them.

A. Low-level semantics

Low-level semantics reveals the most salient features of
the environment. Salient features mean that they can be
noticed and understood by human’s direct intuition without
further thinking, rather than mental effort for inference. We
categorize low-level semantics into the following categories:

• Objects: detection of HAZMAT, victims, and other sig-
nificant features of the environment [27]. Some detailed
sub-category low-level semantics can also be used to
describe the objects (e.g. distance and material).

• Status: a more detailed condition of the detected ob-
jects, e.g., cracks or delamination of concrete [28], or
object on fire.



• Scene understanding: an identification of the types
of room or space which is significant for high-level
semantics processing, e.g. if the space is an office or
warehouse [29].

• Human behaviour: detection of human’s movements
in the post-disaster scenario, e.g. dangerous movements
of victims [30].

All the above categories help robots and humans to build
an accurate SA and support tasks including ER tasks, first
aid tasks and heavy-duty tasks (see Section II).

We summarize the low-level semantics in Fig. 1. Note
that a single low-level semantic feature can be potentially
processed from multiple raw data. We can obtain the same
low-level semantics from different sensors. For instance,
we can obtain scenes from either cameras, microphones, or
LiDar. Additionally, there is detailed sub-category low-level
semantics (e.g. distance, material, and mass) constituting the
understanding of objects. The fusion among diverse types of
raw data can extend the types of low-level semantics.

B. High-level semantics

High-level semantics is more complex than low-level se-
mantics. It usually comes from the evaluation, estimation or
inference of a human’s perspective about the onsite situation
for robots and humans, rather than direct intuition. We group
high-level semantics into the following main categories that
are useful for disaster robotic operations (See Fig. 2):

• Risk: an assessment of the existing and/or the potential
danger of the environment to the humans and the robots.

• Traversability: the difficulty for humans or robots to
travel through an area.

• Signs of human activity (SHA): the inference or
estimation that victims or survivors can be potentially
found in the scene.

• Task difficulty: the prediction of the difficulty for
robots or humans to complete the given task.

• Structural health: the indication or assessment of how
stable a structure is, e.g. the structure of debris or a
building.

• Task workload: the estimation of how much work is
required by the robots and first responders to complete
the scheduled tasks.

We further divide risks, SHA, and structural health into
more detailed subcategories. The category risk consists of
potential risks and current hazards. The SHA is divided into
indoor and outdoor activities because of the huge environ-
mental differences. Indoor human activities can be inferred
from personal belonging detection and indoor scene under-
standing, while outdoor human activities can be inferred from
human trajectories and history population heatmap, e.g. from
prior data in the cloud. Structural health can be determined
by crack detection and ”simple physics” which refers to
the inference to supporters of a heap of objects only based
on vision. Task difficulty is divided in terms of semantics
fusion e.g. the extent of task completion, traversability of
environment, expected time cost, and workload.

Fig. 2. The proposed high-level semantics in relation to the common
disaster robotic tasks.

High-level semantics requires information from low-level
semantics and raw data as well. For instance, risks and
SHA can be affected by detected objects, distance read-
ings, and scenes. Moreover, high-level semantics might need
additional information from other high-level semantics. For
instance, task difficulty due to its complexity might not be
accurately estimated just by low-level semantics. Other high-
level semantics (e.g. workload and traversability) can also be
considered as factors. Hence, high-level semantics requires
information from multiple inputs including raw data, low-
level semantics, and other high-level semantics.

C. Relationship among low-level semantics, high-level se-
mantics, and context

Low-level semantics is processed from raw data. In con-
trast, high-level semantics is processed from the fusion of
different low-level semantics, additional high-level seman-
tics, and raw data. High-level semantics processing relies on
more different inputs than low-level semantics processing.
Hence, low-level semantics is one of the bases of high-level
semantics processing.

Context is often confused with semantics as they have
closely related meanings. Context is explained as ”context
now most commonly refers to the environment or setting
in which something (whether words or events) exists” in
Marriam-Webster dictionary 2. From our perspective, context
is the top level of abstraction, i.e., a larger concept that
covers all the contents from low-level semantics to high-level
semantics, from historical data to up-to-date information
(see Fig. 3). The context describes a scenario or situation
by using its components and the connections among the
different components. It emphasizes the relationship among
all the components which may be semantic information, and
sometimes historical information about the environment. In
contrast, semantics denotes only part of the information that
constructs the global understanding of the environment.

2https://www.merriam-webster.com/dictionary/context



Fig. 3. Different levels of information abstraction: each level of information
is supported by the lower levels of information.

IV. FROM THE TAXONOMY TO IMPLEMENTATION

In Section III, we introduce the features of semantics
and construct the taxonomy about useful semantics in the
disaster response. Here we aim to answer RQ3 from two
aspects: state-of-the-art semantic understanding techniques
deployments in robotic disaster response and useful semantic
information implementation in common tasks. We investigate
the question in Fig. 4 and obtain two corresponding insights:

• Insight I: The AI community has developed large num-
bers of semantic understanding techniques. However,
few of them have been deployed in the robotic disaster
response operations.

• Insight II: We identified many useful semantics in
disaster response based on the taxonomy, but there is
a limited number of existing techniques to obtain these
semantics.

A. Insight I

Here we indicatively investigate the existing semantic
understanding techniques from the perspective of disaster
robot deployment.

Fig. 4. Two aspects of RQ3: the blue circle refers to existing techniques
(See Insight I) and the red circle refers to useful semantics (See Insight II).
The covered patch illustrates the current semantics understanding technique
developments on useful disaster response semantics.

1) Low-level semantics processing: We look into the low-
level semantic processing based on the sensors that are
popularly used such as RGB cameras, LiDARs, microphones,
thermal cameras, and radiation detectors.

RGB cameras provide colored images and RGB-D cam-
eras provide in addition, depth data. AI community ap-
plies object detection [8] and semantic segmentation [9]
techniques to images to categorize and recognize objects.
Besides, images provide more semantics e.g. human body
keypoints [31].

LiDARs are widely used in SLAM and other robotic
domains. They provide accurate 2D or 3D point cloud
maps. In [32], authors use an attention mechanism (a neural
network framework [33]) to conduct a 3D Lidar pointcloud
semantic segmentation. Additionally, some researchers are
focusing on LiDAR-only solutions without the help of RGB
images [34].

Acoustic semantic understanding using microphones has
two domains. The first domain is Nature Languages Pro-
cessing (NLP) which figures out the context and meaning of
a dialogue or a conversation [35]. Another domain processes
sound and noise from nature. It usually uses spectrogram
representation to find embedded semantics like signal of lives
underwater [36], scene [37], and location of sound [38].

Thermal cameras outperform RGB cameras in poor illu-
mination environments. Thermal maps improve the perfor-
mance of image semantic processing in dark environments
where RGB cameras hardly capture clear images [39]. In
addition to that, people can be easily identified in a complex
environment [40] and also damage to concrete structures can
be detected [28].

Current research on radiation semantics is limited. Be-
cause the radiation readings can not provide further infor-
mation, if they are not fused with other information. In [41],
authors use a UGV to generate a geometric and radiometric
map of a radioactive facility with the assistance of a LiDAR
sensor. It has exciting potential to process semantic informa-
tion e.g. identifying radiation sources, drawing heat maps,
and evaluating dangerous areas.

2) High-level semantics processing: Since most semantic
understanding techniques are focusing on low-level semantic
processing, there are only two approaches to obtaining high-
level semantics based on current techniques, which are tradi-
tional machine learning methods and deep learning methods.

The traditional machine learning methods are mathe-
matical model-based and typically have two steps. First,
building a mathematical model. We can quantify high-level
semantics by using low-level semantics, additional high-level
semantics, or raw data to build metrics. Second, applying
traditional machine learning techniques to identify or classify
different high-level semantics. To get different extents of
one specific high-level semantics, we can apply rules using
a mathematical toolbox, e.g. fuzzy logic, based on human
cognition, evaluation, and inference to the designed metrics.
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The second approach applies deep learning techniques. It
is possible to build an end-to-end deep learning network with
all the required input and high-level semantics output. How-
ever, the deep learning approach has two major defects: First,
although a disaster semantic dataset from remote sensing
imagery exists [58], we still lack specific semantic datasets
supported by expert knowledge from first responders. We
do not have any disaster semantic dataset based on the first
person view (FPV) of UGV. Moreover, the creation of a new
dataset is difficult because it requires expert knowledge and
a large amount of handcraft work. Second, deep learning
networks increase the computation cost when compared with
traditional approaches. This might lead to the degradation of
real-time performance on robots with limited computational
power deployed in the field.

We summarize state-of-the-art semantic understanding
techniques in Table I and we contribute the following find-
ings:

• RGB cameras and LiDAR are the most widely used
sensors. They are good options to fuse.

• Most semantic understanding techniques concentrate on
object detection and scene understanding. This leads
them to be very useful in ER tasks, and heavy-duty
tasks, but limited use in other tasks.

• Real-time performance is not considered by some of the
researchers. However, for a disaster robotic operation,
real-time performance is quite significant and needs
more attention. Some of the computationally cheap
techniques can be developed into real-time versions that
are compatible with disaster robotics requirements.

• Due to the limitation of RGB cameras in dusty and
poor lighting environments, many researchers focus on
multiple sensor fusion to overcome the disadvantages of
single-sensor solutions. However, these solutions stay
on the laboratory level. Few solutions are applied and
they are limited in mapping the environments.

B. Insight II

The deployment of useful semantic understanding tech-
niques in disaster response operations is still an open prob-
lem. Thus, we elaborate on Insight II by comparing both
common tasks in the disaster operation and what the current
semantic understanding techniques can achieve in Table II,
to indicate the open opportunities for deploying semantics in
disaster response operations.

Based on the robot field deployments literature after
disasters, a few semantic-related techniques are deployed.
That is to say, the application of semantic information is
limited. Hence, we define four levels to reveal the semantics
applications status: technique exists, not applied (T), partial
techniques achieved (P), techniques not exist (N), and not
related (-). We provide some references and make examples
to illustrate the labels. Roof, ventilator, ac unit, and other
building structures or components can be detected [58]. They
are useful in reconnaissance. Hence, we label the object
”technique exist, not applied (T)”. People are now able
to detect the health of concrete via thermal and optical

images [28]. However, the real-time performance is not
verified. Therefore, we considered it a ”partial technique
achieved (P)”. For SHA, even though people can obtain
human belongings semantics from the environment, we do
not have any solutions to evaluate the intensity of human
activity. In this case, we label it ”N”. The Table II reflects
the following:

• Considering the features of auxiliary tasks, semantics
provides limited support to auxiliary tasks.

• Comparing with low-level semantics, high-level seman-
tics requires more focus from researchers. There are few
high-level semantic applications in the field.

• Some of the semantics are close to being practically
used (e.g. object, distance, and scene) while others
are far from obtaining semantics (e.g. SHA, human
behaviour, and task workload).

• It’s clear that the semantic applications on ER tasks are
more mature to be deployed in the field. For other tasks,
because of their complexities, it’s hard to rank their
deployment possibility in the future. However, they all
have big potential to involve semantic information in
the sub-tasks and benefit the operation.

• For first-aid tasks, there are techniques to obtain the
basic required semantics (e.g. objects, distance, and
scene). However, we still lack techniques to obtain ex-
pert knowledge (e.g. identify injuries) related semantics.

The highlighted insights aim to encourage researchers to
engage in grounding the advanced semantic understanding
techniques on the practical disaster robotic field deployment
and discover more semantic information that is useful for
robots and humans.

V. LIMITATIONS

We note that:
• Our coverage of semantics has been somewhat skewed

towards image-based methods, as much of the semantics
literature is based on Computer Vision (CV). This is
partly because images carry more information than other
carriers and semantics is a rapidly growing topic in
CV, with large advances in deep learning techniques in
recent years. However, we have also attempted coverage
of other sensing modalities as multi-sensor fusion seems
likely to play an increasingly important role to over-
come the shortcomings of CV or single sensor solutions.

• This taxonomy is based on reports of robot deployments
in disaster response. Such literature is limited because
disasters are themselves rare events, and robot use
remains limited. As researchers, we do not have first-
hand experience in disaster response. However, our
team members have participated in training and field
exercises with KHG, Germany’s nuclear emergency
robot response team and documented these experiences
in [3]. We have also undertaken extensive discussions,
over several years, with key personnel who deployed
robots at the 2011 Fukushima nuclear disaster [59].
We encourage more direct interaction between robotics
researchers and first responders.



VI. CONCLUSIONS

This paper aims to identify areas of potential synergy, as
well as current gaps and challenges, between the AI semantic
understanding community and the applied robotics disaster
response domain. Our taxonomy of semantic information
provides an explicit understanding of semantics’ intrinsic
features, and their relationships to disaster response appli-
cations. These insights suggest directions for future research
in semantics understanding techniques, to robustify, adapt
and apply these complex, high-level technologies to prac-
tical robot deployments in high-consequence, unstructured
environments such as disaster response.
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“Human error analysis of the macondo well blowout,” Process Safety
Progress, vol. 32, no. 2, pp. 217–221, 2013.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in MICCAI, 2015.

[8] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[9] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[10] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi,
A. Gupta, and L. Carlone, “Kimera: From slam to spatial perception
with 3d dynamic scene graphs,” The International Journal of Robotics
Research, vol. 40, no. 12-14, pp. 1510–1546, 2021.

[11] C. Zhao, L. Sun, and R. Stolkin, “A fully end-to-end deep learning
approach for real-time simultaneous 3d reconstruction and material
recognition,” in 2017 18th International Conference on Advanced
Robotics (ICAR). IEEE, 2017, pp. 75–82.

[12] R. R. Murphy, Disaster robotics. MIT press, 2014.
[13] F. E. Schneider, B. Gaspers, K. Peräjärvi, and M. Gårdestig, Possible
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