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ABSTRACT
The aim of this paper is to introduce a new code for the solution
of large-and-sparse linear semidefinite programs (SDPs) with low-
rank solutions or solutions with few outlying eigenvalues, and/or
problems with low-rank data. We propose to use a preconditioned
conjugate gradient method within an interior-point SDP algorithm
and an efficient preconditioner fully utilizing the low-rank informa-
tion. The efficiency is demonstrated by numerical experiments using
the truss topology optimization problems, Lasserre relaxations of the
MAXCUT problems and the sensor network localization problems.
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1. Introduction

The first efficient solvers for semidefinite optimization emergedmore than 20 years ago. All
of the general-purpose solvers have been using second-order algorithms, predominantly
the interior-point (IP) method. In every iteration of such an algorithm, one has to solve a
system of linear equationsHx = g of size n × n, where n is the dimension of the unknown
vector x in the linear semidefinite programming (SDP) problem

min
x∈Rn

c�x subject to
n∑

i=1
xiA

(k)
i − B(k) � 0, k = 1, . . . , p

with A(k)
i ,B(k) ∈ Rm×m. The assembly and solution of this linear system is a well-known

bottleneck of these solvers. This is the case even for problems with sparse data and sparse
linear systems when the assembly of the system requiresO(pnm3) flops, and the solution
by sparse Cholesky factorizationO(nα) flops with some α ∈ [1, 3].
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On the other hand, many real-world applications lead to large-scale SDP, often unsolv-
able by current general-purpose software. There are, essentially, three ways how to
approach this conundrum:

(1) Reformulating the problem to make it more suitable for general-purpose solvers. This
can be done, for instance, by facial reduction [21,29,42] or by decomposition of large
matrix inequalities (and thus reducingm) into several smaller ones [18,19]

(2) Using a different algorithm, such as spectral bundle [14], ADMM [28], augmented
Lagrangian [25,41], optimization on manifolds [17], randomized algorithms [38] or
techniques of nonlinear programming [8,9]

(3) Using one of the second-order algorithms with Cholesky factorization replaced by an
iterative method for the solution of the linear systems Hx = g; see, e.g. [20,33,40].

The last approach is particularly attractive whenever n � m and addresses both bottle-
necks of a second-order SDP solver.

• The assembling of the system matrix: an iterative solver only needs matrix–vector
multiplications, and so the matrix does not have to be explicitly assembled and stored.

• The solution of the linear system itself: an iterative solver can handle very large systems,
as compared to a sparse Cholesky solver, under the assumption of good conditioning of
the matrix or existence of a good preconditioner.

When the data matrices A(k)
i are of very low rank (such as rank one), the complexity of

the linear system assembling can be substantially reduced by using this fact. This is partic-
ularly true for rank-1 dense matrices. This fact is, however, rarely utilized in standard SDP
software, due to the complications related to a different data input.

Our goal in this paper is to introduce Loraine, a new general-purpose interior-point SDP
solver targeted to problemswith low-rank data and low-rank solutions or solutions with few
outlying eigenvalues. It employs special treatment of low-rank data matrices and, in partic-
ular, an option to use an iterative Krylov type method for the solution of the linear system.
As the choice of an efficient preconditioner in a Krylov type method is problem depen-
dent, in particular, in the context of optimization algorithms. We will focus on problems
with expected very low-rank solutions.

SDP problems with low-rank solutions are common in relaxations of optimization
problems in different areas such as combinatorial optimization [4], approximation the-
ory [10,22], control theory [22], structural optimization [31] and power systems [24].

It is not our goal to find a low-rank solution in case of non-unique solutions; indeed, it
is well known that an interior-point method will converge to a maximal complementary
solution. However, if the method will converge to a low-rank solution, we will use this fact
to improve its computational complexity andmemory demands. The preconditioner is not
only limited to problemswith (theoretically exactly) low-rank solutions, it can be efficiently
applied when the solution has a few outlying eigenvalues.

There is onemajor difference to other algorithms for SDP problems with low-rank solu-
tions, such as SDPLR [8,9], optimization on manifolds [17] and other approaches [3,38].
All these methods require the knowledge of a guaranteed (possibly tight) upper bound
on the rank of the solution. If the estimate of the rank was lower than the actual rank,
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the algorithm would not find a solution. In our approach, the rank information is merely
used to speed up a standard, well-established algorithm. If our estimated rank is smaller
than the actual one, we will only see it in possibly more iterations of the Krylov solver; the
convergence behaviour of the optimization algorithm will be unchanged.

The actual optimization algorithm used in Loraine is a ‘standard’ primal–dual interior-
point method. The algorithm mimics the reliable primal–dual algorithm with Nes-
terov–Todd direction, as used, e.g. in the SDPT3 solver [32,33].

Our preconditioner is motivated by the work of Zhang and Lavaei [40]. They present a
preconditioner for the conjugate gradient method within a standard IPmethod that makes
it more efficient for large-and-sparse low-rank SDPs. We partly follow their approach
though there are some major differences: we abandon a crucial assumption on the spar-
sity of the data matrices (assumption 2 in [40]); our method allows for SDPs with more
than one LMI and with (simple) linear constraints; the complexity of computing our pre-
conditioner is substantially lower; we can also efficiently solve problemswith a few outlying
eigenvalues in the optimal solution.

To test Loraine and the underlying algorithms, we have generated a library of prob-
lems arising from truss topology optimization, sensor network localization and Lasserre
relaxations of the MAXCUT problem. These problems are characterized by very low-rank
solutions and scalability, in the sense that one can generate a range of problems of various
dimensions but of the same type. By comparing Loraine with other SDP solvers, we will
demonstrate the efficiency of our approach.

This paper is organized as follows. Section 2 introduces the SDP problems we want to
solve and some basic assumptions. In Section 3, an IP method is briefly presented. Next,
in Section 4, we introduce the preconditioners used with the iterative solvers. Section 5
presents the solver Loraine. Sections 6–8 describe our applications, truss topology opti-
mization problems, the sensor network localization problem and Lasserre hierarchies of
theMAXCUTproblem. Finally, in Section 9, we present the results of our numerical exper-
iments. We also give comparisons with other existing SDP software and demonstrate the
high efficiency of our solver.

Notation We denote by Sm,Sm+ and S
m++, respectively, the space of m × m symmetric

matrices, positive semidefinite and positive definite matrices. The eigenvalues of a given
matrixX ∈ S

m++ are ordered as λ1(X) ≤ · · · ≤ λm(X), and its condition number is defined
as κ(X) = λm(X)/λ1(X). The notation ‘vec’ and ‘⊗’ refer to the (non-symmetrized) vector-
ization and Kronecker product, respectively, while ‘svec’ and ‘smat’ refer to symmetrized
vectorization and its inverse operation. With this notation, the following identity holds
true: vec(AXB�) = (A ⊗ B)vec(X). The symbol • denotes the Frobenius inner product of
two matrices, A • B = tr(A�B). Finally, ei ∈ Rn is a vector with one on the ith position
and zeros otherwise.

2. Low-rank semidefinite optimization

While Loraine is a general-purpose SDP solver, its main feature is the ability to efficiently
solve SDP problems with low-rank solutions. The first part of this paper is thus focused on
this feature.
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We consider a (primal) semidefinite optimization problem with matrix variables Xi ∈
Smi , i = 1, . . . , p, and with linear constraints

min
X1,...,Xp, xlin

p∑
i=1

Ci • Xi + d�xlin

subject to
p∑

i=1
A(i)
j • Xi + (D�xlin)j = bj, j = 1, . . . , n

X � 0, xlin ≥ 0

(1)

together with its Lagrangian dual

max
y, S1,...,Sp, slin

b�y

subject to
n∑
j=1

yjA
(i)
j + Si = Ci, i = 1, . . . , p

Dy + slin = d

Si � 0, i = 1, . . . , p

slin ≥ 0.

(2)

Here A(i)
j ∈ Smi , j = 1, . . . , n, i = 1, . . . , p, Ci ∈ Smi , i = 1, . . . , p, b ∈ Rn, D ∈ Rν×n, d ∈

Rν are data of the problem.

Basic assumptions

Wemake the following assumptions.

Assumption 2.1: There exist strictly feasible Xi ∈ S
mi++, xlin ∈ R

ν++, y ∈ Rn, Si ∈ S
mi++,

slin ∈ R
ν++, i = 1, . . . , p satisfying the equality constraints in (1) and (2) (Slater’s condition).

Assumption 2.2: Define the matrices Ai = [vecA(i)
1 , . . . , vecA(i)

n ], i = 1, . . . , p. We assume
that matrix–vector products with Ai and A�

i may each be computed in O(n) flops and
memory.

Assumption 2.3: The inverse (D�D)−1 and matrix–vector product with (D�D)−1 may
each be computed inO(n) flops and memory.

Assumption 2.4: The dimensions of Xi, i = 1, . . . , p, are much smaller than the number of
constraints, i.e. mi � n.

Remark 2.1: Assumption 2.3 is satisfied, for instance, in case of box constraints on vari-
able y in the dual formulation. Assumption 2.4 is not really needed as a ‘mathematical’
assumption, the iterative methods presented in this paper would work without it. How-
ever, the complexity of these methods would then be comparable with standard software
using Cholesky factorization. The presented methods will be only superior to the standard
software under this assumption.
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Low-rank assumption

As mentioned in Introduction, our approach is focused on linear systems with matrices
having few large outlying eigenvalues. This, of course, includes matrices with very low
rank but also matrices with ‘approximate’ low rank. These matrices frequently appear in
optimization algorithms, such as interior-point methods, when the ‘exact’ low rank is only
attained at the (unreached) optimum. Moreover, the approach allows us to solve problems
with matrices of high rank but with a few large outlying eigenvalues, such as the problems
in Section 7.

Because our approach covers SDP problemswith (genuinely) low-rank solutions and for
the lack of better terminology for the larger class of matrices with outlying eigenvalues, we
still call our main assumption ‘low-rank’ and the problems we are targeting ‘SDP problems
with low-rank solutions’.

Our main assumption used in the design of an efficient preconditioner concerns the
eigenvalue distribution of the solution X∗ = (X∗

1 , . . . ,X
∗
p ) of (1). We assume that X∗ has a

very small number of large outlying eigenvalues. This includes problems where X∗
i are of

a very low rank.

Assumption 2.5: Let X∗ be the solution of (1) obtained, approximately, by the used interior
point method. We assume that, for i = 1, . . . , p, X∗

i has k outlying eigenvalues, i.e. that

(0 ≤) λ1(X∗
i ) ≤ · · · ≤ λ(X∗

i )mi−k � λ(X∗
i )mi−k+1 ≤ · · · ≤ λ(X∗

i )mi ,

where k is very small, typically smaller than 10 and, often, equal to 1.

Remark 2.2: The solution of the SDP problem (1) may not be unique. Hence, in Assump-
tion 2.5we speak about a solution the IPmethod is approaching. The IP algorithm is known
to converge to a maximal complementary solution, i.e. a solution with the highest rank.
While this may reduce the efficiency of the preconditioner in certain problem classes, we
have not observed any difficulties related to this fact in the numerical experiment reported
in Section 9.

Remark 2.3: To emphasize the difference between our algorithm and other ‘low-rank
algorithms’, such as SDPLR [8] and the low-rank preconditioner introduced in [40] – that
otherwise served as our motivation – we include the following remarks.

(1) We do not assume anything about the distribution of the first (mi − k) eigenvalues of
X∗
i ; they may not be equal to zero, they may not be clustered.

(2) We make no assumption about the ‘rank’ of the solution x∗
lin of (1), i.e. about the

number of active constraints in Dy ≤ d in (2). This can be arbitrarily large or small.
(3) We do not assume that the matrix A�A is easily invertible. Indeed, it is not in our

application in Section 6, contrary to examples in [40] where this matrix is diagonal.

3. Interior-point method

In this section, we will describe a primal–dual predictor–corrector interior-point method
for SDP which is using the Nesterov–Todd (NT) direction, as implemented in Loraine. We
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will closely follow the articles by Todd, Toh and Tütüncü [32] and by Toh and Kojima [34]
and only repeat formulas needed to present the structure of the matrix that is required to
develop the preconditioners in Section 4. The basic framework of our interior-point solver
thus, more or less, mimics that of the software SDPT3.

We use the notation of problems (1) and (2); however, for the sake of simplicity, we
ignore the linear constraints in the following development and consider only one matrix
variable, i.e. p = 1. Linear constraints and several matrix variables can, of course, be
formally included into a single linear matrix inequality.

3.1. Basic framework

Let A be anm2 × nmatrix defined by

A := [vecA1, . . . , vecAn].

Our algorithm follows the standard steps of a primal–dual interior-pointmethod.Wewrite
down optimality conditions for (1) with relaxed complementarity condition:

A�vec(X) = b,

Ay − S = C,

XS = σμI,

(3)

where μ = X•S
m and σ is a centring parameter to be specified below. This system of

nonlinear equations is solved repeatedly until convergence.

3.2. Newton direction

The system (3) is solved approximately by Newton’s method, where in every iteration of
the method we solve the following system of linear equations in variables (�X,�y,�S):

A�vec(�X) = rp, (4a)

A�y + vec(�S) = vec(Rd), (4b)

HP(X�S + �XS) = σμI − HP(XS). (4c)

Here

rp := b − A�X, Rd := C − S −
n∑

i=1
yiAi,

and HP is a linear transformation guaranteeing symmetry of the resulting matrix, in
particular

HP(M) = 1
2

(
PMP−1 + P−�M�P�

)
with some invertible matrix P ∈ S

m++ known as the scaling matrix [39]. By assuming
(X, y, S) to be the current iterate, we define the so-called Nesterov–Todd (NT) scaling
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matrix

P = W− 1
2 , W = S− 1

2

(
S
1
2XS

1
2

) 1
2 S− 1

2 = X
1
2

(
X− 1

2 SX− 1
2

) 1
2 X

1
2

satisfying X = WSW and S = WX−1W. This is the scaling matrix used in Loraine.
Instead of solving the linear system of 2m2 + n Equations (4a)–(4c) directly, we can

solve a Schur complement equation (SCE) involving only �y. The general bottleneck of
any interior-point method for SDP is assembling and solving this SCE

H�y = r. (5a)

Here H is the Schur complement matrix with elements

Hij = Ai • WAjW, i, j = 1, . . . , n, (5b)

and

r = rp + A�vec (WRdW + WSW) . (5c)

For details of computingW, r, �X and �S efficiently for the NT scaling, see [34].
By considering (5a) and (5b), we have the following linear system:

(H�y)i = Ai •
⎡⎣W

⎛⎝ n∑
j=1

�yi Aj

⎞⎠W

⎤⎦ = ri, i = 1, . . . , n. (6)

Finally, vectorizing the matrix variables allows (6) to be written as

(
A�(W ⊗ W)A

)
�y = r. (7)

4. Preconditioners

As we mentioned before, the general bottleneck of the algorithm defined above is the
assembling and solving of the Schur complement equation (7). One way to solve this
equation is using an iterative method, in particular, a Krylov-type method such as the
method of conjugate gradients (CG) or theminimum residual method (MINRES). To sim-
plify the presentation, in the next sections we will only speak about the preconditioned CG
method; however, Loraine offers a choice of either CG or MINRES. More in Section 9.

The Schur complement matrix H is large and the assembling of it may be expen-
sive. Besides, and more importantly, it becomes increasingly ill-conditioned as the IP
method makes progress toward the solution. So a successful CG-based solution of our
linear systems must rely on an efficient preconditioner. In this section, we introduce two
preconditioners implemented in Loraine and targeted pro-SDP problems with low-rank
solutions.
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4.1. Rank of H

The Schur complement matrix H can be written as a sum

H =
p∑

i=1
Hi
lmi + Hlin,

whereHlin is associated with linear constraints. Recall from (7) that eachHi
lmi is computed

as

Hi
lmi = A�

i (Wi ⊗ Wi)Ai, (8)

whereWi is the NT scaling matrix.
In the next three Lemmata 4.1–4.3, we will omit the subscript, for simplicity, before

returning to the full notation in Theorem 4.4. The next lemma shows thatW has the same
rank as X. So, as X is low-rank, W will be low-rank. Later in this section, we will use this
low-rank property ofW to present the preconditioners.

Let (X, S) be a pair of solutions to (1). By complementarity, we know that XS = 0, and
rank(X) + rank(S) = k + σ ≤ m. Assume k + σ = m, i.e. strict complementarity. From
XS = 0, X � 0, S 
 0, we know that X and S are simultaneously diagonalizable, i.e. there
existsU such thatX = U�XU�, S = U�SU�, where�X and�S are the diagonalmatrices
of eigenvalues and U�U = I.

Lemma 4.1: Let X, S be as above. Let W ∈ Sm be any matrix such that X = WSW. Then
rank(W) = rank(X).

Proof: Assume, without loss of generality, that eigenvalues of X and S are sorted
such that �X = Diag(λ1, . . . , λk, 0, . . . , 0) and �S = Diag(0, . . . , 0,μ1, . . . ,μm−k). Then
X = WSW is equivalent to U�XU� = WU�S U�W, and so, as U�U = I, �X =
U�WU�S U�WU. Define Z = U�WU, so that �X = Z��S Z. Because (�X)i,i = 0 for
i> k, it must hold that z�

:,i z:,i = 0, i> k, where z:,i is the ith column of Z. As Z is posi-
tive semidefinite, it means that Zi,j = 0 for i, j> k, i.e. the leading k × k submatrix of Z is
a rank-k non-zero matrix and the rest of the matrix is zero. Hence, rank(Z) = k and, as
W = UZU�, so is the rank ofW. �

The proof of the next lemma is straightforward.

Lemma 4.2: Let X ∈ Sm such that rankX = k, k ≤ m. Then rank(X ⊗ X) = k2.

Lemma 4.3: Let Y ∈ Sm such that rankY = k, k ≤ m, and A ∈ Rn×m, n<m. Then
rank(AYA�) ≤ k.

Proof: Because rankY = k, we have Y =∑k
i=1 y

(i)(y(i))� with some y(i) ∈ Rm, i =
1, . . . , k. Hence AYA� = A(

∑k
i=1 y

(i)(y(i))�)A� =∑k
i=1 z

(i)(z(i))� with z(i) = Ay(i).
Therefore rank(AYA�) = rank

∑k
i=1 z

(i)(z(i))� ≤ k. A strict inequality occurs, trivially,
when n< k. It can also occur when z(i), i = 1, . . . , k, are linearly dependent. �

By combining the above results, we get the following theorem.
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Theorem 4.4: Let, for some i ∈ {1, . . . , p}, Wi be the scaling matrix from Section 3 and let
rankWi = k. Let further Hi

lmi be defined as in (8). Then rank Hi
lmi ≤ k2.

Remark 4.1: All results in this section have been presented under the assumption of the
exact rank of the involvedmatrices. This is, of course, only the limit case in our algorithms.
The actual matrices have outlying eigenvalues and converge to the low-rank matrices. The
message of Theorem 4.4 remains the same, though: when Wi has k outlying eigenvalues,
then Hi

lmi will have at most k2 outlying eigenvalues. This is the fact on which we build the
preconditioner.

4.2. Hα preconditioner

The preconditioner introduced in this section has been motivated by the work of Zhang
and Lavaei [40] and, in its derivation, we partly follow their paper; however, the new pre-
conditioner differs in a substantial detail, as explained below. Also, our assumption about
the matrixW is weaker.

In Section 3, we introduced the scaling matrix W. This matrix becomes progressively
ill-conditioned as the IP method approaches the solution. This ill-conditioning of W is a
result of Lemma 4.1. Assuming that the solution matrices X∗

i , i = 1, . . . , p, have ranks ki,
the rank of matricesWi will also tend to ki.

The main idea of the preconditioner is to utilize Assumption 2.5 and decompose
matricesWi accordingly to their expected rank as follows:

Wi = [Vs
i Vl

i
] [�s

i 0
0 τiI

] [
Vs
i Vl

i
]�

︸ ︷︷ ︸
W0

i

+Vl
i(�

l
i − τ I)(Vl

i)
�︸ ︷︷ ︸

UiU�
i

(9)

with τi satisfying λ1(Wi) ≤ τi < λmi−ki(Wi). Here Ui are mi × ki matrices of full column
rank.

Recall now the form of the Schur complement matrix for problem (1):

H =
p∑

i=1
A�
i (Wi ⊗ Wi)Ai + D�XlinS−1

linD, (10)

in which Xlin = diag(xlin) and Slin = diag(slin).

Remark 4.2: Formally, we could treat the linear constraints, if present, as matrix con-
straints with diagonalmatrices and perform the above decomposition for these constraints,
too. However, it is rather unlikely that the corresponding part of the solution, vector xlin
would be ‘low rank’, i.e. that only a very few of the linear constraints would be active.
This fact could then ruin the whole idea. Here we propose to treat the linear constraints
as ‘full rank’ and add the matrix D�XlinS−1

linD to the preconditioner as is. In two of our
applications, truss topology optimization and sensor network localization, the linear con-
straints only consist of upper and lower bounds (in the dual formulation), hence thematrix
D�XlinS−1

linD is diagonal and satisfies Assumption 2.3. In the third application, relaxation of
the MAXCUT problem, the matrix D�XlinS−1

linD is chordal and sparse ([13, Lemma 2.4]),
so sparse Cholesky factorization leads to zero fill-in and is thus very efficient.
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By substituting the splittings (9) for i = 1, . . . , p into the matrix (10), we get

H =
p∑

i=1
A�
i

(
W0

i ⊗ W0
i + UiU�

i ⊗ W0
i + W0

i ⊗ UiU�
i + UiU�

i ⊗ UiU�
i

)
Ai

+ D�XlinS−1
linD.

Using the identity A�(
 ⊗ �)A = A�(� ⊗ 
)A for any 
,� ∈ Rmi×mi with A defined
as above ([40, Lemma 6] and [15, Chap. 4.2, Problem 25]), we obtain

H =
p∑

i=1
A�
i (W0

i ⊗ W0
i )Ai +

p∑
i=1

A�
i (Ui ⊗ �i)(Ui ⊗ �i)

�Ai + D�XlinS−1
linD,

where �i is any matrix satisfying �i�
�
i = 2W0

i + UiU�
i . We next define

Vi = A�
i (Ui ⊗ �i), i = 1, . . . , p, and Ṽ = [V1, . . . ,Vp]. (11)

Then,

H =
p∑

i=1
A�
i (W0

i ⊗ W0
i )Ai + D�XlinS−1

linD + ṼṼ�. (12)

We now approximate A�
i (W0

i ⊗ W0
i )Ai by τ 2i I in (12), to define the Hα preconditioner,

which is

Hα =
( p∑

i=1
τ 2i I + D�XlinS−1

linD

)
︸ ︷︷ ︸

Aα

+ṼṼ�. (13)

By using the Sherman–Morrison–Woodbury (SMW) formula, its inverse will be

H−1
α = A−1

α (I − Ṽ−1Ṽ�A−1
α ), (14)

where

 = I + Ṽ�A−1
α Ṽ . (15)

As thematrixAα is a sum of a diagonal matrix and a ‘scaled’ matrixD�D, the computation
of its inverse is inexpensive, according to Assumption 2.3.

Complexity of the PCG
• We compute the Schur complement

 = I + [A�
1 (U1 ⊗ �1) . . .A�

p (U1 ⊗ �p)]�A−1
α [A�

1 (U1 ⊗ �1) . . .A�
p (Up ⊗ �p)],

block-wise, with the (i, j)-blockij = B�
i Bj, where Bi = R−1A�

i (Ui ⊗ �i), i = 1, . . . , p,
and R is the Cholesky factor of Aα . Then we multiply (Ci =)R−1A�

i , which is O(n)
flops. The sparsity of Ai is maintained in Ci, and so Cid is still O(n) flops for an arbi-
trary vector d. Hence, as (Ui ⊗ �i) hasmiki columns, the product Ci(Ui ⊗ �i) requires
O(nmiki) flops. Finally, we compute B�

i Bj, which requiresO(mimjkikj) flops, if Bi and
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Algorithm 1 Solution of the linear system H�y = r by PCG
Given data k > 0 (solution rank), Wi ∈ S

m++, i = 1, . . . , p, r ∈ Rn (right-hand side) and
an initial iterate �y0.
1: procedure Setting up preconditioner Hα

2: for i = 1, . . . , p do � computing the decomposition (12)
3: Compute Vi by (11).
4: Compute eigenvalue decompositionWi = Vi�iV�

i and set τi = λmin(Wi).
5: Form the matricesW0

i and Ui by (9).
6: Compute the Cholesky factorization �i�

�
i = 2W0

i + UiU�
i .

7: end for
8: Set up Ṽ by (11).
9: Compute the matrix  from (15) and its Cholesky factorization  = LL�.
10: end procedure
11: procedure PCG

Use standard PCG algorithm to solve H�y = r until ‖H�y − r‖/‖r‖ ≤ εCG.
At each PCG iteration:

12: Compute the matrix-vector product with H using (6).
13: Compute thematrix-vector product withH−1

α bymeans of the SMW in (14), using
−1 = L−�L−1 with L pre-computed in Step 9.

14: end procedure

Bj are sparse as well. If this is not the case, the complexity would beO(mimjkikjn), how-
ever, the additional factor n in the complexity formula can be avoided by reordering
calculations appropriately. Define m̂ = maxi=1,...,p mi and k̂ = maxi=1,...,p ki. Form-
ing and factorizing the Schur complement (i.e. forming the preconditioner) requires
O(p2m̂2k̂2 + pnm̂k̂ + m̂3k̂3) flops; the last term comes from the Cholesky factorization
of .

• Each iteration of the PCG method is dominated by the matrix–matrix product in (6)
requiring O(

∑p
i=1m

3
i ) flops and application of the preconditioner (14) requiring

O(
∑p

i=1miki)2 + O(n
∑p

i=1miki) flops.
• The number of PCG iterations is a little unpredictable, in particular, when approaching

the solution of the problem. However, our experience shows that this number is usually
well below 10 and does not exceed 100 in the worst problems. Dropping the lower-
order terms and assuming n ≈ m̂2, we will need O(m̂3k̂3) flops in the preconditioner
andO(m̂3k̂) flops in one PCG iteration. We come to the conclusion that the cost of the
preconditioner is about the same as the cost of the solution of the linear system by the
PCG method.

Example 4.5: The efficiency of the Hα preconditioner is demonstrated in Figure 1. The
graph on the left-hand side shows the history of the condition number of matrices H
and H−1

α H during Loraine iterations. Here κ(H) is shown in logarithmic scale in blue and
κ(H−1

α H) in linear scale in red. The graph on the right-hand side shows the distribution
of eigenvalues ofH andH−1

α H in the last iteration; again, λ(H) in logarithmic scale in blue
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Figure 1. Problem tru7; left: condition number history of H (left y-axis in logarithmic scale; blue graph))
and of H−1

α H (right y-axis in linear scale; red graph); right: eigenvalue distribution of H (left y-axis in
logarithmic scale; blue graph)) and of H−1

α H (right y-axis in linear scale; red graph)) in the last iteration.

and λ(H−1
α H) in linear scale in red. The data were obtained by solving problem tru7

introduced in Section 9.

4.3. Hβ and hybrid preconditioner

Recall the definition of the matrix H:

H =
p∑

i=1
A�
i (W0

i ⊗ W0
i )Ai + ṼṼ� + D�XlinS−1

linD.

It turns out that, in our numerical examples, the last term is dominating in the first
iterations of the IP algorithm, before the low-rank structure of W is clearly recognized.
This is demonstrated in Figure 2 that shows the distribution of eigenvalues of matrices
D�XlinS−1

linD (in red) and
∑p

i=1 A
�
i (W0

i ⊗ W0
i )Ai + ṼṼ� (in blue) in iterations 3, 13, 27

(final) in problem tru7e (see Section 9).
This observation leads to the idea of a simplified preconditioner called Hβ and defined

as follows:

Hβ =
p∑

i=1
τ 2i I + D�XlinS−1

linD, (16)

Figure 2. Problem tru7e; eigenvalues of D�XlinS−1
lin D (red) and

∑p
i=1 A

�
i (W0

i ⊗ W0
i )Ai + ṼṼ� (blue) in

iterations 3, 13 and 27 (left to right).
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in which τi is defined as in the previous section. This matrix is easy to invert by Assump-
tion 2.3; in fact, thematrix is diagonal inmany problems. It is therefore an extremely ‘cheap’
preconditioner that is efficient in the first iterations of the IP algorithm.

For relevant problems, we therefore recommend to use a hybrid preconditioner: we start
the IP iterations withHβ and, once it becomes inefficient, switch to themore expensive but
more efficient Hα . See more details in Section 9.3 and an example in Section 9.5.2.

5. The code Loraine

Algorithms presented in the previous sections have been implemented in a code Loraine
(for LOw-RAnk INtErior point). The implementation was done in MATLAB and Julia
programming environments and is available as open source .1

5.1. Special features

Loraine is a general-purpose solver for any linear SDP with linear equality and inequality
constraints. Compared to other general-purpose SDP software, it particularly targets two
classes of problems.

Problemswith low-rank solutions
Loraine is using the preconditioned conjugate gradient method, as described in detail in
Section 4. In particular, the user can choose between the direct and iterative solver, the
type of preconditioner and the expected rank of the solution. The direct solver relies on
the implementation of the (sparse or dense) Cholesky factorization provided by MATLAB
or Julia.

Problemswith low-rank data input
This feature is only useful when a direct solver is used. In this case, the bottleneck of
an interior-point algorithm is the computation of the Schur complement matrix in (5b)
and (7). When the data matrices Ai are of low rank (typically of rank one), the complexity
of (5b) can be drastically reduced. The user has a choice

– to provide vectors (aji)k, k = 1, . . . , r, defining matrices A(i)
j =∑r

k=1(a
j
i)k(a

j
i)

�
k (field

Avec in the Data input section below);
– to indicate that the input matrices A(i)

j are all expected to be of rank one. Then their
decomposition to a vector-vector product can be automatically computed by Loraine.

5.2. Data input

The notation in the input file is related to the dual formulation of the problem (2) without
slack variables. The input for theMATLAB version of Loraine is aMATLAB structure with
the following fields:

type . . . ‘sdp’ [field used for future extensions]
name . . . ‘name of the problem’
nvar . . .number of variables n
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c . . . objective vector b
nlmi . . .number of linear matrix inequalities p
msizes . . .dimensions of the LMIsm1, . . . ,mp
nlin . . .number of linear constraints ν

lsi_op . . . (optional) binary vector of length nlin, set to zero for equality constraints and
one for inequality constraints; if this vector is not present and ν > 0, inequality type
constraints are assumed.

A . . .matrices A(i)
j stored in MATLAB sparse format as cells Ai,j

Avec . . . vectors (aji)k, k = 1, . . . , r, defining matrices A(i)
j =∑r

k=1(a
j
i)k(a

j
i)

�
k

C . . .matrix C of linear constraints
d . . . vector d of linear constraints

We also provide several converters, e.g. from SDPA input files. For the Julia version of
Loraine, the MATLAB structure can be exported and read by the Julia code.

5.3. Loraine options

The following parameters can be changed by the user:

kit = 1; % 0..direct solver; 1..iterative solver
tol_cg = 1e-2; % initial tolerance for iterative solver
tol_cg_up = 0.5; % tolerance update
tol_cg_min = 1e-6; % minimal tolerance for CG solver
cg_type = ’minres’;% ’minres’ or ’cg’ implemented
eDIMACS = 1e-6; % epsilon for DIMACS error stopping criterion
prec = 1; % 0..no; 1..H_alpha; 2..H_beta; 4..hybrid
erank = 1; % estimated rank of the solution
mup = 1000; % initial penalty parameter mu for l1-penalization
verb = 2; % 2..full output, 1..short output, 0..no output
datarank = 0; % -1..A_i expected rank one; 0..full rank; 1..A_i by vectors
initpoint = 0;% 0..Loraine heuristics, 1..SDPT3-like heuristics

6. Application 1: Truss topology optimization

6.1. Truss notation

The notation used throughout Section 6 is specific to this application and unrelated to the rest
of this paper.

By truss, we understand a mechanical structure, an assemblage of pin-jointed uniform
straight bars made of elastic material, such as steel or aluminium. The bars can only carry
axial tension and compression. We denote bym the number of bars and by N the number
of joints. The positions of the joints are collected in a vector y of dimension ñ := dim · N
where dim is the spatial dimension of the truss. The material properties of bars are char-
acterized by their Young’s moduli Ei, the bar lengths are denoted by �i and bar volumes by
ti, i = 1, . . . ,m.

Let f ∈ Rñ be a load vector of nodal forces. The response of the truss to the load f is
measured by nodal displacements collected in a displacement vector u ∈ Rñ. Some of the
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displacement components may be restricted: a node can be fixed in a wall, then the corre-
sponding displacements are prescribed to be zero. The number of free nodes multiplied by
the spatial dimension will be denoted by n and we will assume that f ∈ Rn and u ∈ Rn.

We introduce the bar stiffness matrices Ki and assemble them in the global stiffness
matrix of the truss

K(t) =
m∑
i=1

tiKi =
m∑
i=1

ti
Ei
�2i

δiδ
�
i , i = 1, . . . ,m (17)

with ‘position vectors’ δi ∈ Rn, i = 1, . . . ,m, and Young’s moduli Ei ∈ R, i = 1, . . . ,m,
characterizing the stiffness of the material. The truss must satisfy the equilibrium equation

K(t)u = f . (18)

Assumption 6.1: K(1) with 1 = (1, 1, . . . , 1) ∈ Rm is positive definite and the load vector
f is in the range space of K(1).

6.2. Truss topology problem, rank of the solution

Let 0 ≤ ti ≤ ti, i = 1, . . . ,m, and γ be a positive constant. The basic ‘minimum volume’
truss topology optimization (TTO) problem reads as follows:

min
t∈Rm

m∑
i=1

ti

subject to (
γ −f�
−f K(t)

)
� 0

ti ≤ ti ≤ ti, i = 1, . . . ,m.

(19)

The dual to (19) can be written as

max
X∈S

n+1

ρ∈Rm,ρ∈Rm

(−γ f�
f 0

)
• X −

m∑
i=1

ρiti +
m∑
i=1

ρiti

subject to (
0 0
0 Ki

)
• X − ρi + ρi = 1, i = 1, . . . ,m

X � 0

ρi ≥ 0, ρi ≥ 0, i = 1, . . . ,m.

(20)

Lemma 6.1: Problems (19), (20) satisfy Assumptions 2.2 and 2.3.

Proof: Every vector δi has at most 4 non-zero elements (6 in 3D space) and thus every
matrix Ki has at most 16 (36) non-zero elements, independently of the size of the problem;
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Table 1. Eigenvalues of X∗ and S∗ for problem in Example 6.3.

λ(X∗), t > 0 λ(S∗), t > 0 λ(X∗), t = 0 λ(S∗), t = 0

1.980482521248879 0.000000000000102 2.064483254260574 0.000000000010001
0.000000102260913 0.000003116874928 0.010238711360358 0.000000000013521
0.000000086085241 0.000003956920433 0.009214785863400 0.000000000013687
0.000000068216515 0.000006409263345 0.005367091514209 0.000000000016235
0.000000054110869 0.000007529457678 0.005013654697043 0.000000000017372
0.000000042818584 0.000009477992158 0.003545367975067 0.000000000018683
0.000000039334355 0.000011708852890 0.002923233469802 0.000000000020485
0.000000033270286 0.000012193659241 0.002610639717586 0.000000000021874
0.000000032811718 0.000014115281046 0.001846306250799 0.000000000024806
0.000000028005339 0.000014761068984 0.001771660792931 0.000000000028448
0.000000027431494 0.000016565957597 0.001555022631457 0.000000000032822
0.000000000001029 0.399999306252456 0.000000000000031 0.400000000006957
0.000000000000041 10.10000007997102 0.000000000000001 10.10000000001012

hence Assumption 2.2 is satisfied. Assumption 2.3 is trivially satisfied for box constraints
on ti. �

Using SDP complementarity, it is straightforward to prove the following result.

Theorem 6.2: There exists a solution (X∗, ρ∗, ρ∗) ∈ Sn+1 × Rm × Rm of the dual SDP
problem (20) such that the rank of X∗ is one. For ti > 0 this solution is unique.

The above theorem is useful whenX∗ is unique (i.e. for ti > 0); not asmuchwhen ti = 0
and X∗ may not be unique. In this case, some ‘other’ solutions may be of higher rank and
an interior point algorithm will converge to them. This is demonstrated in the following
example, with results obtained by Loraine.

Nevertheless, it can be shown that even in this case, every solutionX∗ will have one out-
lying eigenvalue and thus the problem satisfied Loraine assumptions. This is demonstrated
by the numerical examples in the last section.

Example 6.3: Consider a truss with nine nodes, three nodes of them fixed by boundary
conditions; for ti = 0, due to the setting of the problem, the solution of the dual problem
may have rank of up to 11. Table 1 presents, column-wise, eigenvalues of X∗ and S∗ for
t > 0 (when rank-one solution X∗ is expected) and eigenvalues of X∗ and S∗ for t = 0
(when one outlying eigenvalue of X∗ is expected).

6.3. Truss topology problem, vibration constraints

The formulation of the basic truss topology problem as an SDP is rather academic. It was
shown, e.g. in [16] that it is equivalent to a convex nonlinear programming problem that
can be solved very efficiently by interior pointmethods. The SDP formulation gains signifi-
cance once we addmore, important and practical, constraints to the problem. In particular,
it was shown in [1,2] that a constraint on natural (free) vibrations of the optimal structure
leads to a linear matrix inequality and that this is, arguably, the best way how to treat this
constraint.
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The free vibrations are the squares of the eigenvalues of the generalized eigenvalue
problem

K(t)w = λ (M(t) + M0)w, (21)

whereM(t) =∑m
i=1 tiMi is the so-called mass matrix that collects information about the

mass distribution in the truss. ThematricesMi are positive semidefinite and have the same
sparsity structure asKi. The non-structuralmassmatrixM0 is a constant, typically diagonal
matrix with very few nonzero elements.

Low vibrations are dangerous andmay lead to structural collapse, hence a typical vibra-
tion constraint is λmin ≥ λ for a given λ > 0 where λmin is the smallest eigenvalue of
problem (21). This constraint can be equivalently written as a linear matrix inequality
K(t) − λ(M(t) + M0) � 0. We will thus get the following SDP formulation of the truss
topology design with a vibration constraint:

min
t∈Rm

m∑
i=1

ti

subject to (
γ −f�
−f K(t)

)
� 0

K(t) − λ (M(t) + M0) � 0

ti ≤ ti ≤ ti, i = 1, . . . ,m.

(22)

It has been shown, e.g. in [31] that, when ti > 0, the rank of the optimal dual variable to
the second matrix inequality is equal to the multiplicity of the smallest eigenvalue of (21).
This multiplicity depends on the geometry of the optimal structure but is, typically, very
low, usually not bigger than 1 or 2. Problem (22) thus fits in our framework of SDPs with
very low-rank solutions.

7. Application 2: sensor network localization with noisy data

7.1. The problem

Assume there are m distinct (sensor) points in xi ∈ Rd, whose locations are to be deter-
mined, and ν other fixed (anchor) points, whose locations a1, . . . , aν are known. The
Euclidean distance δij between the ith and jth sensor points is known if (i, j) ∈ Ix =
{(i, j) | ‖xi − xj‖ = δij ≤ ρ}, where ρ is a fixed parameter called the radio range. Simi-
larly, the Euclidean distance δkj between the kth anchor and jth sensor point is known if
(k, j) ∈ Ia = {(k, j) | ‖ak − xj‖ = δij ≤ ρ}. The sensor network localization (SNL) problem
is to

Find xi ∈ R
d, i = 1, . . . ,m, for which

‖xi − xj‖2 = δ2ij, (i, j) ∈ Ix
‖ak − xj‖2 = δ

2
kj, (k, j) ∈ Ia.

(23)

Typical networks of this type consist of a large number of densely deployed sensor nodes
which gather local data and communicate with other nearby nodes. The sensor data
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Figure 3. Sensor network localization problem: initial data (left) and optimal solution of the SDP relax-
ation (right). Black: anchors; magenta: exact positions of sensors; red (left): known distances between
anchors and sensors; blue (left): knownmutual distances of sensors; blue (right): computed positions of
sensors.

from the nodes are relevant only if we know to what location they refer. The problem
arises in applications as different as the habitat monitoring system in the Great Duck
Island, detecting volcano eruptions, industrial control in semiconductor manufacturing
plants, structural health monitoring, battlefield surveillance, moving object tracking, asset
location and the problem of determining protein molecule structure [6].

Figure 3(left) shows an example of a network with 9 anchors and 512 sensors.
Inmany applications the data δij are noisy. Assume perturbation of δij and δik by random

noises εij and εik, respectively:

δij = δ̂ij|1 + εij|, (i, j) ∈ Ix
δik = δ̂ik|1 + εik|, (i, j) ∈ Ia

where δ̂ij are the true distances. Obviously, the problem (23) may now become infeasible.

7.2. SDP relaxation

In a series of papers, Biswas et al. [5,6,35] proposed a relaxation of the problem based on
the semidefinite programming formulation. The next lines follow the development from
Biswas and Ye [5].

Let X = [x1 x2 . . . xm] be a d × m unknown matrix. Then

‖xi − xj‖2 = (ei − ej)TXTX(ei − ej)

‖ak − xj‖2 = (ak;−ej)T
[
Id
XT

]
[Id X](ak;−ej)
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and the original problem (23) can be equivalently written as

Find xi ∈ R
d, i = 1, . . . ,m, for which

(ei − ej)TXTX(ei − ej) = δ2ij

(ak;−ej)T
(
Id X
XT Y

)
(ak;−ej) = δ

2
kj

Y = XTX.

(24)

We now relax the equality Y = XTX to Y � XTX, which is equivalent to the linear matrix
inequality

Z =
(
Id X
XT Y

)
� 0.

The semidefinite optimization problem

min
Z,u,v

∑
(i,j)∈Ix

(uij + vij) +
∑

(k,j)∈Ia
(ukj + vkj)

subject to

Z1:d,1:d = Id

(0; ei − ej)TZ(0; ei − ej) − uij + vij = δ2ij, (i, j) ∈ Ix
(ak;−ej)TZ(ak;−ej) − ukj + vkj = δ

2
kj, (k, j) ∈ Ia

Z � 0

uij, vij ≥ 0, (i, j) ∈ Ix, ukj, vkj ≥ 0, (k, j) ∈ Ia

(25)

is called the full SDP relaxation (FSDP) of (23). It has been shown by So and Ye [30] that
for certain ‘good’ problems with no data noise this relaxation is exact.

For larger sensor network localization problems, the FSDP relaxation is difficult to solve
numerically. The SDP problem has a large number of variables and the constraint matrix
is thus large and full. To solve the problem, one may exploit the sparsity of Ix and Ia at
the relaxation modelling level. Several approaches have been published on this subject.
A simple, yet powerful approach was proposed by Wang et al. [35] and called edge-based
relaxation (ESDP). However, ESDP does not maintain the localizability of FSDP: the solu-
tion can have high rank even for uniquely localizable problems. For problems with no data
noise, Krislock and Wolkowicz [21] proposed a very efficient algorithm based on facial
reductions. This approach, however, cannot be extended to the problems with noisy data.

As mentioned above, for many noiseless problems the relaxation is exact, i.e. the rank
of the matrix Z is 2. Then, for problems with small noise, Z is expected to have two
large eigenvalues and several, perhaps many, small nonzero ones. The problem thus sat-
isfies our low-rank Assumption 2.5 and can be efficiently solved by Loraine. This will be
demonstrated in Section 9.
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8. Application 3: Lasserre relaxations of theMAXCUT problem

8.1. The problem

Let � be an undirected n-node graph and let the arcs (i, j) be associated with nonnegative
weights aij. The task is to find a cut of the largest weight, that is, to partition the set of nodes
into two parts, S and S′ such that the total weight of all arcs linking S and S′ is as large as
possible.

The MAXCUT problem is formulated as a quadratic optimization problem

max
x

⎧⎨⎩1
4

n∑
i,j=1

aij(1 − xixj) | x2i = 1, i = 1, . . . , n

⎫⎬⎭ (26)

or, equivalently, with X = xxT , as a linear SDP with a rank-one constraint:

max
X

⎧⎨⎩1
4

n∑
i,j=1

aij(1 − Xij) | Xii = 1, i = 1, . . . , n; rankX = 1; X 
 0

⎫⎬⎭ . (27)

It is well known that problem (26) is NP-hard. The celebrated result by Goemans and
Williamson [12] shows that the (Shor’s) relaxation of (27) by ignoring the rank constraints
will deliver a solution with objective function not bigger than 1

0.87865 times the global opti-
mum. The relaxation is, however, almost never exact which means that the solution X∗ of
the relaxed (27) has, typically, an unknown rank bigger than 1.

Tighter approximations with low-rank solutions can be obtained by higher order relax-
ations, introduced by Lasserre [22]. The original problem (26) is a polynomial optimization
problem and we can just use the Lasserre machinery to obtain tight approximations of its
global solution. It was shown by Fawzi et al. [11] that for this type of problems, the sequence
of these approximations is finite and the upper bound on the order of the relaxation to
obtain exact solution of (26) is �n/2�. Laurent [23] showed that this is also a lower bound
for unweighted complete graphs.

The SDP relaxations can be written in the following form:

min
y∈Rs

y�q

subject to
s∑

i=1
Miyi + I � 0.

(28)

Here, for the relaxation of order 1, Q is the Laplacian matrix of the graph, q = svec(Q),
y = svec(X), s = n(n + 1)/2, and Mi ∈ Rn+1×n+1 are the (pseudo-)Hankel matrices; in
this case (28) is just re-writing of the relaxed problem (27) (without the rank constraint).
For higher-order relaxations, the dimensions s and m get bigger by adding higher-order
terms inMi and y; for details, see [22].

For an exact relaxation (i.e. relaxation delivering the global solution of (26)), the rank of
the optimal moment matrixM∗ :=∑s

i=1Miy∗
i + I is equal to the number of global solu-

tions; in particular, if the global solution is unique (up to the multiple by -1), the rank of
M∗ is 2. So, while problem (28) has a low-rank solution, it is in the ‘wrong’ form for our
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IP solver. While the solution M∗ of (28) is of low rank, our solver expects the solution of
an SDP problem in the primal form (1) to be of low rank. In [13], we show that the dual
to (28) can be rewritten in the dual form

min
z∈Rñ

(svec(I))� z

subject to smat(z) � 0

Mz = q̃,

(29)

where ñ = m(m + 1)/2 and M = (svec(M1), . . . , svec(Ms))
T , M ∈ Rs×ñ. Now, due to

complementarity, we know that the dual solution to this problem (the Lagrangian mul-
tiplier to the constraint smat(z) � 0 and the solution to (28)) is of low rank, assuming
high enough relaxation order and unique solution of (26). Also in [13], we show how to
treat the equality constraints in (29) in the interior point algorithm; in particular, we use
the �1-penalty method for this purpose.

Problem (29) now satisfies the assumptions needed for the low-rank preconditioner.

9. Numerical experiments

9.1. Problem database

To test Loraine and the underlying algorithms, we generated a library of problems arising
from truss topology optimization, sensor network localization and Lasserre relaxations of
the MAXCUT problem. These problems are characterized by very low-rank solutions and
scalability, in the sense that one can generate a range of problems of various dimensions
but of the same type.

9.1.1. TTO problems
We generated a set of truss topology optimization problems of various sizes, both with and
without the vibration constraint. All problems have the same geometry, boundary condi-
tions and loads and only differ in the number of potential nodes and bars. The geometry
and loading for TTOproblems without vibration (formulation 19) are as shown in Figure 4
(left), while the data for problemswith the vibration constraint (formulation 22) differ only
in the horizontal orientation of the load vector. We consider two groups of problems with
the following naming convention:

tru<n> standard TTO problem (19) with t = 0, discretized by n × n nodes;
vib<n> same as above but with the vibration constraint (22).

In each group, all nodes in the initial ground structure are connected by potential bars.
Table 2 presents the dimensions of the generated problems.

For illustration, Figure 4 shows optimal results for problems tru25 and vib19.

9.1.2. SNL problems
We consider SNL problems of growing dimension with nine anchors and n sensors ran-
domly distributed around the letters O and B, see Figure 3. The radio range ρ (see the
beginning of Section 7) was set to 1

5 of the maximal vertical distance of the anchors. The
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Figure 4. Initial design for tru∗ problems (left); optimal results for problems tru25 (middle) and vib19
(right).

Table 2. Problems tru<n> and problems vib<n> , number of variables n, size of the LMI
constraintm and number of linear constraints.

Problem n m Lin. constr.

tru3 36 13 72
tru5 300 41 600
tru7 1176 85 2352
tru9 3240 145 6480
tru11 7260 221 14,520
tru13 14,196 313 28,392
tru15 25,200 421 50,400
tru17 41,616 545 83,232
tru19 64,980 685 129,960
tru21 97,020 841 194,040
tru23 139,656 1013 279,312
tru25 195,000 1201 390,000
vib3 36 (13, 12) 72
vib5 300 (41, 40) 600
vib7 1176 (85, 84) 2352
vib9 3240 (145, 144) 6480
vib11 7260 (221, 220) 14,520
vib13 14,196 (313, 312) 28,392
vib15 25,200 (421, 420) 50,400
vib17 41,616 (545, 544) 83,232
vib19 64,980 (685, 684) 129,960
vib21 97,020 (841, 840) 194,040
vib23 139,656 (1013, 1012) 279,312
vib25 195,000 (1201, 1200) 390,000

known distances between the sensors were perturbed by 1% Gaussian noise. Table 3 (left)
shows the dimensions of the generated problems.

9.1.3. MAXCUT problems
Recall that the solution of the MAXCUT problem is of rank 1 only if the problem
has a unique global solution. Obviously, a complete unweighted graph may have many
‘symmetric’ solutions. To avoid the non-uniqueness, we generated undirected, weighted,
generally complete graphs with weights randomly distributed between 0 and 12with 20–50
nodes, using the MATLAB command graph. It turned out that for all these problems
the relaxation order 2 in the Lasserre hierarchy is already high enough to deliver the



OPTIMIZATION METHODS & SOFTWARE 23

Table 3. Problems SNL-<n> and MAXCUT-<n> , number of variables n, size of the LMI con-
straintm and number of linear constraints.

Problem n m Lin. constr.

SNL-16 1677 130 3348
SNL-32 6818 258 13,630
SNL-48 14,886 386 29,766
SNL-64 26,767 514 53,528
SNL-80 40,840 642 81,674
SNL-96 58,956 770 117,906
SNL-112 82,137 898 164,268
SNL-128 109,464 1026 218,922
MAXCUT-20 22,366 211 12,390
MAXCUT-25 53,301 326 30,550
MAXCUT-30 108,811 466 63,860
MAXCUT-35 199,396 631 119,070
MAXCUT-40 337,431 821 204,180
MAXCUT-45 537,166 1036 328,440
MAXCUT-50 814,726 1276 502,350

optimal solution of the MAXCUT problem. The dimensions of the corresponding SDP
problems (29) (for relaxation order 2) are shown in Table 3 (right).

9.2. Other problems, standard libraries

While we tested our software for other problems from standard libraries, we do not report
it here for one of the following reasons:

(1) The available collections, such as SDPLIB [7], are not representative enough in the
sense that they do not include enough problems of the same type. We did not want to
pick up single problems.

(2) Lorainemainly benefits from the use of an iterative solver for the linear system using a
specific preconditioner targeted to problems with low-rank solutions. For many such
problems, however, no preconditioner is needed for the convergence of the iterative
method; these ‘easy’ problems were not included in our testing. This is the case of
matrix completion problems [3,40] or some problems arising in the relaxation of com-
binatorial optimization. It is not the case of problems from Section 9; for those, the
preconditioner is essential for convergence.

(3) The problems do not satisfy our dimensional assumption n � m. For these problems,
the preconditioner is still very efficient (assuming low-rank solutions) but the use of
iterativemethods does not bring any significant advantage to direct solvers. This is the
case of many problems found in SDPLIB.

9.3. Loraine setting

The algorithms presented in this article were implemented in MATLAB and Julia codes.
The codes use DIMACS stopping criteria [26] with εDIMACS = 10−5.

The stopping parameter for the iterative method εCG in Algorithm ?? is set and updated
as follows: we start with εCG = 0.01 and multiply it after every major iteration by 0.5,
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until it reaches the value 10−6; then we continue with this value till convergence of the
IP algorithm.

Loraine can use either CG or MINRES solver with the selected preconditioner. In the
numerical experiments reported below, we solely used MINRES. While a single CG itera-
tion is faster, MINRES proved to be more robust when approaching the problem solution,
i.e. when the matrices get increasingly ill-conditioned.

Unless stated otherwise, we use the following hybrid preconditioner called Hhyb: we
start with Hβ (16) until the criterion below is satisfied and then switch to Hα (13):

Ncg_iter > kp
√
n/10 & Niter >

√
n/60.

Here Niter is the current IP iteration and Ncg_iter the number of CG or MINRES steps
needed to solve the corrector equation in this iteration. This criterion is, obviously, purely
heuristic. The printout below, obtained for problem tru15, shows the iteration history
around the preconditioner switch.

*** IP STARTS
it obj error cg_iter CPU/it
1 1.46116856e+04 5.04e+04 12 0.16
2 5.75293981e+04 3.66e+04 6 0.15

...
19 1.38827049e-01 3.00e-01 28 0.24
20 1.37941865e-01 2.92e-01 31 0.23
Switching to preconditioner 1
21 1.09821166e-01 2.31e-01 16 0.26
22 1.10288854e-01 2.26e-01 15 0.26
...
52 5.93380311e-02 1.76e-06 46 0.55
53 5.93379029e-02 7.57e-07 66 0.76

*** Total CG iterations: 896

We further choose the value of τ in Hα and Hβ as

τ = λ1(Wi) + 0.5mean(λ1(Wi), . . . , λm−ki(Wi)).

To solve the problems, we used the default setting of Loraine parameters as shown in
Section 5, with the following exceptions, as explained in the respective paragraphs below:

SNL: tol_cg = 1e-1, eDIMACS = 1e-4, erank = 12, initpoint = 1
MAXCUT: eDIMACS = 1e-5

9.4. Other software

Later in this section, we present results obtained by Loraine, together with (sometimes
brief) comparison with other SDP software. For this comparison, we use the solver
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Table 4. Loraine in tru<n> and vib<n> problems.

Loraine MINRES
Problem Iter Iter Time Time/Iter

tru3 16 122 0.01 0.00
tru5 21 190 0.08 0.00
tru7 27 236 0.24 0.01
tru9 31 333 0.65 0.02
tru11 36 370 1.6 0.04
tru13 45 500 4.5 0.10
tru15 52 882 11 0.22
tru17 53 980 24 0.45
tru19 64 1310 51 0.80
tru21 65 1325 84 1.29
tru23 72 2450 189 2.63
tru25 87 2148 317 3.64
vib3 20 209 0.04 0.00
vib5 31 411 0.21 0.01
vib7 39 501 0.67 0.02
vib9 47 663 2.2 0.05
vib11 59 995 6.1 0.10
vib13 69 1153 16 0.23
vib15 80 1480 37 0.46
vib17 94 1781 92 0.98
vib19 108 2116 189 1.75
vib21 120 2844 401 3.34
vib23 130 2720 718 5.52
vib25 143 3752 1321 9.24

MOSEK [27] which is also based on an interior-point algorithm. While this comparison
may seem unfair, as MOSEK uses a direct solver to solve the linear systems, we believe that
it gives a good perspective of the clear advantage of iterative solvers with good precondi-
tioners, when available and when applicable. We further present a comparison with our
MATLAB implementation of the ADMMmethod, based on [36].

For the truss problems, we also offer a comparison with SDPNAL+ [37], an implemen-
tation of the semi-smooth Newton-CG augmented Lagrangian method; and SDPLR [8]
using a nonlinear programming algorithmbased on low-rank factorization of the variables.

9.5. Numerical results

All problems in this section were solved on an iMac desktop computer with 3.6GHz 8-
Core Intel Core i9 and 64GB 2667MHz DDR4 using MATLAB R2022b. The ‘time’ in
the following tables is the elapsed time reported either by Matlab tic/toc commands
(for Loraine and ADMM) or by the software (for MOSEK, SDPNAL+ and SDPLR).

9.5.1. Truss topology problem
Loraine with iterative solver. We now present results for all tru and vib problems using
Loraine. These are shown in Table 4. The table presents the number of iterations of Loraine
and the total number of MINRES iterations using the hybrid preconditioner Hhyb. This is
followed by time spent in the optimization solver and time per iteration. Note that Loraine
solves two linear systems per iteration (predictor and corrector). For all problems, we set
the expected rank of the dual solutions k = 1.
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Figure 5. Left to right: Eigenvalues of the solution matrix X∗, as computed by Loraine, for problems
tru7, true7e (i.e. tru7with t ≥ ε > 0, not included in Table 4) and SNL48.

Table 5. Loraine direct and other solvers in tru<n> problems.

Loraine direct MOSEK SDPNAL+ SDPLR

Problem Iter Time Time/Iter Iter Time Time/Iter Iter Time Iter Time

tru3 16 0.01 0.001 14 0.22 0.02 440 0.5 15 0.01
tru5 21 0.09 0.004 15 0.23 0.02 9674 29 18 1.7
tru7 27 0.46 0.02 17 0.78 0.05 6324 55 19 21
tru9 31 4.3 0.14 20 5.6 0.28 47,579 468 20 179
tru11 36 31 0.86 26 44 1.69 maxit 22 2469
tru13 45 239 5.31 29 235 8.10 maxit
tru15 52 1216 23.38 32 1079 33.72
tru17 51 4583 89.86 37 4671 126.24

As mentioned above, solutions X∗ of the truss problems have one outlying eigenvalue
butmay not be of rank 1. This is demonstrated in Figure 5: the left graph shows eigenvalues
of X∗ (as obtained by Loraine with high accuracy) for tru7 (with t = 0) with the single
outlying eigenvalue and most of the remaining eigenvalues of magnitude 10−4. Compare
it with the middle graph showing eigenvalues of X∗ for tru7e with t > 0; this matrix,
indeed, has numerical rank 1.

Loraine with direct solver and rank-1 data. Recall that Loraine is not only suitable for
problems with low-rank solutions but also with low-rank data. The truss problems are
well-suited for this branch of the code, as all the data matrices have rank 1, see (17).

Table 5 presents results of Loraine with direct solver and rank-1 input data, MOSEK,
SDPNAL+ and SDPLR; we again give the number of iterations of the solver, CPU time
and (for Loraine and MOSEK) CPU time per one iteration. While Loraine is much more
efficient for these problems with an iterative solver, the goal of this comparison is to show
that when handling the rank-1 data efficiently, we get a code that is (at least per one iter-
ation) faster than other software even with a direct solver. To put things into perspective,
Loraine direct (a purely Matlab code) needs 780 s to solve problem tru13 when the data
are treated as general matrices, with no rank information.

We only present results for problems tru3–tru17; for the larger problems MOSEK
exceeded the available 64GB RAM. SDPNAL+ and SDPLR were used with default stop-
ping tolerance. None of these codes can solve problems bigger thantru11 before reaching
the maximum number of iterations. While Loraine solutions satisfy DIMACS criteria with
10−5, other codes often finish with lower precision. The ADMM is not included in this
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Figure 6. Loraine (red) andMOSEK (blue) intru∗ problems (left) andSNL∗ problems (right). CPU time
per iteration versus number of variables in log–log scale.

comparison as, even for the smallest problems, the method stagnated at a point far from
the solution.

In Figure 6(left), we give a comparison of the CPU time per iteration for Loraine
(iterative) and MOSEK. While MOSEK actually exceeds the theoretical complexity with
coefficient 2.2, the complexity of Loraine is almost linear for these problems.

9.5.2. Sensor network localization problems
Recall from Section 7 that problems with noisy data lead to optimal solution Z∗ of (25)
with two outlying and a number of small, nonzero eigenvalues. Selecting k = 2 therefore
did not lead to an efficient preconditioner and we had to increase the estimate of the rank
of Z∗. For the problems we solved, k = 12 turned out to be a good compromise between
the quality of the preconditioner and the CPU time needed to apply it. See also Figure 5
(right), showing the first 30 eigenvalues of the optimal matrix X∗ obtained by Loraine; we
can clearly see two distinct eigenvalues and another 10 eigenvalues ofmagnitude 10−2, with
the rest of the eigenvalues converging to zero. Due to ill-conditioning of the problems, we
relaxed the stopping criterion to eDIMACS=1e-4; the same criterion was used for the
ADMM code.

Table 6 presents the results for Loraine, MOSEK and ADMM. While ADMM turned
out to be more successful than for the truss problems, it is still much slower than the
two IP codes. In this table, the number of MINRES iterations sums up the iterations with
preconditioners Hβ and Hα . For instance, in problem SNL-64, the average number of

Table 6. Loraine, MOSEK and ADMM in SNL-<n> problems.

Loraine MOSEK ADMM

Problem Iter MINRES iter Time Iter Time Iter Time

SNL-16 21 395 1.4 13 1.0 6239 12
SNL-32 25 532 7.4 15 21 19,343 362
SNL-48 27 676 21 17 150 14,328 1050
SNL-64 27 705 40 16 611 81,938 17,554
SNL-80 28 1064 84 21 2052 > 50,000
SNL-96 29 969 120 27 6579 time
SNL-112 30 1293 224 memory
SNL-128 30 1316 299
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Figure 7. Problem SNL-80 solved using the hybrid preconditioner.

MINRES iterations withHα was 10 and the maximal number (in the last IP iteration) was
23.

In Figure 6(right), we give a comparison of the CPU time per iteration for Loraine and
MOSEK.

For these problems, we also demonstrate the usefulness of the hybrid preconditioner
(see Sections 4 and 9.3). Figure 7 shows the iteration log for problem SNL-80; the first IP
iterations are solved usingHβ ; once it requires too many MINRES iterations, we switch to
Hα .

Table 7. Loraine, MOSEK and ADMM in MAXCUT-<n> problems.

Loraine MOSEK ADMM

Problem Iter MINRES iter Time Iter Time Iter Time

MAXCUT-20 18 559 3.8 6 9 3486 15
MAXCUT-25 20 728 11 7 78 4314 45
MAXCUT-30 21 1032 28 9 607 4837 105
MAXCUT-35 23 2183 96 9 2911 3030 126
MAXCUT-40 27 2275 186 memory 1280 92
MAXCUT-45 25 2521 335 7976 1034
MAXCUT-50 24 2540 528 8783 1832
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9.5.3. MAXCUT problems
The results obtained for the MAXCUT problems are summarized in Table 7. These prob-
lems are relatively ‘simple’: the ADMMmethod is rather efficient now (this is well known
from other studies) and MOSEK converges in a very small number of iterations. However,
the sheer size preventsMOSEKwith a direct solver to solve larger problems, while ADMM
is still about three times slower than Loraine. Moreover, the ADMM behaviour is rather
unpredictable, regarding the number of iterations.

10. Conclusion

Wehave introduced new software Loraine for linear semidefinite optimization, particularly
– but not exclusively – focused onproblemswith either low-rank solutions or low-rank data
(or both).We have demonstrated Loraine’s efficiency in solving three classes of well-known
SDP problems. While our primary emphasis in these tests was on problems with low-rank
solutions, we have also shown that the solely Matlab version of Loraine is competitive and
may even outperform the recently most efficient SDP solvers when solving problems with
low-rank data. The software is distributed as open source and is written in standardMatlab
or Julia, allowing users to easily adapt it to their specific needs.

Note

1. github.com/kocvara/Loraine.m
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