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A B S T R A C T   

It is still an open question which cognitive and non-cognitive personality traits are useful for describing and 
explaining behaviour and performance in complex problems. During complex problem solving (CPS), problem 
solvers have to interact with the task in a way in which learning ability might be beneficial for successful task 
completion. By investigating the relationship between learning ability and CPS, while accounting for interactions 
between complex system characteristics and person characteristics, this paper aims to understand the role of 
learning processes in CPS more closely. In a sample of N = 241 participants, we performed a preregistered 
analysis to investigate the relationship between knowledge acquisition performance in a CPS test (MicroDYN) 
and learning test performance (ADAFI) with a multilevel modeling approach across 10 CPS systems with various 
characteristics. In line with our expectations, we replicated previous findings on a relationship between learning 
test and MicroDYN performance and found this relationship to be more pronounced in systems with (vs. without) 
autonomous changes. Further system and person characteristics also showed effects as expected, with better 
performance in systems with lower complexity, with more experience with the task, and with more strategic 
exploration behaviour. Our results provide further evidence for the notion that learning is an important 
component for the successful completion of CPS tasks.   

1. Introduction 

In the last four decades, different attempts to define complex prob-
lem solving (CPS) have been made (for an overview, see, e.g. Dörner & 
Funke, 2017; Frensch & Funke, 1995b). One of the most recent defini-
tions states that CPS “is a collection of self-regulated psychological 
processes and activities necessary in dynamic environments to achieve 
ill-defined goals that cannot be reached by routine actions […] The 
problem-solving process combines cognitive, emotional, and motiva-
tional aspects, particularly in high-stakes situations” (Dörner & Funke, 
2017, p. 6). Previous research has sought to describe and explain 
behaviour and performance in complex problems by examining the as-
sociation with intelligence (e.g., Kretzschmar, Hacatrjana, & Rascevska, 
2017; Sonnleitner, Keller, Martin, & Brunner, 2013; Stadler, Becker, 
Gödker, Leutner, & Greiff, 2015; Süß, 1996), working memory (e.g., 
Kretzschmar & Nebe, 2021; Schweizer, Wüstenberg, & Greiff, 2013; 
Wittmann & Hattrup, 2004), knowledge (e.g., Süß, 1996; Süß & 
Kretzschmar, 2018), and personality traits (e.g., Greiff & Neubert, 2014; 
Rudolph, Greiff, Strobel, & Preckel, 2018). However, the empirical 

associations in most studies were moderate at best, raising the question 
of what other personality traits and abilities might be potentially rele-
vant for solving complex problems (e.g., Beckmann, 2019; Kretzschmar, 
Neubert, Wüstenberg, & Greiff, 2016). 

In the early days of CPS research (e.g., Beckmann, 1994; Beckmann 
& Guthke, 1995), links between CPS and learning ability (Guthke, 1982) 
were studied. Conceptual similarities were identified in task demands, 
that is the challenge to acquire knowledge about the causal structure of a 
computerised system in CPS research, and on the receptiveness to 
feedback and thinking prompts as they are offered in so-called learning 
tests. In line with these conceptual considerations, these early studies 
provided empirical evidence for the link between performance in 
knowledge acquisition in CPS and learning test performance. However, 
it has been argued that in these early studies the CPS performance 
indices are afflicted by reliability issues (e.g., Herde, Wüstenberg, & 
Greiff, 2016; Süß, 1996), the studies were conducted with relatively 
small sample sizes according to today’s standards, and they did not 
sufficiently account for potentially moderating variables when investi-
gating CPS-learning ability relationships. Although more recent research 
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repeatedly discussed learning ability as relevant for CPS performance 
from a theoretical perspective (e.g., Beckmann & Guthke, 1999; 
Kretzschmar et al., 2016; Süß, 1996; Wüstenberg, Greiff, & Funke, 
2012), it still remains, firstly, unclear whether previous empirical 
findings on the link between CPS and learning ability translate to 
currently widely-used instruments which were designed to ameliorate 
potential reliability issues (see Greiff, Fischer, Stadler, & Wüstenberg, 
2015), and secondly, whether previously found associations are specific 
to or moderated by certain system characteristics, or can be generalised 
across a wider range of CPS tests. The current study therefore aims to 
investigate the relationship between learning ability and performance in 
a currently widely used CPS assessment approach and, thus, provides 
further insights into the nature of CPS as an ability construct. 

1.1. Conceptual overlap between learning tests and complex problem 
solving tests 

Learning tests represent a form of dynamic testing (Guthke, Beck-
mann, & Wiedl, 2003; Guthke & Wiedl, 1996; see also Lidz & Elliott, 
2000). Dynamic Testing is defined “as a methodological approach to 
psychometric assessment that uses systematic variations of task char-
acteristics and / or situational characteristics in the presentation of test 
items with the intention to evoke intra-individual variability in test 
performance. Interindividual differences in intraindividual variation are 
seen as more adequately reflecting the dynamics in the organisation of 
human behaviour.” (Beckmann, 2014, p. 310). In learning tests – which 
may utilise typical reasoning items across domains (e.g., number series, 
verbal analogies, and figure series) – test takers are provided with item- 
by-item feedback and a graduated system of error-specific thinking 
prompts after an incorrect answer until the item is solved correctly (see 
Fig. 1). Subsequently presented items of comparable complexity then 
provide an opportunity for the test taker to demonstrate how they were 
able to benefit from the feedback and learning stimulation they were 
exposed to at preceding items. The diagnostic focus in such tests is on the 
receptiveness of the individual test taker to learning stimulations rather 
that the number of correct responses as is the case in conventional tests 
of cognitive abilities. 

CPS tools represent another form of dynamic testing, especially in 
the case of minimal/multiple complex system approaches (Funke & 
Greiff, 2017; Greiff et al., 2015) such as MicroDYN (Greiff, Wüstenberg, 
& Funke, 2012) as they use several microsystems with systematic vari-
ations of task characteristics. More specifically, the ability to benefit 
from feedback and the receptiveness to learning stimulations might not 
only be relevant in learning tests, but also for CPS. In other words, both 
learning tests and CPS tools have the potential to not only capture inter- 
individual, but also intra-individual variability due to their dynamic 
nature. 

Typical CPS tools confront the problem solver with two distinct 
tasks. In general terms, the first task requires the acquisition of knowl-
edge about how the system variables are interconnected (similar to 
relational integration, see, e.g., Hannon & Daneman, 2014; Oberauer, 
Süß, Wilhelm, & Wittmann, 2008). To address the task of knowledge 
acquisition the problem solver is given the opportunity to manipulate 
the values of the input variables and, based on the observed changes in 
the output variables, draw inferences about the causal structure of the 
system. An example of a typical MicroDYN system during the knowledge 
acquisition phase is provided in Fig. 2. It is expected that during this 
goal-free (i.e., no target is given for the output variables) exploration of 
the system the problem solver acquires effect knowledge (Beckmann, 
1994; Beckmann & Goode, 2017). This is knowledge about whether and 
how each of the input variables affect any of the output variables, 
including the effects that output variables might have on themselves (i. 
e., autonomous changes). For a successful acquisition of effect knowl-
edge it is essential to create informative transitions from one system 
state to another that allow to conclusively attribute observed changes in 
the output variables to specific changes made in the input variables 

(Beckmann & Goode, 2014). As explained above, especially this process 
seems to require abilities which are also relevant in learning tests, which 
is in line with previous findings demonstrating that knowledge acqui-
sition performance and learning test performance are associated (e.g., r 
= 0.42 in Beckmann, 1994; r = 0.69 in Freitag, 1993). However, the 
relatively small sample sizes in these studies in conjunction with reli-
ability concerns (see Greiff et al., 2015) nurture the sense of necessity for 
a replication of these findings. The second task in CPS builds upon the 
first by asking problem solvers to manipulate the values of the input 
variables, hence utilising their acquired causal knowledge about the 
system, in order to reach or maintain given target values in the output 
variables (i.e., system control). It has been demonstrated that the per-
formance in the control phase is causally determined by the success in 
the preceding knowledge acquisition phase (e.g., Goode & Beckmann, 
2010), which is reflected in labelling it as the knowledge application 
phase. Whilst exploration interventions are aimed at acquiring effect 
knowledge, the control interventions are informed by dependency 
knowledge, that is knowledge about which input variable(s) a specific 
output variable depends on (Beckmann, 1994; Beckmann & Goode, 
2017). The necessary transformation processes from effect to de-
pendency knowledge are not immune to error (“lost in translation”), 
meaning that control performance can only be considered as mediated, 
or confounded. This issue imposes challenges to utilizing control per-
formance scores for the investigation of links between CPS and learning 
ability, which is why Beckmann and Goode (2017) discuss the knowl-
edge application performance as reflecting learning ability rather indi-
rectly at best. The main challenges are: (1) inter-individual differences 
in the effectiveness of this translation process, (2) the fact that systems 
can be controlled to an acceptable standard based on intervention-by- 
intervention optimisation, which does not require any knowledge,1 

and (3) controlling the system successfully is possible even without any 
acquired knowledge in the exploration phase because the correct causal 
model is provided at the beginning of the knowledge application phase 
for each system in MicroDYN (Greiff et al., 2015). Consequently, inter-
preting control performance as an indicator for the application of ac-
quired (i.e., learned) knowledge demands caution. We therefore focus 
on performance shown in the knowledge acquisition phase as the con-
ceptual counterpart of learning test scores in the present study. 

While these two CPS subtasks do not entail direct behavioural 
feedback or learning stimulations as in learning tests, they provide the 
problem solver with direct feedback on their actions and allow them to 
approach the desired outcome (acquiring knowledge about a system, 
and then applying it) in a stepwise manner. This might be one of the 
reasons why previous research has demonstrated CPS performance, 
especially in the knowledge acquisition task, to be substantially associ-
ated with learning test performance (Beckmann, 1994; Freitag, 1993). 
Relevant research has also highlighted that characteristics of the CPS 
systems used, such as their semantic embedment in terms of cover story 
or variable labels, moderate this relationship (Beckmann & Goode, 
2014). From a conceptual point of view, one might thus argue that 
success in acquiring system knowledge in CPS is positively (co-)deter-
mined by the ability to learn, with a potential moderation of system 
characteristics. 

1.2. System and person characteristics affect performance in CPS systems 

The shared use of the label “CPS” across different studies tends to 

1 The simple, knowledge-free heuristic builds on step-by-step monitoring of 
system states after each control intervention (Beckmann & Guthke, 1995, p. 
195; Beckmann & Goode, 2017). Guessing-based interventions that bring the 
system closer to the target state will be repeated, those that increase the dis-
tance between actual and target state will be reversed. Such intervention-by- 
intervention optimization, which can result in acceptable control perfor-
mance, does not require knowledge. 
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mask the fact that systems employed in this kind of research often vary 
wildly in terms of their characteristics (Beckmann, 2019). These include, 
but are by no means limited to the way information is presented, the 
ways in which problem solvers can interact with the system, the time 
frames, and the semanticity attached to the systems. The consideration 
of the role of system characteristics is generally important as they are 
contributors to complexity – and ultimately the levels of difficulty 
problem solvers experience, which is reflected in their performance 
scores. Apart from system characteristics, performance can further be 
affected by person-related variables, such as how much experience 
problem solvers have in interacting with CPS systems throughout the 
test (i.e., in the 10th system a problem solver has interacted with nine 
prior systems) and how this experience shapes their current behaviour, 
or how systematically they explore a system. Awareness of these effects 
is of particular relevance in the context of an exploration of the role of 
learning ability in MicroDYN – as is pursued in this study. In the 
following sections, we will provide an overview on a selection of char-
acteristics of complex problems, how problem solvers might interact 
with them, and explain for each how we expect them to relate to 
learning ability. 

1.2.1. Complexity 
Complexity in CPS is conceptualised as a combination of system 

characteristics and the task (Beckmann & Goode, 2017). It is determined 
by the number of information cues that need to be processed in parallel 
when performing an instructed task. In case of system exploration, 
where the task is to acquire effect knowledge, system complexity can, for 
instance, be indicated by the number of effects associated with each of 
the input variables (e.g., Beckmann & Goode, 2017; Fischer, Greiff, & 
Funke, 2012). In contrast, difficulty is the reflection of a problem 
solver’s ability to deal with the complexity imposed by the task and its 
system characteristics, as reflected in performance scores. Accordingly, 
higher levels of complexity tend to result in lower knowledge acquisition 
performance (Beckmann & Goode, 2017; Kluge, 2008). The complexity 
of a system might further have an impact on the association between 

learning test performance and knowledge acquisition performance, as 
systems with more complex demands likely provide a more disadvan-
tageous situation for individuals with lower learning ability. 

Autonomous changes, that means changes in the states of output 
variables that are independent from input variables, tend to contribute to 
the complexity of a system in a specific way, especially in the context of 
knowledge acquisition (e.g., Frensch & Funke, 1995a; Funke, 2001; 
Greiff, Krkovic, & Nagy, 2014). Stadler, Niepel, and Greiff (2019) have 
shown that individual performance differences in systems with versus 
without autonomous changes can be modelled as distinct portions of 
variances in factor analyses. In terms of the potentially moderating ef-
fect of complexity on the link between learning test and knowledge 
acquisition performance, autonomous changes might therefore demand 
special considerations. In other words, it is to be expected that – rather 
than in a mere additive sense – complexity indicators such as the relative 
number of effects and autonomous changes have an interactive effect on 
CPS performance. 

1.2.2. Experience with the test as learning? 
General conceptualisations of learning refer to it as a process 

resulting in enduring changes in behaviour (or the capability to behave) 
that is facilitated by practice and other forms of experience (e.g., 
Schunk, 2020). Individual differences in this process are assumed to be 
reflected in learning ability. Previous studies that explored the link be-
tween learning and CPS performance were conducted by using one CPS 
system as stimulus material and thus investigated changes in perfor-
mance over time within a system (e.g., Beckmann, 1994; Beckmann & 
Guthke, 1995). For a MicroDYN approach, that means where problem 
solvers are confronted with a multitude of different (micro-)systems, 
learning processes (and therefore also individual differences in learning 
ability) should similarly be reflected in changes over time, which in this 
case means changes in performance between systems. From this follows 
that, depending on the relative position of a particular system within the 
MicroDYN test, performance might be influenced by the accumulated 
experiences made whilst dealing with the preceding systems. However, 

Fig. 1. Flowchart for an example item of the learning test “Adaptiver Figurenfolgenlerntest” (ADAFI). 
Note. Figure a) is the starting point for each task. If an incorrect answer is selected, feedback and error-specific thinking prompts are given (Figure b), and the task is 
presented again (Figure c). Selecting the same type of error will result in the task being incorrectly solved and the next task will be presented (Figure d). If a correct 
answer is selected, feedback is given and the next task will be presented (Figure e). From Kretzschmar, A. (2023). Adaptiver Figurenfolgenlerntest (ADAFI) (Version 1). 
figshare. https://doi.org/10.6084/m9.figshare.23617476. CC BY 4.0 
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it yet remains open whether we can reasonably assume these learning 
processes in a single system in comparison to a MicroDYN approach to 
be the same, so to expect similar changes in performance over time. The 
answer to this question constitutes a key element for the generalisability 
of previous findings on the link between learning and CPS to a Micro-
DYN approach. When investigating knowledge acquisition performance 
in relation to learning throughout MicroDYN systems, the relative po-
sition of the system in the course of the test therefore also needs to be 
considered. 

1.2.3. Systematicity of system exploration 
Previous research has established that success in acquiring knowl-

edge about the causal structure of a CPS system depends on how sys-
tematically it is explored (e.g., Beckmann & Goode, 2014; Kröner, Plass, 
& Leutner, 2005; Wüstenberg, Greiff, Molnár, & Funke, 2014). Research 
on the role of systematic exploration of CPS systems discusses various 
strategies, with the so-called VOTAT strategy (“Vary-One-Thing-At-a- 
Time”, i.e., single interventions for every input variable; Tschirgi, 1980; 
see also, e.g., Inhelder & Piaget, 1958; Shayer, 2008; Zimmerman, 2007) 
being arguably the most prominent one (for an overview, see, e.g., 
Wüstenberg, Stadler, Hautamäki, & Greiff, 2014). In the context of a 
MicroDYN approach to CPS, the frequency of VOTAT was found to in-
crease over the course of the eight systems of the test (Wüstenberg et al., 
2012). However, the VOTAT strategy is only functional if it is preceded 
by a zero intervention, in which all input variables are kept at zero in 
order to identify potential autonomous changes in the to be explored 
system. Therefore, the “desired” strategy would begin with a zero 
intervention, followed by every input variable varied at a time, which 
has been labelled the strict VONAT strategy (“Vary-One-or-None-At-a- 

Time”, Beckmann, Birney, & Goode, 2017, p. 4; Beckmann, 2019; 
Beckmann & Goode, 2014, p. 279, 2017, p. 9).2 

Systematic exploration behaviour is necessary (but not sufficient) for 
successful performance (Beckmann et al., 2017), so when considering 
that systematicity in system exploration behaviour increases over time, 
it seems plausible that performance improvements across MicroDYN 
systems might be – at least partly – enabled through some form of 
strategy learning. In other words, systematicity in exploration behaviour 
may act as a moderator of the relationship between the amount of 
experience with CPS systems over time and knowledge acquisition 
performance. It further seems plausible that systematic exploration 
behaviour might moderate the effects of complexity on knowledge 
acquisition performance, as detecting effects without systematic explo-
ration might be possible in systems of very low complexity or systems in 
which the chosen variable labels provide “strong hints” regarding which 
input might be linked to which output. For systems with higher levels of 
complexity and/or neutral variable labels, systematic exploration is 
indispensable for successful knowledge acquisition. 

Fig. 2. Screenshot of the MicroDYN System “Planting Pumpkins” in the Knowledge Acquisition Phase Note. In this example system “Planting Pumpinks”, problem solvers 
are asked to find out how the input variables Florabor, Natromic, and Solurax (left side) affect the output variables Taste and Size (right side) by manipulating them 
and observing the effects, and to enter the effects to their understanding as blue arrows into the model depicted underneath. Figure adapted from “A longitudinal 
study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence” by Greiff et al., 2015, 
Frontiers in Psychology, 6, 1060. CC BY 4.0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

2 Previous studies have often considered only whether a zero intervention or 
a VOTAT strategy was applied, ignoring the order of the steps. However, this 
can lead to “inconclusive experiments” (de Jong & van Joolingen, 1998) in 
which ambiguous information is produced (e.g., if one starts with a single 
variable intervention, one would not be able to decide whether the observed 
changes are due to the intervention or to autonomous changes). Following the 
strict VONAT approach, each step produces unambiguous information. 
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1.3. The present study 

In the present study we investigate whether and how individual 
differences in CPS performance are associated with learning test per-
formance. Our analysis is guided by conceptually informed consider-
ations of various characteristics of the CPS systems in question. We 
analysed MicroDYN (Greiff et al., 2012) performance, focussing on the 
knowledge acquisition phase, as a measure of CPS ability based on a 
sample of N = 241 participants. Their performance in the “Adaptive 
Figurenfolgenlerntest” (ADAFI, Beckmann & Guthke, 1999; Guthke & 
Beckmann, 2000; Guthke, Beckmann, & Stein, 1995) served as the 
operationalization of learning ability. Although the relationship be-
tween CPS and learning ability has been studied previously (e.g., 
Beckmann, 1994; Beckmann & Guthke, 1995; Guthke & Beckmann, 
2003; Guthke, Beckmann, & Stein, 1995), we conceive the current 
investigation as rather explorative, because we are, to our current 
knowledge, the first to investigate the role of learning ability in the 
context of a MicroDYN approach to CPS assessment. Despite the 
explorative nature of this study, we have pre-registered our expectations 
and analysis strategy prior to accessing the already existing dataset 
(https://doi.org/10.17605/OSF.IO/E5KZJ). 

In summary, the overarching aim of this study is to explore the role of 
learning in MicroDYN performance. We address this aim by investi-
gating the association between learning test performance and MicroDYN 
performance, as well as whether and how it is impacted by complexity- 
related system characteristics and systematicity in exploration behav-
iour. We further explore additional interactions between system and 
person characteristics for a closer understanding of how the numerous 
variables included might affect performance in interaction with each 
other. An overview of all relevant study variables is provided in Fig. 3. 

1.3.1. Expectations and hypotheses 
In our prepending analyses to replicate the role of system charac-

teristics and systematicity on MicroDYN performance, we expected 
higher levels of system complexity (as indicated by the relative number 
of effects) and the presence (vs. absence) of autonomous changes to be 
associated with a decrease in MicroDYN performance. We further ex-
pected the position of a system in the test (as a proxy for experience/ 
time with the task) to explain performance variance. We however had no 
directional expectation for this effect, as it remains open whether, for 
example, positive effects of learning or negative effects of fatigue might 
dominate, which could further confound the effects of complexity in 
different directions. Further, we expected that higher levels of system-
aticity in exploration behaviour (i.e., strategy use) are associated with 
better MicroDYN performance. Establishing the existence of expected 
effects of system complexity, autonomous changes, system position, and 
strategy use on knowledge acquisition performance could be seen as 
conceptual replications of previous findings on the role of system 
characteristics and strategy use in CPS. 

Our main analysis focused on the association between learning test 
and MicroDYN performance. We expected learning test performance to 
be generally positively related to MicroDYN performance while simul-
taneously accounting for the effects of system characteristics and strat-
egy use on MicroDYN performance as mentioned in our prepending 
analyses. As we assume that the relevancy of learning ability increases 
with the complexity of the CPS system, we expect this to be reflected by 
a positive learning test performance by complexity interaction on 
MicroDYN performance. In focussing on the presumed special role of 
autonomous changes to the complexity of a system, we expect a similar 
result pattern in terms of a positive learning test performance by 
autonomous change interaction on MicroDYN performance. 

Lastly, we aimed to explore further interactions between system and 
person-related characteristics (i.e., complexity, autonomous changes, 
system position, strategy use, learning test performance), and MicroDYN 
performance. Based on the assumption that, for successful knowledge 
acquisition, strategy use is even more important in later systems with 

higher levels of complexity, we deemed it likely that strategy use could 
interact with a system’s position in the test, as well as its complexity. 
Furthermore, complementing the assumption that complexity and 
autonomous changes would lead to decreased performance, we deemed 
it likely that both variables in combination would lead to even more 
performance decrements than their additive effects alone, as indicated 
by a complexity-autonomous changes interaction. 

2. Method 

2.1. Participants 

The study is part of a larger research project aiming at the construct 
validity of cognitive ability tests (see https://doi.org/10.17605/OSF. 
IO/2YM3X). For the present study, we only considered participants 
who provided data on MicroDYN and the learning ability test, resulting 
in a sample of N = 241 participants (76% female) with a mean age of 
23.22 years (SD = 3.57) of which nearly all were university students. 

2.2. Measures 

2.2.1. MicroDYN 
We used the MicroDYN (Greiff et al., 2012) approach to assess CPS. 

MicroDYN is based on the formal framework of linear structural equa-
tions (Funke, 1985). Previous research has demonstrated the reliability 
(e.g., Wüstenberg et al., 2012) and validity (e.g., Greiff et al., 2013; 
Neubert, Kretzschmar, Wüstenberg, & Greiff, 2015) of the MicroDYN 
approach. In a typical MicroDYN system, participants were first asked to 
explore an unknown system in order to acquire knowledge about causal 
relations between input and output variables (and sometimes, effects 
output variables have on themselves, i.e., autonomous changes) and 
record their proposed causal relations into a causal diagram (knowledge 
acquisition phase; see Fig. 2). In a second phase, participants were then 
asked to apply their knowledge by manipulating the system to reach a 
given goal state (knowledge application phase). For the present study, 
we used a version of MicroDYN in which ten systems were presented. 
Participants had a maximum of five minutes per system to tackle both 
tasks. In the present analysis we only focus on the task of knowledge 
acquisition. As recent research provided evidence for the importance of 
autonomous changes (e.g., Stadler et al., 2019), every second system of 
the ten included had autonomous changes (see Supplement section 1.2 
for formal task descriptions). The ten systems differed regarding the 
number of input and output variables and the number of relationships 
between them, which serves as manipulation of complexity across these 
systems. We used the relative number of effects as a proxy for system 
complexity (Beckmann & Goode, 2017). It is defined as the maximum 
ratio between the number of actual effects and the number of possible 
effects any of the input variables has on any of the output variables in the 
given system. For simplicity, we will use “complexity score” for this 
variable that serves as proxy for system complexity in relation to the 
knowledge acquisition task. For example, a system as depicted in the 
lower section of Fig. 2 has a complexity score of 1, because the input 
variable with the largest relative number of effects (Natromic) has two 
out of two possible effects on the output variables. We further derived an 
alternative indicator for complexity: Instead of focusing on the input 
variable with the largest relative number of effects, we aggregated the 
relative number of effects across all input variables in the given system 
(“complexity sum score”). Aggregating the relative number of effects 
across all variables in a model as depicted in Fig. 2 results in a 
complexity sum score of 1.5 because the relative number of effects for 
the first input variable (Florabor; zero out of two possible effects, 
therefore 0), for the second input variable (Natromic; two out of two, 
therefore 1), and for the third input variable (Solurax; one out of two, 
therefore 0.5) are summed up. Complexity scores for both operational-
isations for the ten systems used in this study are presented in the 
Supplement section 1.2. 
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Knowledge acquisition performance was scored based on the notion 
of a “relationship detection task” for which a two-high-threshold model 
(Snodgrass & Corwin, 1988) was employed (for details, see Beckmann, 
1994 and Beckmann et al., 2017; for a similar approach in CPS research, 
see, e.g., Beckmann & Goode, 2014; Beckmann & Guthke, 1995; Goode 
& Beckmann, 2016)). We used the sensitivity index Pr which represents 
the difference between the rate of correctly identified relationships (hit 
rate) and the rate with which relationships were identified that do in fact 
not exist in the given system (false alarm rate). This index reflects the 
accuracy with which existing and nonexisting relationships, including 
autonomous changes, have been identified by the problem solver. The 
two high-threshold approach also enables the derivation of a bias index 
Br which is based on the false alarm rate relative to the sensitivity of 
correctly identifying the relationship structure. This bias index reflects a 
problem solver’s tendency to either “see” or “not to see” relationships 
when guessing. 

As discussed, success in acquiring knowledge about the causal 
structure of a system depends on the level of systematicity of the 
exploration behaviour. We thus created a “strategy score” to reflect the 
degree of systematicity with which a problem solver has interacted with 
a system. The score reflects whether problem solvers perform two 
components of a systematic exploration, ideally completely and in the 
optimal order. That is at least one zero intervention followed by single 
interventions applied to each of the input variables. The derived strategy 
score represents the sum of points, with each given for (1) at least one 
single intervention, (2) at least one zero intervention, (3) at least one 
single intervention after a zero intervention, and (4) single interventions 
for all input variables after a zero intervention. This results in a score 
ranging from 0 (no component of systematicity present) to 4 (repre-
senting the execution of the ideal exploration strategy). 

2.2.2. Learning test 
We administered the “Adaptive Figurenfolgenlerntest” (ADAFI) from 

the “Adaptive Computergestützte Intelligenzlerntestbatterie” (ACIL; 
Beckmann & Guthke, 1999). The ADAFI is a computerised test of 
learning potential that follows the principles of Dynamic Testing3 in the 
fashion of a so-called sandwich paradigm (i.e., test and training com-
ponents are integrated within the same testing session; Sternberg & 
Grigorenko, 2002). Test takers are asked to respond to series completion 
items that contain abstract geometric figures as stimuli. The item pool of 

the ADAFI comprises a total of 32 items that are subdivided into three 
complexity levels. Roughly speaking, complexity levels are determined 
by the number of dimensions that are to be considered for determining 
the rule that governs the series of figures in an item. For instance, whilst 
the rule for items in complexity level I is based on the change of colour or 
shape of the individual elements across the figure series, the complexity 
for items in level II is based on the combination of colour and shape. 
Items in complexity level III represent series of figures that vary sys-
tematically in terms of colour, shape, and gestalt. 

In learning tests such as the ADAFI there are two categories of items 
for each complexity level, which are test items and training items. After 
correct responses to test items in one complexity level, the test taker 
progresses to test items of the next complexity level. In case of an 
incorrect response to a test item, the algorithm presents the test taker 
with a training item of similar complexity. Incorrect responses to those 
items will be followed up with error specific hints, which are intended to 
provide the test taker with opportunities to learn how to tackle the 
reasoning challenge posed by items of increasing complexity. Additional 
thinking prompts and retries are provided until items at this complexity 
level can be solved successfully. As a result of this doubly adaptive 
procedure (i.e., a combination of failure-adaptive feedback and thinking 
prompts, and “classical” adaptive testing), test takers vary in the amount 
of training items needed and the amount of thinking prompts used. The 
combination of both represents the number of steps through the item 
pool, which is the operationalisation of learning test performance (for 
more details see Guthke & Beckmann, 2000). The fewer steps needed to 
work through the item pool the better the test performance. The learning 
test score used in the analyses presented here is the reverse of the 
number of steps in relation to the optimal and pessimal number of steps, 
which is akin to the POMP score approach (Cohen, Cohen, Aiken, & 
West, 1999). The learning test score ranges from 0 to 1, with higher 
scores reflecting better performance, suggesting higher learning ability. 

2.3. Procedure 

Participants engaged in daily online assessments over the course of 
one week (see https://doi.org/10.17605/OSF.IO/2YM3X). Learning 
ability was assessed on the first day, whereas MicroDYN was assessed on 
the fifth day. All assessments tools were presented on a computer. Par-
ticipants received an invitation via e-mail every day and were able to 
attend to the respective assessment independently on their own com-
puter. Participants received 9.50€ per hour as compensation for their 
participation in the study. Ethics approval for the study was granted 
from the ethics committee for psychological research of the University of 
Tübingen. 

Fig. 3. Overview on the Data Structure and Variables Included in the Current Analysis. 
Note. The presentation of 10 MicroDYN systems per individual leads to a nested data structure with explanatory variables varying either on level 1 (systems) or level 
2 (individuals), and varying either systematically (marked in blue) or depending on individual behaviour (marked in yellow). Grey arrows represent effects tested in 
our prepending analysis (replicatory attempts), orange arrows represent the main and interaction effects tested in our main analyses. For a better overview, our 
planned exploratory analyses are not represented in this Figure. 

3 For an overview and a critical discussion of the concept of Dynamic Testing 
and learning tests, see, for example, Beckmann (2006, 2014), Elliott, Resing, 
and Beckmann (2018), and Lidz and Elliott (2000). 
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2.4. Statistical analysis 

To accommodate the nested structure of the data, capturing both 
intra- and interindividual variability (i.e., 10 MicroDYN systems nested 
within N = 241 individuals, see Fig. 3), we have adopted a multilevel 
model approach in our data analyses. We built up the model in a step-
wise fixed manner with system- and person-related, partly time-variant 
characteristics (i.e., system position, complexity score, autonomous 
changes, strategy score, learning test score), and their interactions as 
variables regressed in a fixed order on MicroDYN performance oper-
ationalised as sensitivity index Pr (for the order of included effects per 
step, see Supplement). We decided on a stepwise approach in order to 
replicate previously reported, isolated effects of variables (e.g., the ef-
fect of complexity without simultaneously accounting for system posi-
tion) in our data before investigating our main research question. This 
approach further allowed us to investigate whether these effects are not 
only replicable, but also remained stable when further variables are 
accounted for. We decided against removing any non-significant lower- 
level effects, as this would prevent the investigation of potential higher- 
order interactions. 

For each step in building up the model, we evaluated whether the 
added main or interaction effect met two criteria. First, we consider an 
improved model fit as a decrease in the Bayesian information criterion 
(BIC; Schwarz, 1978) of at least 6 (see Raftery, 1995). Secondly, we 
consider a meaningful extension of a model to result in a higher pro-
portion of explained variance in the criterion. Typically, this is indicated 
in an increase in the overall R2. As discussed in Nakagawa and Schielzeth 
(2013), R2 estimated for multilevel models can also decrease when a 
new predictor is added to a model. Hence, we focus on an increase in 
conditional R2 (which also accounts for random effects) in each multi-
level model to determine whether the addition of the respective pre-
dictor to the model makes a meaningful contribution (as estimated by 
using the r2 function from the sjstats package in R; Lüdecke, 2018). 

As model fit and variance explained do not reveal the direction of 
effects, we also evaluated model coefficients and their 95% confidence 
intervals (CIs). For a better contextualisation and interpretation of the 
potential effects identified in our analyses we report confidence in-
tervals as plausible values in the population (Cumming, 2014), but 
refrain from explicit hypothesis testing on the basis of p-values. We 
estimated the multilevel models with full (instead of restricted) 
maximum-likelihood estimation to be able to compare fixed effects with 
the BIC (cf. Hox, 2010). All metric variables were z-standardised to 
minimise the likelihood of model convergence issues. 

We preregistered several additional and sensitivity analyses which 
serve the purpose to discern the robustness of the result patterns ob-
tained in the main analyses. In these analyses we used the complexity 
sum score and the bias index (Br) as described above. Results of these 
analyses are in line with results presented below (complexity sum score), 
or indicate that the operationalisation was not suitable for the mea-
surement context (bias index Br). Results of these analyses are reported 
in the Supplement. 

2.5. Transparency, openness, and reproducibility 

We registered our expectations and planned analyses in relation to 
this already existing dataset on 14th September 2022 prior to accessing 
the data for the present study. The analysis was performed as planned. 
Open data, a reproducible analysis script as R markdown, a codebook, 
and the online supplement material are permanently available under 
https://doi.org/10.17605/OSF.IO/E5KZJ. 

3. Results 

3.1. Descriptive analysis 

Descriptive statistics are provided in Table 1. Mean MicroDYN 

performance indices (sensitivity index Pr per system) showed the to be 
expected pattern of higher performance scores in systems without 
autonomous changes (odd system position numbers) in contrast to sys-
tems with autonomous changes (even system position numbers). This is 
further reflected descriptively in more left-skewed distributions of per-
formance scores for systems without autonomous changes, in which 
80.52% of participants achieved a perfect score of 1.0, compared to only 
44.05% of participants in systems with autonomous changes. Table 1 
also presents descriptive statistics for the learning test scores (based on 
the number of steps, transformed to a reversed POMP score) across the 
three complexity levels and the total score. As to be expected, average 
performance, skewness, and kurtosis tended to decrease over the course 
of the test, suggesting that, although performance scores are relatively 
high, their degree of variability seems to reduce the risk of a ceiling 
effect. Data further indicate that in complexity level I, 82.16% of par-
ticipants achieved optimal performance as indicated by requiring only 
the minimal number of steps, while it was 42.32% in complexity level II, 
and 16.18% in complexity level III. Overall, only 12.86% of participants 
achieved the maximum scores in all three complexity levels. 

The average strategy score and the relative frequencies of its four 
components, reflecting the systematicity of exploration behaviour, are 
depicted over the course of the ten systems in Fig. 4. Nearly all partic-
ipants applied single interventions at some stage, while the relative 
frequencies of the other strategy criteria were considerably lower. The 
total strategy score had a mean of M = 2.4 points (SD = 0.73). 

3.2. Prepending analysis 

We started the analysis with a null model (see Table 2: Null Model), 
which only included a random intercept for participant but no other 
effects. An analysis of the variability indicated that 69% of the vari-
ability in the data occurred within participants, and 31% between par-
ticipants. As a first step, we added system position and the complexity 
score separately into the null model to investigate whether they might 
contain redundant information (as they both increase over the course of 
the test, but should contribute to the difficulty of a system in distinct 
ways). Model fit decreased and conditional R2 remained the same size 
when system position was included (BIC = 6315, R2

conditional = 0.313), 
indicating that system position alone did not add meaningful informa-
tion to the model. When adding complexity alone into the null model, 

Table 1 
Descriptive Statistics for MicroDYN and the Learning Test.  

Measure  Performance   

M SD Skewness Kurtosis 

MicroDYN 
(Pr) 

1 0.87 0.36 − 3.07 11.31 
2 0.48 0.47 − 0.24 1.73 
3 0.93 0.21 − 3.63 18.28 
4 0.67 0.36 − 0.61 2.20 
5 0.89 0.26 − 2.80 10.88 
6 0.69 0.36 − 0.75 2.51 
7 0.92 0.2 − 3.10 12.42 
8 0.75 0.28 − 0.94 3.02 
9 0.91 0.22 − 2.90 11.23 
10 0.56 0.44 − 0.37 1.51 

Total 0.77 0.25 − 1.18 5.16 

Learning Test 
Score 

I 0.97 0.08 − 1.90 5.05 
II 0.93 0.08 − 0.95 3.44 
III 0.86 0.10 − 0.55 2.89 

Total 0.90 0.08 − 0.75 3.51 

Note. N = 241. Pr = Sensitivity index. MicroDYN consists of 10 systems, resulting 
in 10 performance scores per participant, which are presented in the table. Items 
in the learning test (ADAFI) are subdivided into three complexity levels, which 
are presented in the table (in addition to the total performance that was used for 
the analysis). Performance in the learning test is operationalised as a reversed 
POMP score (Cohen et al., 1999) based on the number of steps, resulting in 
values ranging from 0 to 1, with higher values indicating better performance. 

W. Herrmann et al.                                                                                                                                                                                                                             

https://doi.org/10.17605/OSF.IO/E5KZJ


Intelligence 100 (2023) 101773

8

model fit and explained variance both increased (BIC = 6159, R2
conditional 

= 0.361). Subsequently both system position and complexity were 
simultaneously added into the null model. Model fit and explained 
variance further increased (BIC = 6117, R2

conditional = 0.376), indicating 
that, in combination, both system position and complexity contribute 
systematic information to the model and are therefore not redundant. 

We then added autonomous changes (present vs. absent) as a further 
indicator of complexity to the previous model. Model fit and explained 
variance showed a pronounced increase (BIC = 5738, R2

conditional =

0.482), indicating that autonomous changes also contribute meaning-
fully to the explanation of MicroDYN performance. As a last step of our 
prepending analysis model (see Table 2: Prepending Analysis), we added 
the strategy score to the previous model. Model fit increased, while 
explained variance decreased (BIC = 5591, R2

conditional = 0.425), indi-
cating that the inclusion of the strategy score into the model might 
improve fit with the data but does not reach our preregistered criterion 
of an increase in explained variance in order to interpret the effect as 
meaningful. All coefficients in this model showed confidence intervals 
not including zero. 

In line with expectations, we found negative effects for both 
complexity and autonomous changes, indicating lower performance 
with higher complexity and/or in the presence of autonomous changes. 
Also as expected, the effect of the strategy score was clearly positive, 
indicating better performance with a higher strategy score, although it 
needs to be noted that, strictly speaking, the effect did not reach our 
predefined criterion of an increase in explained variance. We further 

found a positive effect of system position, indicating that more experi-
ence over the course of the test tended to result in better performance, 
which supports the notion that system position and complexity 
contribute different information to the model. 

3.3. Main analysis 

To address the main question posed in this paper, which was whether 
performance in MicroDYN is linked to learning, we included the learning 
test score and its interactions with complexity and autonomous changes 
in the model including all variables mentioned in the previous section, 
again in a stepwise process. Firstly, the learning test score was added to 
the model, which resulted in an improvement in model fit and an in-
crease in explained variance (BIC = 5560, R2

conditional = 0.443). Model fit 
and explained variance also increased when the interaction of the 
learning test score with complexity was added (BIC = 5552, R2

conditional 
= 0.447), as well as when the interaction of the learning test score with 
autonomous changes was added (BIC = 5542, R2

conditional = 0.452). In 
summary, all three effects added into the model seem to contribute 
systematic information in terms of explaining variance in knowledge 
acquisition performance in MicroDYN. 

When including all three effects in relation to our main research 
question (in addition to the effects investigated in the prepending 
analysis), the reported effects modelled in the prepending analysis 
remained largely unchanged (see Table 2: Main Analysis). More spe-
cifically, the inclusion of the learning test score revealed the expected 

Fig. 4. Relative Frequencies of the Four Criteria of the Strategy Score and the Mean Strategy Score Across the Ten Systems Note. Scores for each strategy were coded 
dichotomously (0 or 1) per participant, relative frequencies therefore indicate the percentage of participants who applied the respective strategy. The strategy score 
reflects the sum of these four criteria. The shaded area reflects ±1 SD. 
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Table 2 
Selected Steps from the Stepwise Multilevel Model Explaining MicroDYN Performance.   

Null Model Prepending Analysis 
(Replication) 

Main Analysis Exploratory Analysis 

Predictors β 95% CI SE β 95% CI SE β 95% CI SE β 95% CI SE 

Intercept − 0.01 
[− 0.08, 
0.07] 0.04 0.47 [0.40, 0.54] 0.04 0.47 [0.40, 0.54] 0.03 0.49 [0.41, 0.58] 0.04 

System position    0.10 [0.05, 0.14] 0.02 0.10 [0.06, 0.14] 0.02 0.12 [0.07, 0.16] 0.02 

Complexity score    ¡0.13 
[− 0.18, 
− 0.08] 0.03 ¡0.13 

[− 0.18, 
− 0.08] 0.03 ¡0.17 

[− 0.27, 
− 0.08] 0.05 

Autonomous changes    ¡0.95 
[− 1.04, 
− 0.86] 0.05 ¡0.95 

[− 1.04, 
− 0.86] 0.05 ¡0.98 

[− 1.08, 
− 0.88] 0.05 

Strategy score    0.32 [0.28, 0.36] 0.02 0.29 [0.25, 0.33] 0.02 0.31 [0.27, 0.35] 0.02 
Learning test score       0.10 [0.03, 0.16] 0.03 0.12 [0.05, 0.18] 0.03 
Learning test score * complexity 

score       − 0.02 [− 0.05, 0.02] 0.02 0.02 [− 0.01, 0.06] 0.02 
Learning test score * autonomous 

changes       0.15 [0.08, 0.22] 0.04 0.10 [0.03, 0.17] 0.04 
System position * strategy score          0.15 [0.12, 0.19] 0.02 

Complexity score * strategy score          ¡0.22 
[− 0.26, 
− 0.19] 0.02 

Complexity score * autonomous 
changes          0.04 [− 0.04, 0.13] 0.04  

Random Effects             
σ2 0.69   0.53   0.52   0.48   
τ00 0.31   0.14   0.12   0.11   
ICC 0.31   0.21   0.19   0.19   
Conditional R2 0.31   0.43   0.45   0.49   
BIC 6307   5591   5542   5387   

Note. N = 241, with 10 observations per participant. System position = number ranging from 1 to 10; Complexity score = largest relative number of effects among the 
input variables; Autonomous changes = absent [intercept] vs. present; Strategy score = sum score of four strategy criteria ranging from 0 to 4; Learning test score =
reversed POMP score of the number of steps ranging from 0 to 1; σ2 = residual variance, or within-participant variance; τ00 = random intercept variance, or between- 
participant variance; ICC = Intraclass correlation coefficient. Effects interpreted as meaningful in bold. The table represents selected steps of our analysis as the basis to 
interpret findings with regard to our expectations. Results of all model steps are displayed in the Supplement. 

Fig. 5. Interaction between Learning Test Score and Autonomous Changes on the Sensitivity Index. 
Note. The figure presents regression lines (based on model step 8, see Supplement section 5) for the learning test score at the two levels of autonomous changes 
(present or absent) with 95% confidence intervals. The learning test score is indicated by the reversed POMP score of the number of steps needed in the learning test. 

W. Herrmann et al.                                                                                                                                                                                                                             



Intelligence 100 (2023) 101773

10

positive effect on model fit and explained variance overall. The same is 
true for the inclusion of the respective interaction terms with the 
complexity score and autonomous changes. The central findings of the 
analysis are that knowledge acquisition performance was generally 
better in systems without autonomous changes (see Fig. 5), that 
knowledge acquisition was positively associated with learning test 
scores, and that this association was more pronounced in systems with 
autonomous changes. Including the interaction between the learning 
test score and complexity score did not add further to the explanation of 
MicroDYN performance once the interaction between the learning test 
score and autonomous changes was included. 

3.4. Exploratory and additional analyses 

In our preregistered exploratory analysis, we investigated three 
further two-way interactions (see Table 2: Exploratory Analysis), for 
which we found improved model fit and increased explained variance 
(BIC = 5387, R2

conditional = 0.492). Firstly, we found an interaction be-
tween system position and the strategy score, indicating a positive as-
sociation between the strategy score and Pr, suggesting higher relevancy 
of systematicity for systems presented later in process (see Figure in 
Supplement section 6.4). Secondly, we found a negative interaction 
between the complexity score and the strategy score, suggesting that – in 
conjunction with the positive association between the strategy score and 
Pr – the employment of a highly systematic exploration strategy seems 
less positively associated with performance outcomes in more complex 
systems. This finding stands in contrast with our pre-registered expec-
tations as we would have expected a positive effect. We found no 
interaction effect between the complexity score and autonomous 
changes. Generally, the combination of these various main and inter-
action effects of system and person characteristics explains nearly half of 
the total variance in MicroDYN performance. 

Full results of all model steps reported in the prepending, main and 
exploratory analysis are displayed in the sections 3–5 of the Supplement. 
The full model, including all higher-order interactions of all predictors, 
revealed considerably larger confidence intervals than all other models 
(probably due to the much larger number of degrees of freedom in that 
model), with no higher-order interactions with confidence intervals not 
including zero (see Supplement section 5). 

We conducted an unplanned (i.e., ad hoc), additional analysis to 
further explore the unexpected negative (instead of positive) interaction 
effect between the complexity score and the strategy score. This effect 
might have been caused by the fact that, in the MicroDYN test used in 
our study, systems with autonomous changes tended to have lower 
complexity scores than systems without autonomous changes (mean 
complexity was M = 0.50 with, versus M = 0.67 without autonomous 
changes). In other words, the complexity score and autonomous changes 
were confounded. We therefore added the interaction between the 
strategy score and autonomous changes into the model including all 
other previously mentioned effects to explore this interpretation further. 
Indeed, the interaction between the strategy score and autonomous 
changes improved model fit and increased explained variance (BIC =
5281, R2

conditional = 0.392), and was highly pronounced (β = 0.49, 95% CI 
[0.40–0.58], SE = 0.05), while both the positive interaction effect of the 
strategy score with system position, as well as with the complexity score, 
disappeared completely (for full results see Supplement section 7.1). 

4. Discussion 

The main objective of this study was to explore the role of learning in 
MicroDYN performance. To that end we analysed an existing data set of 
MicroDYN performance obtained from N = 241 undergraduate students 
employing a hierarchical set of steps. The analyses targeted three aims. 
First, to establish whether previous findings related to effects of system 
characteristics and systematicity in exploration behaviour on CPS per-
formance can be replicated in a MicroDYN context. Second, to 

investigate the associations between learning test performance and 
MicroDYN performance, as well as whether and how it is impacted by 
complexity-related system characteristics. And third, to explore further 
interactions between system and person characteristics. Each of these 
analysis steps are underpinned by a set of conceptually derived expec-
tations, which we – together with an ex ante determined analysis strat-
egy have pre-registered. 

4.1. System and person characteristics affect performance 

With regard to the first aim, results obtained from our analyses lend 
support to the generalisability of previous findings. As has been shown 
for other CPS tests that are not based on the minimal/multiple complex 
system approach (Funke & Greiff, 2017; Greiff et al., 2015), system 
characteristics of MicroDYN tests tend to influence how problem solvers 
interact with these systems. They also have an impact on problem 
solvers’ level of success in tackling them. More specifically, the presence 
of autonomous changes as a system characteristic, and the employment 
of a systematic approach to system exploration as a person character-
istic, showed the strongest associations with MicroDYN performance. 

This finding corroborates evidence for the importance of a systematic 
exploration of MicroDYN systems in order to successfully acquire 
knowledge about their individual causal structure, especially when they 
feature some form of dynamisms as in the presence of autonomous 
changes. The comparison between system position and complexity 
(operationalised as the maximum of the number of relative effects across 
all input variables in a system) in terms of their predictive utility of 
knowledge acquisition performance can be interpreted as confirmation 
for (a) distinguishing between complexity and difficulty (e.g., Beck-
mann, 2019), (b) determining task demands ex ante (e.g., complexity 
metric) rather than relying on post hoc interpretations of difficulty es-
timates, and (c) our chosen approach to the operationalisation of system 
complexity. 

4.2. Knowledge acquisition performance is associated with learning 

With regard to our second aim, which constitutes the master theme 
for our analyses presented here, we found evidence for an association 
between learning ability (measured by using a learning test for abstract 
reasoning) and knowledge acquisition performance in MicroDYN. This 
association tends to be substantially stronger for systems that require the 
identification of autonomous changes. The absence of an interaction 
effect of learning test scores and complexity draws attention as it seems 
to suggest that learning in MicroDYN is unrelated to increases in 
complexity across the ten systems. 

4.3. Role of systematicity in the context of different system characteristics 

To further our understanding of the processes underpinning Micro-
DYN performance, our third aim was to explore effects of interactions 
between selected system and person characteristics on knowledge 
acquisition scores. Results seem to suggest that performance in systems 
presented later in the MicroDYN test seems to depend more strongly on a 
systematic approach to knowledge acquisition. Furthermore, the nega-
tive interaction between complexity and strategy, which seems to sug-
gest that the employment of a systematic strategy is less important in 
system with higher complexity, appears to be counterintuitive and 
contradictory at first. But when considering that systems with the lowest 
complexity index (i.e., systems 4 and 6) are systems with autonomous 
changes and systems with the highest complexity index (i.e., systems 7 
and 9) are systems without autonomous changes, this finding becomes 
more plausible. A high strategy score depends on the employment of a 
zero intervention that precedes single interventions. Zero interventions 
are essential to a successful identification of autonomous changes. A 
failure to employ zero interventions, which would result in a lower 
strategy score, in systems without autonomous changes tends to be 
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inconsequential, while it is detrimental for performance in systems with 
autonomous changes. Considering that systems without autonomous 
changes had the highest complexity scores, the negative interaction 
between complexity and strategy was thus most likely caused by the fact 
that complexity is confounded by autonomous changes. 

When controlling for the confounding effect of autonomous 
changes,4 both interactions of the strategy score with system position 
and complexity disappeared. Although we did not explicitly include this 
effect in our expectations, this finding also provides strong support for 
the notion that a systematic approach to knowledge acquisition is 
particularly important in systems with autonomous changes. In sum, this 
finding highlights the importance of autonomous changes in complex 
problem solving tasks; they are, after all, an essential differentiator be-
tween “conventional” problem solving and complex problem solving 
(see, e.g., Frensch & Funke, 1995a; Funke, 2001; Stadler et al., 2019). 

Based on an integrative perspective, the combination of (a) the 
absence of an interaction between learning ability and complexity and 
(b) the trajectory of strategy use shown in Fig. 4, seems to suggest that 
learning in MicroDYN might be predominantly a matter of learning how 
to interact with the systems in terms of acquiring a functional strategy 
that allows the effective (and efficient, given the time constraints) 
identification of the causal structure of the respective systems. This 
learning tends to take place in the early stages in working through the 
MicroDYN test. As can be gleaned from analyses discussed earlier, this is 
of particular importance for systems that feature autonomous changes. 

4.4. Learning as a dynamic process in complex problem solving 

The central finding is that MicroDYN performance tends to be 
associated with learning test scores. This is reassuring and promising. As 
it was one of CPS’ initial promises, MicroDYN has also the potential to 
reflect the dynamics of cognitive functioning and to go beyond capturing 
cognitive abilities, albeit in a psychometrically fine-tuned and 
controlled, yet static fashion. Learning is on the one hand part of our 
conceptual understanding of intelligence. On the other hand, learning – 
in its manifestation as intra-individual change – poses a psychometric 
threat (most notably in terms of a traditional notion of reliability). Un-
surprisingly, this tension has attracted attention in intelligence research. 
For instance, Verguts and de Boeck (2002) identified processes of 
learning across items in Raven’s Progressive Matrices through the ten-
dency of test takers to employ rules identified in preceding items. 
Emphasising the role of item order in Raven’s Progressive Matrices, Ren, 
Wang, Altmeyer, and Schweizer (2014) modelled learning processes as 
being distinct from performance (i.e., reasoning) processes. (Birney, 
Beckmann, Beckmann, & Double, 2017) provide an example for how 
individual differences in learning trajectories can be separated from 
conventionally operationalised performance indicators in a constrained, 
standardised test such as Raven’s Progressive Matrices. They distinguish 
between psychometric complexity (ψC) and processes of psychometric 
learning (ψL). Whilst psychometric complexity (ψC) is conceptualised as 
a statistical moderation of the cognitive demand (i.e., complexity) of 
items on performance trajectories, processes of psychometric learning 
(ψL) is conceptualised as a statistical moderation of accumulated expe-
rience across items on performance trajectories. The perspective on 
learning as accumulation of experience also informed the study of the 
potential influence of so-called non-cognitive factors in complex deci-
sion making tasks (Birney, Beckmann, Beckmann, Double, & 

Whittingham, 2018). 

4.5. Future directions and limitations 

As is the case with any pre-registered exploration, our analysis has 
limitations. For instance, we adhered to our planned analysis rather 
strictly and only pursued “unforeseen” analytic steps to follow up on 
certain findings in one case. Due to the albeit planned, but explorative 
nature of this study, our attempts to project the findings and their in-
terpretations into the bigger picture of CPS research therefore must 
remain tentative and even speculative to a certain degree. 

MicroDYN’s potential to evoke learning processes is in fact twofold. 
It includes learning within systems in form of knowledge acquisition 
processes for each individual item (i.e., system) in a MicroDYN test, and 
it includes learning across systems in form of acquiring the competency 
(e.g., employment of a suitable exploration strategy) to deal effectively 
with increasing levels of complexity. The study presented here is limited 
to the analysis of the effects of the latter process. As there is now 
tentative evidence for learning processes both within and across sys-
tems, future studies might want to explore whether these two perspec-
tives represent distinct learning processes. One question of interest 
would be whether the learning processes studied within systems as in the 
context of the classic DYNAMIS approach (Funke, 1992, 2001), in which 
one system is to be explored and controlled over an extended number of 
trials, is qualitatively equivalent to learning processes observed across 
systems in a MicroDYN test. One way to address such questions would 
require an extension of the time available for system exploration and 
system control in a MicroDYN context to be able to study learning 
processes within systems. This, however, tends to contravene the 
rationale that has motivated the development of MicroDYN in the first 
place. An alternative approach could include to investigate associations 
between learning ability and performance in a DYNAMIS-type task and 
MicroDYN tests in the same study. 

Contrasting performance trajectories across systems that are 
difficulty-ordered vs. complexity-ordered (Beckmann & Goode, 2017) 
are expected to also help to better understand learning in MicroDYN. It 
would also be interesting to see whether a complexity-ordered item pool 
will benefit the psychometric properties of a MicroDYN task as a prop-
erly structured (albeit speeded) power test that has the potential to 
capture individual differences in learning. 

A better utilisation of MicroDYN’s potential as a tool for measuring 
learning – be it in terms of a research instrument or an assessment device 
– requires an operationalisation of knowledge acquisition performance 
that goes beyond a pragmatically simple dichotomous scoring rubric. 
The sensitivity index, as used in our analyses, represents a conceptually 
informed approach to not only differentiate between problems solvers, 
but also to trace within-person trajectories of knowledge acquisition. 
Especially the latter is essential to capturing learning as intra-individual 
change processes. MicroDYN further offers the potential to investigate 
the specific effects of system characteristics more closely by systemati-
cally varying them across systems. For instance, in order to better un-
derstand the potentially distinct effects of complexity and system 
position, or more precisely, person-related characteristics that go along 
with system position, such as experience or fatigue, future studies might 
present systems with varying complexities in various orders instead of 
one fixed order. 

As our analyses provide corroboratory evidence for the importance 
of autonomous changes in CPS tests, MicroDYN’s potential to evoke 
learning processes is likely limited if systems are used that do not 
contain autonomous changes. The result pattern obtained in our ana-
lyses suggests that performance differs not just quantitively, but also 
qualitatively between systems with and without autonomous changes. 
This has implications for the aggregation of performance scores across 
systems in a MicroDYN test. If at all, systems without autonomous 
changes might serve as some form of “distractor tasks” within the item 
pool of a CPS test; performance scores reflective of learning should, 

4 As a reminder, with regard to system position, every second system in the 
MicroDYN test had autonomous changes. With regard to complexity, systems 
with autonomous changes (which require the employment of a systematic 
exploration strategy comprising a zero intervention) have an average 
complexity index of 0.50, whilst the average complexity index for systems 
without autonomous changes is 0.67. System position and complexity in this 
MicroDYN test are rather loosely aligned (r = 0.48). 
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however, be based solely on systems that feature autonomous changes. 
Our analyses and subsequent insights are also limited by a slight 

mismatch between the sample used in the study and the population for 
which the learning test was developed. The learning test was developed, 
standardised, and normed for a population aged 10 to 15 (for further 
details see Beckmann, 2001; Beckmann & Guthke, 1999). Although the 
learning test has been used exploratorily in samples of older test takers 
in the past, the estimates of learning ability that current analyses are 
based on might be limited in terms of sufficiently differentiating among 
highly functioning learners. An additional potentially limiting aspect to 
consider is the fact that the distribution of learning ability in the current, 
rather homogeneous sample of university students is expected to be 
naturally restricted. University students are likely to show above- 
average cognitive abilities and problem-solving skills (e.g., exploration 
strategies), which might limit generalizability. The result pattern ob-
tained in our analyses therefore should be interpreted as a conservative, 
in other words lower bound estimate, of the strength of the association 
between learning test and MicroDYN performance. Future research 
interested in the elicitation of further insights into learning in MicroDYN 
might consider employing assessment tools validated for the measure-
ment of learning ability for cognitively high functioning adults. 

In addition, it should be noted that data are based on unsupervised 
online assessments. Previous studies on the comparability of online and 
offline assessments of cognitive abilities have provided evidence that 
online assessments provide data that is reliable, valid, and comparable 
to supervised offline assessments (for CPS, see, e.g., Schult, Stadler, 
Becker, Greiff, & Sparfeldt, 2017; for cognitive abilities in general, see, 
e.g., Mead & Drasgow, 1993; Steger, Schroeders, & Gnambs, 2020). 
However, due to their self-selection participants in online studies tend to 
be more dedicated (Wilhelm & McKnight, 2002). Future studies might 
want to aim at replicating the present study with more heterogeneous 
samples and ideally with different test settings. 

To further our understanding of learning processes in the context of 
CPS tests, future studies may also want to explore the generalisability of 
current findings across different CPS paradigms. Initially, the link be-
tween learning and CPS performance has been studied using the classic 
DYNAMIS approach (e.g., Beckmann, 1994; Beckmann & Guthke, 1995; 
Funke, 1992). Learning processes have also been studied in the context 
of so-called microworlds (e.g., Süß & Kretzschmar, 2018; Wood, Beck-
mann, & Birney, 2009). Findings obtained in these contexts have 
partially informed the research reported here using the MicroDYN 
approach. Although the minimal/multiple complex system (MCS) 
approach (Funke & Greiff, 2017; Greiff et al., 2015) and in particular 
MicroDYN (Greiff et al., 2012) are currently one of the most prominent 
measurement approaches in the field of CPS (see, for example, the 
integration in international largescale assessments such as the Pro-
gramme for International Student Assessment, PISA; OECD, 2013), it is 
not without its drawbacks (for a critical discussion, see, e.g. Süß & 
Kretzschmar, 2018). For example, Funke (2014) argued that the MCS 
approach does not capture the same complex cognitions compared to 
other, more complex CPS tests such as the Tailorshop (Süß, Kersting, & 
Oberauer, 1993; Süß, Oberauer, & Kersting, 1993). Moreover, some 
interpret CPS measures as a computerised fluid intelligence tasks (e.g., 
Kretzschmar et al., 2017; Süß, 1996), whereas others emphasize that the 
moderately sized associations between CPS measures and intelligence 
tests might suggest that different cognitive abilities are captured (e.g., 
Stadler et al., 2015). In summary, the construct validity of CPS measures 
seems still an open question (for an overview, see Kretzschmar et al., 
2016) and, therefore, it would be interesting to investigate the role of 
learning in more complex operationalisations of CPS in future studies. 

Lastly, future research needs to go beyond correlation-based de-
scriptions of associations between outcome measures and should aim for 
employing research designs that (a) better reflect the processes that un-
derpin problem solving and learning, and (b) warrant (directed) causal 
interpretations in the interplay between task characteristics or task de-
mands and processes of learning to solve complex, dynamic problems. 

Such research needs to ideally build on (cognitive) process theories. 
Correlation-focussed research tends to produce evidence of predictive 
utility, which is of importance in various applied contexts. For concep-
tual progress in CPS research, however, it is important to acknowledge 
that predictive utility is not to be confused with (construct) validity. 

4.6. Conclusion 

Our analyses have revealed a number of promising findings and have 
prompted further questions. We were able to replicate and refine pre-
vious findings on the role of learning in CPS in the context of knowledge 
acquisition in MicroDYN. The presence of autonomous changes played a 
central role in our analyses, as (1) the relationship between learning and 
knowledge acquisition performance was more pronounced in systems 
with autonomous changes, and (2) the systematic exploration of the 
system was more strongly associated with knowledge acquisition per-
formance in systems with autonomous changes. Of course, as is the case 
with any research, our study is limited in its conclusiveness, but taken 
together, our findings suggest that a MicroDYN approach might have the 
potential to capture processes of acquiring a functional strategy to 
identify the causal structure of a system (i.e., learning). Our findings 
suggest also that this potential has not been exhaustively utilised. It is 
our hope that our findings motivate and orientate future research into 
the relationship between CPS performance and learning or beyond. 
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Problemlöseverhalten in computersimulierten dynamischen Systemen [Diplomarbeit 
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Kröner, S., Plass, J. L., & Leutner, D. (2005). Intelligence assessment with computer 
simulations. Intelligence, 33(4), 347–368. https://doi.org/10.1016/j. 
intell.2005.03.002 

Advances in cognition and educational practice. In Lidz, C. S., & Elliott, J. G. (Eds.) (1. 
ed.), Vol. 6. Dynamic assessment: Prevailing models and applications,  (2000). JAI Press.  

Lüdecke, D. (2018). Sjstats: Statistical functions for regression models. R package version 
0.18.1. https://CRAN.R-project.org/package=sjstats. 

Mead, A. D., & Drasgow, F. (1993). Equivalence of computerized and paper-and-pencil 
cognitive ability tests: A meta-analysis. Psychological Bulletin, 114(3), 449–458. 
https://doi.org/10.1037/0033-2909.114.3.449 

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 
from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 
133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x 

Neubert, J. C., Kretzschmar, A., Wüstenberg, S., & Greiff, S. (2015). Extending the 
assessment of complex problem solving to finite state automata. European Journal of 
Psychological Assessment, 31(3), 181–194. https://doi.org/10.1027/1015-5759/ 
a000224 

Oberauer, K. K., Süß, H.-M., Wilhelm, O. O., & Wittmann, W. W. (2008). Which working 
memory functions predict intelligence? Intelligence, 36(6), 641–652. https://doi.org/ 
10.1016/j.intell.2008.01.007 

OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, 
science, problem solving and financial literacy. Paris, France: OECD Publishing.  

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological 
Methodology, 25, 111–163. https://doi.org/10.2307/271063 

Ren, X., Wang, T., Altmeyer, M., & Schweizer, K. (2014). A learning-based account of 
fluid intelligence from the perspective of the position effect. Learning and Individual 
Differences, 31, 30–35. https://doi.org/10.1016/j.lindif.2014.01.002 

Rudolph, J., Greiff, S., Strobel, A., & Preckel, F. (2018). Understanding the link between 
need for cognition and complex problem solving. Contemporary Educational 
Psychology, 55, 53–62. https://doi.org/10.1016/j.cedpsych.2018.08.001 

Schult, J., Stadler, M., Becker, N., Greiff, S., & Sparfeldt, J. R. (2017). Home alone: 
Complex problem solving performance benefits from individual online assessment. 
Computers in Human Behavior, 68, 513–519. https://doi.org/10.1016/j. 
chb.2016.11.054 

Schunk, D. H. (2020). Learning theories: An educational perspective (8th ed.). Pearson.  
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2). 

https://doi.org/10.1214/aos/1176344136 
Schweizer, F., Wüstenberg, S., & Greiff, S. (2013). Validity of the MicroDYN approach: 

Complex problem solving predicts school grades beyond working memory capacity. 
Learning and Individual Differences, 24, 42–52. https://doi.org/10.1016/j. 
lindif.2012.12.011 

Shayer, M. (2008). Intelligence for education: As described by Piaget and measured by 
psychometrics. The British Journal of Educational Psychology, 78(Pt 1), 1–29. https:// 
doi.org/10.1348/000709907X264907 

Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: 
Applications to dementia and amnesia. Journal of Experimental Psychology: General, 
117(1), 34–50. https://doi.org/10.1037/0096-3445.117.1.34 

Sonnleitner, P., Keller, U., Martin, R., & Brunner, M. (2013). Students’ complex problem- 
solving abilities: Their structure and relations to reasoning ability and educational 
success. Intelligence, 41(5), 289–305. https://doi.org/10.1016/j.intell.2013.05.002 

W. Herrmann et al.                                                                                                                                                                                                                             

https://doi.org/10.1007/s11251-013-9280-7
https://doi.org/10.1007/s11251-013-9280-7
https://doi.org/10.3390/jintelligence5020015
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0045
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0045
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0045
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0050
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0050
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0050
https://doi.org/10.1016/j.intell.2017.01.005
https://doi.org/10.1016/j.intell.2018.03.008
https://doi.org/10.1016/j.intell.2018.03.008
https://doi.org/10.1207/S15327906MBR34032
https://doi.org/10.1207/S15327906MBR34032
https://doi.org/10.1177/0956797613504966
https://doi.org/10.3389/fpsyg.2017.01153
https://doi.org/10.1080/00131911.2018.1396806
https://doi.org/10.1080/00131911.2018.1396806
https://doi.org/10.7771/1932-6246.1118
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0090
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0090
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0090
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0095
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0095
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0100
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0100
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0100
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0105
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0105
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0105
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0110
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0110
https://doi.org/10.1080/13546780042000046
https://doi.org/10.3389/fpsyg.2014.00739
https://doi.org/10.3389/fpsyg.2014.00739
https://doi.org/10.1007/978-3-319-50030-0_25
https://doi.org/10.1007/978-3-319-50030-0_25
https://doi.org/10.1016/j.intell.2010.01.001
https://doi.org/10.11588/jddm.2016.1.33346
https://doi.org/10.11588/jddm.2016.1.33346
https://doi.org/10.1080/13546783.2014.989263
https://doi.org/10.1016/j.intell.2013.07.012
https://pure.ipn.uni-kiel.de/portal/files/506377/05_Greif.pdf
https://doi.org/10.1016/j.lindif.2014.08.003
https://doi.org/10.1177/0146621612439620
https://doi.org/10.1177/0146621612439620
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0165
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0165
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0170
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0170
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0170
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0170
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0175
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0175
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0175
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0175
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0180
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0180
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0180
https://doi.org/10.1026//0033-3042.54.4.225
https://doi.org/10.1026//0033-3042.54.4.225
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0195
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0195
https://doi.org/10.1016/j.intell.2014.09.010
https://doi.org/10.1080/08957347.2016.1209208
https://doi.org/10.4324/9780203852279
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0215
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0215
https://doi.org/10.3102/00346543068002179
https://doi.org/10.1177/0146621607300015
https://doi.org/10.1177/0146621607300015
https://doi.org/10.5167/UZH-185323
https://doi.org/10.3390/jintelligence9010005
https://doi.org/10.1016/j.intell.2015.11.004
https://doi.org/10.1016/j.intell.2015.11.004
https://doi.org/10.1016/j.intell.2005.03.002
https://doi.org/10.1016/j.intell.2005.03.002
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0250
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0250
https://CRAN.R-project.org/package=sjstats
https://doi.org/10.1037/0033-2909.114.3.449
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1027/1015-5759/a000224
https://doi.org/10.1027/1015-5759/a000224
https://doi.org/10.1016/j.intell.2008.01.007
https://doi.org/10.1016/j.intell.2008.01.007
http://refhub.elsevier.com/S0160-2896(23)00054-5/opt9xisSALILs
http://refhub.elsevier.com/S0160-2896(23)00054-5/opt9xisSALILs
https://doi.org/10.2307/271063
https://doi.org/10.1016/j.lindif.2014.01.002
https://doi.org/10.1016/j.cedpsych.2018.08.001
https://doi.org/10.1016/j.chb.2016.11.054
https://doi.org/10.1016/j.chb.2016.11.054
http://refhub.elsevier.com/S0160-2896(23)00054-5/rf0300
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1016/j.lindif.2012.12.011
https://doi.org/10.1016/j.lindif.2012.12.011
https://doi.org/10.1348/000709907X264907
https://doi.org/10.1348/000709907X264907
https://doi.org/10.1037/0096-3445.117.1.34
https://doi.org/10.1016/j.intell.2013.05.002


Intelligence 100 (2023) 101773

14

Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem 
solving and intelligence: A meta-analysis. Intelligence, 53, 92–101. https://doi.org/ 
10.1016/j.intell.2015.09.005 

Stadler, M., Niepel, C., & Greiff, S. (2019). Differentiating between static and complex 
problems: A theoretical framework and its empirical validation. Intelligence, 72, 
1–12. https://doi.org/10.1016/j.intell.2018.11.003 

Steger, D., Schroeders, U., & Gnambs, T. (2020). A meta-analysis of test scores in 
proctored and unproctored ability assessments. European Journal of Psychological 
Assessment, 36(1), 174–184. https://doi.org/10.1027/1015-5759/a000494 

Sternberg, R. J., & Grigorenko, E. L. (Eds.). (2002). Dynamic testing: The nature and 
measurement of learning potential. Cambridge University Press.  

Süß, H.-M. (1996). Intelligenz, Wissen und Problemlösen: Kognitive Voraussetzungen für 
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