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Abstract

Aim: The aim of the present study was to assess the long-term therapeutic efficacy

of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1),

originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac

has previously been shown to improve pancreatic beta-cell function and suppress

appetite.

Materials and Methods: Δ-TRTX-Ac1 was administered twice daily in high-fat fed

(HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ

mice, for 28 days both alone and in combination with the venom-derived glucagon-

like peptide-1 (GLP-1) mimetic, exenatide.

Results: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-

life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h

post-injection. Accordingly, HFF-STZ mice received twice-daily injections of

Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As antici-

pated, HFF/STZ mice presented with hyperglycaemia, impaired glucose toler-

ance, decreased plasma and pancreatic insulin and disturbed pancreatic islet

morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved

glucose tolerance and augmented pancreatic insulin content while decreasing

glucagon content. Exenatide had similar benefits on body weight and pancreatic

hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased

energy expenditure on day 28 whereas exenatide had no impact. All treatment

regimens restored pancreatic islet and beta-cell area towards lean control levels,

which was linked to significantly elevated beta-cell proliferation rates. In terms

of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual

agents, there was augmentation of glucose tolerance and ambulatory activity

with combination therapy, and these mice presented with increased pancreatic

glucagon.
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Conclusion: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes,

with suggestion that benefits could be enhanced through combined administration

with exenatide.

K E YWORD S

diabetes, exenatide, GLP-1, obesity, spider venom-derived peptides

1 | INTRODUCTION

Type 2 diabetes mellitus (T2DM) is reaching epidemic proportions

worldwide, with a predicted 454 million individuals to be diagnosed

by 2045.1 T2DM is linked to a progressive decline in pancreatic islet

beta-cell function together with peripheral insulin resistance, leading

to dysregulation of circulating glucose levels.2 While several thera-

pies have been approved for T2DM, none are able to address these

underlying pathophysiological traits directly, which ultimately leads

to polypharmacy and deteriorating glucose control.3 In this regard,

analogues of the incretin hormone, glucagon-like peptide-1 (GLP-1),

represent second- or third-line intensification steps on the blood

glucose-lowering pathway for patients with T2DM. GLP-1 is a gut-

derived peptide known to potentiate glucose-stimulated insulin

secretion and suppress appetite, alongside various other well-

characterized extrapancreatic glucose-lowering actions.4 The first

clinically approved GLP-1 mimetic, namely exenatide, was initially

discovered and isolated from the saliva of the venomous Gila mon-

ster (Heloderma suspectum) lizard,5 with several other GLP-1 mimetics

now being utilized within the clinic.6 Although effective, compliance

with the GLP-1 class of drugs can be limited because of gastrointesti-

nal (GIT)-related adverse effects such as nausea and vomiting.7

Strategies to augment the glucose-lowering efficacy of GLP-1

mimetics, while also minimizing the GIT side-effect profile, would

therefore be highly sought after.8

In parallel with the venomous origin of exenatide,5 we have

recently characterized a novel peptide, Δ-theraphotoxin-Ac1 (ΔTRTX-

Ac1), isolated from the venom of the Mexican blonde tarantula

Aphonopelma chalcodes.9 ΔTRTX-Ac1 was shown to exert noteworthy

glucose-dependent insulinotropic actions consistent with other pep-

tides isolated from venom of the Grammostola rosea and Chilobrachys

jingzhao tarantulas.10–12 Beyond insulin secretion, ΔTRTX-Ac1 also

improved beta-cell proliferation and survival, as well as glucose han-

dling and satiety in mice,9 together representing a biological action

profile highly advantageous in the setting of obesity-driven forms of

diabetes such as T2DM. Importantly, ΔTRTX-Ac1 was also shown to

exert additive appetite suppressive actions when administered co-

jointly with exenatide in mice.9 Encouragingly, ΔTRTX-Ac1 and exena-

tide would probably activate distinct cellular targets and cell signalling

pathways, amplifying potential for additive, or even synergistic, bene-

fits of the two venom-derived peptides.

To capitalize on this and directly probe the concept, we have

investigated the impact of the 28-day twice-daily treatment with

ΔTRTX-Ac1 alongside exenatide in high-fat fed (HFF) mice

administered the beta-cell toxin streptozotocin (STZ), namely

HFF/STZ mice, with STZ countering the classic beta-cell compensa-

tory expansion induced by high-fat feeding.13 Importantly, this creates

a rodent model of diabetes that more closely resembles the beta-cell

dysfunction present in human T2DM,14 to help improve translatability

of our findings. Initial studies investigated the pharmacokinetic

(PK) profile of ΔTRTX-Ac1 in normal mice before progressing to

chronic twice-daily injection regimen in HFF/STZ mice. Effects on

food intake, body weight (BW), circulating glucose, insulin and gluca-

gon, as well as glucose tolerance, insulin sensitivity, aspects of whole-

body metabolism, pancreatic hormone content and morphology were

then assessed in HFF/STZ mice.

2 | MATERIALS AND METHODS

2.1 | Peptides

ΔTRTX-Ac1 and exenatide were synthesized by Synpeptide at >95%

purity, with peptide purity and identity confirmed in-house using

high-performance liquid chromatography (HPLC) and matrix-assisted

laser desorption/ionization-time of flight mass spectrometry (MALDI-

TOF MS), respectively, as previously described.15 Briefly, HPLC was

conducted on peptide samples (1 mg/ml) using a Phenomenex C-18

analytical column (250 � 4.6 mm) and flow rate of 1.5 ml/min, with

acetonitrile as the eluting solvent. HPLC peaks were detected using a

Thermoquest SpectraSystem UV2000 detector at 214 nm. For

MALDI-TOF MS analysis of collected HPLC peaks, a PerSeptive Bio-

systems Voyager-DE Biospectrometer was employed, with the

α-cyano-4-hydroxycinnamic acid matrix and subsequent detection of

the mass/charge ratio.

2.2 | Animals

All mice were housed individually in an air-conditioned room

(22 ± 2�C) with relative humidity of 51 ± 5% and a 12 h light/dark

cycle (08:00-20:00 h). For PK studies, adult male C57BL/6 mice were

maintained on standard rodent diet (10% fat, 30% protein, 60% car-

bohydrate; percentage of total energy 12.99 kJ/g; Trouw Nutrition)

before experimentation at 14 weeks of age. For metabolic studies,

adult male C57BL/6 mice (8 weeks old) were maintained on a high-fat

diet (45% fat, 20% protein, 35% carbohydrate; percentage of total

energy 26.15 kJ/g; Dietex International Ltd) for 3 weeks. Following
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this period, mice received three once-weekly intraperitoneal (i.p.)

injections of STZ (4-h fast, 50 mg/kg BW, freshly dissolved in citrate

buffer, pH 4.5) while still being maintained on 45% high-fat diet

throughout, with peptide administration commencing 1 week after

the final STZ injection when mice were 15 weeks of age. Notably, as

might be expected, STZ-induced insulin deficiency resulted in some

weight loss in HFF mice,16 with HFF/STZ mice having similar BW as

lean controls (31.3 ± 0.9 vs. 30.2 ± 0.3 g; respectively) at the start of

the experiment.

2.3 | Pharmacokinetic profiling of
Δ-theraphotoxin-Ac1

Non-fasted C57BL/6 mice (n = 1) received ΔTRTX-Ac1 injections

(10 mg/kg BW, i.p.) with blood withdrawn by cardiac puncture at

0, 2, 4, 6, 8 and 12 h post-administration and plasma extracted. A

10 mg/kg ΔTRTX-Ac1 injection was employed, based on previous in-

house observations as being the minimum dose needed to ensure

the peptide analyte was detectable in all samples. Plasma samples

were then eluted on a C18 Kinetex polar HPLC column

(3.0 � 100 mm, 2.6 μm; Phenomenex) at a flow rate of 0.35 ml/min

using acetonitrile to extract proteins. ΔTRTX-Ac1 was detected using

a Thermo Vantage QQQ mass spectrometer in positive ionization

mode, with quantification by multiple reaction monitoring. For the

pancreatic PK profile, tissues were extracted and immediately stored

in isopentane for each time point, before cryosectioning on to indium

tin oxide slides. MS imaging was conducted using a 5800 MALDI

TOF/TOF instrument (AB Sciex). Acquisition was performed in posi-

tive reflector mode with a mass range of 250-1000 Da. The laser

was operated at 29 μJ energy with a total of 100 accumulated

shots/pixel acquired using α-ayano-4-hydroxycinnamic acid matrix.

Resolution was set to 100 � 100 μm. Imaging reconstruction was

then performed with TissueView® software and total ion current

normalization.

2.4 | Studies in high-fat fed/streptozotocin mice

HFF/STZ mice were grouped (n = 8) based on BW and non-fasting

blood glucose and received twice-daily i.p. injections (09:00 h and

17:00 h) of saline vehicle [0.9% (w/v) NaCl], ΔTRTX-Ac1 (25 nmol/kg

BW), exenatide (2.5 nmol/kg BW) or a combination of both peptides

at the same dose for 28 days. These mice were maintained on 45%

high-fat diet throughout the study period with energy intake and non-

fasting glucose assessed at regular intervals. A separate group of lean

control mice were maintained on standard rodent diet throughout, for

comparative purposes. At the end of the treatment period, glucose

tolerance (18-h fasted, 18 mmol/kg BW; i.p.) and insulin sensitivity

(non-fasted, 5 U/kg bovine insulin, i.p.) tests were performed. Loco-

motor activity, energy expenditure and respiratory exchange ratio

were examined using the Complete Laboratory Animal Monitoring

System (CLAMS) (Columbus Instruments), as described previously.15

In addition, immediately following euthanasia by lethal CO2 inhalation

and cervical dislocation, total body fat was measured by DXA

scanning (Piximus Densitometer; Inside Outside Sales LLC). Terminal

analyses involved collection of plasma for determination of insulin and

glucagon levels as well as the dissection of pancreatic tissue that was

either immediately snap frozen to measure hormone content or fixed

in 4% paraformaldehyde for pancreatic islet histology assessment.17

All animal experiments were conducted under the UK Animals

(Scientific Procedures) Act 1986 & EU Directive 2010/63EU,

approved by the UK Home Office under project licence PPL2902 and

University of Ulster Animal Welfare and Ethical Review Body

(AWERB).

2.5 | Biochemical analyses

Blood was obtained from the cut tip of the tail vein from con-

scious mice with glucose immediately recorded using a handheld

glucometer (Ascencia Contour). Blood was also collected in hepa-

rin/fluoride coated microcentrifuge tubes and centrifuged at

1500 g for 15 min at 4�C in a microcentrifuge to extract plasma.

Plasma insulin was measured by in-house radioimmunoassay,18

while glucagon was measured by enzyme-linked immunosorbent

assay (EZGLU-30K; Merck Millipore) according to the manufac-

turer's instructions.

2.6 | Pancreatic islet immunohistochemistry

Fixed pancreatic tissue were placed in an automated tissue processor,

which involved dehydrating in 70%-100% ethanol followed by xylene

immersion to remove wax before paraffin embedding. Embedded tis-

sues were then cut at 5 μm sections on a microtome (Shandon

Finesse 325; Thermo Scientific) and placed on poly-L-lysine coated

slides. Islet morphology and beta-cell proliferation rates were then

assessed by immunohistochemical staining as described previ-

ously.19 Briefly, following overnight incubation with primary anti-

bodies for insulin (1:400; ab6995; Abcam), glucagon (1:1000;

ab92517; Abcam) or Ki-67 (1:400; ab15580; Abcam), slides were

incubated for 45 min with the secondary antibodies Alexa Fluor

594 goat antimouse IgG (1:500; A-11005; Thermo Fisher) or Alexa

Fluor 488 goat antirabbit (1:500; A-11008; Thermo Fisher), as

appropriate. Nuclei were stained by incubation with 40,

6-diamidino-2-phenylindole (DAPI) before mounting and imaging

using a fluorescent microscope (Olympus system microscope, model

BX51) fitted with DAPI (350 nm), fluorescein isothiocyanate

(488 nm) and tetramethylrhodamine isothiocyanate (594 nm) filters

and a camera system (Olympus XM10). For subsequent quantitative

analysis, a ‘closed polygon’ tool was used in ImageJ software to

identify areas of insulin and glucagon positive staining in μm2.20

Beta-cell proliferation was assessed by co-staining for insulin and

Ki-67 and quantified by counting the number of insulin-positive

cells expressing Ki-67.
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2.7 | Statistical analyses

GraphPad PRISM (version 5.0) software was used to perform statisti-

cal analysis. Values are expressed as mean ± SEM. Comparative ana-

lyses between groups were conducted using a One-way ANOVA with

Bonferroni post hoc correction for multiple comparisons. Groups of

data are considered to be from different populations if p < .05.

3 | RESULTS

3.1 | Pharmacokinetic profiling of
Δ-theraphotoxin-Ac1 in mice

Normal healthy C57BL/6 male mice received a 10 mg/kg i.p. dose of

ΔTRTX-Ac1, with the plasma half-life of the peptide calculated to be

2.17 h. Plasma Cmax was 16 928 ng/g and observed at 2 h post-

injection (Figure 1A,D). ΔTRTX-Ac1 was also clearly evidenced within

the pancreas (Figure 1B,C), where the peptide half-life was quantified

to be 2.16 h. In this setting, the Cmax was 2586 ng/g tissue and

observed at 4 h post-injection (Figure 1D). Pilot MS imaging studies

confirmed that ΔTRTX-Ac1 was present within liver and kidney tissue,

and passed the blood-brain barrier, following i.p. injection (data not

shown).

3.2 | Effects of Δ-theraphotoxin-Ac1 and
exenatide alone, or in combination, on food and fluid
intake, body weight and circulating glucose in high-fat
fed/streptozotocin mice

ΔTRTX-Ac1 and exenatide treatment alone, or in combination, lead

to a significant reduction in percentage BW change on day

28 (p < .05; Figure 2A). In line with this, all exenatide-treated

HFF/STZ mice had reduced percentage body fat when compared

with saline control mice (p < .01; Figure 2B). Only combination treat-

ment visibly reduced cumulative energy intake, with significant

effects on days 6 and 9 when compared with HFF/STZ control mice

(p < .05-.01; Figure 2C). Fluid intake was not altered in any of the

groups of mice (Figure 2D). Saline-treated HFF/STZ mice presented

with hyperglycaemia throughout the treatment period, with

blood glucose levels of 23.7 ± 3.1 mmol/L on day 28 (Figure 2E).

ΔTRTX-Ac1 had minimal influence on circulating glucose, and while

exenatide did decrease blood glucose, only combination therapy sig-

nificantly reduced circulating glucose to levels not different from

lean control mice (p < .05; Figure 2E). As expected, terminal plasma

insulin concentrations were decreased in HFF/STZ mice when com-

pared with lean controls (p < .05; Figure 2F). All treatments

increased circulating insulin when compared with HFF/STZ

control mice, but this failed to reach significance (Figure 2F).
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Tmax (h) 2.0 4.0
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F IGURE 1 Plasma and pancreatic PK prolife of ΔTRTX-Ac1 in C57BL/6 mice. Mice were administered ΔTRTX-Ac1 (10 mg/kg body weight,
i.p.; n = 1) and killed at time points indicated, with blood and pancreatic tissue extracted and processed for mass spectroscopy analysis.
ΔTRTX-Ac1 was detected in the (A) plasma and (B) pancreas with a half-life of 2.17 and 2.16 h, respectively. (C) Representative mass
spectroscopy images from pancreatic tissue. (D) Half-life, Tmax, Cmax and AUC PK data for ΔTRTX-Ac1 in plasma and pancreas. AUC, area
under the curve; PK, pharmacokinetics; ΔTRTX-Ac1, Δ-theraphotoxin-Ac1.
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Plasma glucagon concentrations were not different between all

groups of mice on day 28 (Figure 2G).

3.3 | Effects of Δ-theraphotoxin-Ac1 and
exenatide alone, or in combination, on glucose
tolerance, insulin sensitivity and pancreatic hormone
content

Following a glucose challenge on day 28, treatment with ΔTRTX-Ac1

alone or in combination with exenatide reduced glucose both in terms

of individual (p < .05-.001; Figure 3A) and 0-120 min AUC

(p < .01-.001; Figure 3B) values. Exenatide treatment alone had no

significant impact on glucose homeostasis, but values were visibly

reduced when compared with HFF/STZ control mice (Figure 3A,B).

Interestingly, combination treatment resulted in more effective

glucose-lowering actions when compared with either treatment alone

(p < .05; Figure 3B). Insulin sensitivity was unaffected by treatment

interventions (Figure 3C,D), albeit ΔTRTX-Ac1-treated mice displayed

greater overall effect (Figure 3D) probably because of higher starting

blood glucose levels in these mice (Figure 3C). Pancreatic insulin con-

tent was reduced in HFF/STZ mice, with all treatments restoring insu-

lin content to lean control levels (p < .05; Figure 3E). Pancreatic

glucagon content was decreased by both ΔTRTX-Ac1 and exenatide

treatment alone, when compared with HFF/STZ control mice (p < .01;

Figure 3F), but notably combination therapy augmented pancreatic

glucagon concentrations when compared with either of the individual

treatment regimens (p < .001; Figure 3F).

3.4 | Effects of Δ-theraphotoxin-Ac1 and
exenatide alone, or in combination, on energy
expenditure, respiratory exchange ratio and locomotor
activity

HFF/STZ mice presented with increased energy expenditure during

both the light and dark phases when compared with lean controls

(p < .05; Figure 4A-D). Treatment with ΔTRTX-Ac1 alone was able to

reverse this effect fully (Figure 4A-D), with all other treatment inter-

ventions having no significant effect on energy expenditure

(Figure 4A-D). The respiratory exchange ratio was not different

between all groups of mice during the light phase (Figure 4E,F). How-

ever, in the dark phase mice treated with a combination of ΔTRTX-

Ac1 and exenatide had an increased respiratory exchange ratio

(p < .05; Figure 4G,H). HFF/STZ mice were consistently less active

than lean controls in terms X-beam ambulatory activity line breaks

Percentage Weight Change

-15

-10

-5

0

B
od
y
w
ei
gh
tc
ha
ng
e
(%
)

*

Lean Control
HFF/STZ Control
Exenatide

TRTX-Ac1-NH2
Combination

**

0

10

20

30

40

Percentage Body Fat

B
od
y
fa
t(
%
)

Lean Control
HFF/STZ Control
Exenatide

TRTX-Ac1-NH2
Combination

**
*

**

Cumulative Fluid Intake

6 9 13 16 20 23 28
0

100

200

300

400
HFF/STZ Control

TRTX-Ac1-NH2
Combination

Exenatide

Lean Control

Times (Days)

Fl
ui
d
in
ta
ke
(m
l)

Blood Glucose

-1 0 6 9 13 16 20 23 28

5

10

15

20

25

30

Time (Days)

Bl
oo
d
gl
uc
os
e
(m
m
ol
/l) Lean Control

HFF/STZ Control
Exenatide

TRTX-Ac1-NH2
Combination

*** ******** ** ** ** ** **

*
*

**
**

** ** *

0.0

0.1

0.2

0.3

0.4

Terminal Plasma Insulin

Pl
as
m
a
in
su
lin
(n
g/
m
l) Lean Control

HFF/STZ Control
Exenatide

TRTX-Ac1-NH2
Combination

*

0.00

0.02

0.04

0.06

0.08

Terminal Plasma Glucagon

Pl
as
m
a
gl
uc
ga
on
(n
g/
m
l) Lean
HFF/STZ
TRTX-Ac1-NH2
Combination
Exenatide

Cumulative Energy Intake

6 9 13 16 20 23 28
0

100

200

300

400

Times (Days)

En
er
gy
in
ta
ke
(k
J)

Lean Control
HFF/STZ Control

TRTX-Ac1-NH2

Exenatide

Combination

*
**

(A) (B)

(C) (D)

(E) (F) (G)
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during both the light and dark phases (p < .05-.001; Figure 4I). The

individual treatment intervention had no impact on this aspect of

locomotor activity, but combination peptide therapy resulted in

increased X-beam breaks (p < .05-.001; Figure 4I).

3.5 | Effects of Δ-theraphotoxin-Ac1 and
exenatide alone, or in combination, on pancreatic islet
morphology and beta-cell proliferation

HFF/STZ mice exhibited reduced (p < .05; Figure 5A,B) islet and beta-

cell areas alongside a significant expansion (p < .01; Figure 5C) of

alpha-cell area. All treatment interventions increased islet and beta-

cell areas (p < .05-.01; Figure 5A,B), restoring levels to that of lean

control mice (Figure 5A,B). The alpha-cell area was not different

between saline control and all peptide-treated HFF/STZ mice

(Figure 5C). In terms of alpha/beta-cell ratios, treatment with exena-

tide alone, or in combination with ΔTRTX-Ac1, returned this parame-

ter towards lean control levels being significantly decreased when

compared with saline or ΔTRTX-Ac1-treated HFF/STZ mice

(p < .05-.01; Figure 5D). Islet number per mm2 pancreatic tissue was

decreased in HFF/STZ mice when compared with lean controls

(p < .05; Figure 5E), with combination, but not individual, therapeutic

intervention significantly augmenting this parameter (p < .01;

Figure 5F). Interestingly, while HFF/STZ mice had similar beta-cell

proliferative rates as lean controls, all peptide treatment groups had

increased levels of beta-cell proliferation when compared with

HFF/STZ control mice (p < .05; Figure 5F). Representative islet

images showing insulin, glucagon and DAPI or insulin, Ki-67 and DAPI

staining for each treatment group are shown in Figure 5G.

4 | DISCUSSION

Prominent glucose-lowering and appetite suppressive actions of

ΔTRTX-Ac1, a novel peptide originally isolated from venom of the

A. chalcodes tarantula, have recently been described.9 These initial

studies also showed additive beneficial effects following

co-administration of ΔTRTX-Ac1 with exenatide in the acute in vivo

setting.9 Given the differing modes of action of these peptides, along-

side the clinical need to improve antidiabetic efficacy and tolerability

of currently approved GLP-1 mimetics,21 we investigated the impact

of individual and combined twice-daily treatment with ΔTRTX-Ac1

and exenatide for 28-days in HFF/STZ mice that represent a model of

insulin resistance alongside compromised beta-cell function that is

also seen in human T2DM.

Before examination of this experimental concept, in vivo

plasma and pancreatic half-life of ΔTRTX-Ac1 was established.
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Comparable with exenatide,22 ΔTRTX-Ac1 had a half-life of approxi-

mately 2 h in the bloodstream. The peptide was also detected in

peripheral tissues, including the pancreas, following injection and

shown to cross the blood-brain barrier. In that respect, the previously

noted impact of ΔTRTX-Ac1 on appetite regulation may be centrally

mediated.9 In this regard, it would be interesting to assess c-Fos

expression in brain regions linked to energy regulation following

peripheral administration of ΔTRTX-Ac1. However, as with GLP-1

receptor activation,6 the effects of ΔTRTX-Ac1 on peripheral tissues

could also be linked to observed benefits on energy homeostasis and

overall metabolism. Furthermore, we and others have previously

shown that exenatide retains good bioactivity when injected at a dose

of 2.5 nmol/kg in mice.23 For ΔTRTX-Ac1, although the half-life is

comparable with exenatide,21 our previous investigations suggest that

a dose of at least 25 nmol/kg is required to elicit bioactivity,9 suggest-

ing different therapeutic potencies of the two peptides despite their

similar PK profiles. Thus, for preclinical testing we opted for a reduced

dose of exenatide when compared with ΔTRTX-Ac1. Indeed, this may

be more clinically relevant given the recent focus on treatment regi-

mens that can reduce the dose of GLP-1 mimetic used, while retaining

or even enhancing therapeutic efficacy, to help improve overall tolera-

bility and patient compliance.24 Endorsement of the choice of dose

for exenatide was provided by our observed prominent efficacy of

this regimen in HFF/STZ mice. Moreover, to add further to the trans-

latability of findings, HFF/STZ mice were employed as a model of sus-

tained high calorific dietary intake and insulin resistance together with

pancreatic beta-cell secretory deficit, resembling the main pathophysi-

ological characteristics of human T2DM.14

In keeping with the glucose homeostatic effects of a single injec-

tion of ΔTRTX-Ac1,9 the peptide was able to improve glucose toler-

ance following a sustained 28-day twice-daily injection regimen in

HFF/STZ mice. This not only corroborates bioactivity of ΔTRTX-Ac1

in both normal and diabetic rodents, but also suggests that desensiti-

zation to the benefits of ΔTRTX-Ac1 is not a concern. Although tachy-

phylaxis has been suggested as a possible limiting factor for GLP-1

drugs,25 this now seems unlikely and methods to avoid that potential

phenomenon are also well described.26,27 Thus, there can be optimism

in terms of persistent beneficial metabolic effects of combined admin-

istration of ΔTRTX-Ac1 with exenatide. Moreover, in the current

study, combination peptide therapy resulted in notable additive

improvements on glucose handling beyond that of either treatment

alone, reinforcing this indication. Furthermore, while ΔTRTX-Ac1 had

no impact on circulating glucose levels and exenatide decreased this

parameter only on selected observation days, the combined treatment
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approach was the most effective regimen. All HFF/STZ mice pre-

sented with some weight loss over the 28-day period probably

because of STZ-induced insulin deficiency. Peptide interventions

encouraged additional weight loss, and exenatide-treated mice had

reduced body fat content in keeping with the anti-obesity actions of

GLP-1 receptor activation.28 Combined therapy led to reduced energy

intake, in line with previously observed satiety effects of ΔTRTX-Ac1

and exenatide.9,29 In that respect, we are unable to rule out entirely

the elevated GIT symptoms with combined therapy, but this may

seem unlikely as we did not observe any discernible changes of

behaviour in these mice.

Indirect calorimetry was used to explore the impact of the sepa-

rate treatment regimens on whole body metabolism. In keeping with

advantages of combined therapy, a respiratory exchange ratio was

augmented in these mice, suggesting increased carbohydrate utiliza-

tion.30 That said, combination treatment with ΔTRTX-Ac1 and exe-

natide also significantly increased locomotor activity, which could

also be linked to increases of the respiratory exchange ratio.31

Changes in locomotor activity and energy expenditure in rodents

following exenatide injection have been reported previously,31,32

but were not evident in our study possibly linked to differences in

model and dosing regimens employed. The explanation for

increased locomotor activity following combined ΔTRTX-Ac1 and

exenatide administration is unknown, but does again highlight

clear interactions between the two peptides. In this respect,

the postulated cellular target for ΔTRTX-Ac1 is the Kv2.1

potassium channel,9 that has previously been shown to augment

GLP-1-mediated biological actions.33 Thus, while we are unable to

delineate fully the precise molecular interaction of ΔTRTX-Ac1, it

may be that appropriate modulation of beta-cell Kv2.1 potassium

channels by compounds such as ΔTRTX-Ac1 can enhance the meta-

bolic benefits of GLP-1. However, there is also evidence that GLP-1

receptor activation can independently inhibit Kv2.1 channel

activity,34,35 which may question this hypothesis. Nonetheless, posi-

tive allosteric interactions of exenatide and ΔTRTX-Ac1 at Kv2.1

channels are also possible, which would allow for additive or syner-

gistic effects of these peptides at the level of the beta-cell.33

Ultimately, electrophysiology experiments would be required to

confirm that theory. Despite this, given that the efficacy and

adherence to GLP-1 mimetics in the clinic is often limited by dose-

dependent GIT side-effects, alongside current issues around manu-

facture and supply of this class of drugs,7 our findings are highly

encouraging as a means of reducing GLP-1 dose requirements in

humans. Interestingly, ΔTRTX-Ac1 also decreased energy expendi-

ture in HFF/STZ mice, which is also difficult to rationalize given

reduced BW but lack of significant change in energy intake, respira-

tory exchange ratio or ambulatory activity levels in these mice. As

such, further studies are required to uncover underlying mecha-

nisms, but it is clear that ΔTRTX-Ac1 exerts overall positive effects

on metabolism that warrant consideration. Notably this effect on
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energy expenditure was reversed by co-administration with exena-

tide, further promoting benefits of combination therapy.

Both ΔTRTX-Ac1 and exenatide have established direct positive

effects on pancreatic beta-cell health,9,36 prompting our more

detailed analysis of islet histology in HFF/STZ mice. In the current

study, 28-day twice-daily treatment with either peptide enhanced

islet and beta-cell areas, reversing the detrimental impact of STZ on

islet morphology.37 In agreement with previous observations, this

appeared to be linked, at least in part, to augmented beta-cell prolif-

erative rates.9,19 Moreover, pancreatic insulin content was also

restored to normal levels by both ΔTRTX-Ac1 and exenatide. How-

ever, there was an apparent lack of additive benefits of combined

therapy at the level of the beta-cell, which although a little surpris-

ing, may simply reflect the highly regulated nature within the local

environment of pancreatic islets.38 This perhaps helps to explain fur-

ther the prominent benefits on glucose tolerance in the combined

treatment group. In addition, combination therapy with ΔTRTX-Ac1

and exenatide resulted in augmented numbers of islet per mm2

pancreatic tissue, which was not observed with either treatment

alone. That said, there was no benefit of combined treatment on

peripheral insulin action, but this may simply reflect the lower blood

glucose levels in this group of mice before insulin administration and

innate negative feedback pathways to prevent hypoglycaemia. Thus,

euglycaemic-hyperinsulinaemic clamp studies may be required to

uncover fully the treatment effects on insulin action. The alpha-cell

area was unaltered in all HFF/STZ treatment groups of mice, despite

there being markedly elevated circulating glucagon concentrations

with combined, but not individual, treatments. To date there has

been no investigation into the potential impact of ΔTRTX-Ac1 on

alpha-cell secretory function, whereas it is well established the

GLP-1 receptor activation inhibits glucagon release.39 The interac-

tion between the two peptides on alpha-cell function therefore

necessitates further mechanistic insight, which is unfortunately

outside the scope of the current study.

Collectively, these data confirm antidiabetic benefits of sustained

administration of the tarantula venom-derived peptide, ΔTRTX-Ac1,

in a rodent model of insulin resistance and beta-cell secretory dys-

function. While some bioactive venom-derived peptides fail to pro-

gress beyond preclinical evaluation because of safety and/or

specificity issues,40,41 it is encouraging to note that no adverse effects

were observed following administration of ΔTRTX-Ac1 alone, or in

combination with exenatide, in diabetic mice. As such, lack of malaise

following sustained peptide injection in HFF/STZ mice suggests that

reductions of BW are not linked to toxicity or a detrimental impact on

behaviour. Prominently, benefits of ΔTRTX-Ac1 were augmented by

concurrent treatment with the clinically approved GLP-1 mimetic

exenatide, particularly in terms of overall glucose homeostasis,

highlighting a particularly attractive therapeutic strategy for future

consideration.
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