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Abstract—Q-learning is a form of reinforcement learning that
employs agents to perform actions in an environment under
a policy to reach ultimate goals. Q-learning is also thought
as a goal-directed learning to maximize the expected value of
the cumulative rewards via optimizing policies. Deterministic
and scholastic policies are commonly used in reinforcement
learning. However, they perform quite different in Markov
decision processes. In this study, we conduct a comparative study
on these two policies in the context of a grid world problem with
Q-learning and provide an insight into the superiority of the
deterministic policy over the scholastic one.

Index Terms—Reinforcement Learning, Q-Learning, Markov
Decision Process, Deterministic and stochastic policies, Grid-
World

I. INTRODUCTION

Reinforcement learning (RL) is a branch of machine learn-
ing. This paradigm of learning is to employ an intelligent
agent to perform actions in some environment and adapt its
behaviour through trial-and-error to achieve the greatest cu-
mulative reward from the environment, thereby controlling the
agent to move toward desired goals and away from undesired
goals [1]. Q-learning is a form of reinforcement learning,
which is often referred to as a model-free reinforcement
learning [2].

An agent has two essential components: a policy and a
learning algorithm [3].

• The policy is to map from states to actions based on the
observations from the environment.

• The learning algorithm updates the policy parameters
based on the actions, observations, and reward. It aims
to find an optimal policy that maximizes the cumulative
reward received through interacting with the environment.

In a general sense, the interaction with an environment by
an agent is formulated as a Markov Decision Process (MDP)
that can be broken into sequences, called episodes [4]. The
execution of the MDP can be described as a trajectory of
occurrences (in terms of state, action, reward) over time-steps
within episodes. Each episode ends in a terminal state, the
agent could take varied time-steps to complete an episode as
shown in Fig.1.

In fact, training an agent with reinforcement learning is an
iterative process, each of which corresponds to an episode.
The next episode begins independently of how the previous

Fig. 1. Time-steps and episodes over discrete states [5]

one ended, but all episodes can all considered to end in
the same terminate state, i.e. goal, with different rewards
for the different outcomes. Selections of actions and their
corresponding reward in the later episode require to reflect
on the convergence of a policy in the preceding episodes. If
the training process does not converge to an optimal policy
within a reasonable amount of time-steps, it is necessary to
update relevant parameters of the policy and balance between
exploration and exploitation when choosing actions.

In past decades, reinforcement learning has achieved im-
pressive advances in a variety of domains [8] and [9], but
their applicability has been limited to domains in which useful
features can be handcrafted, or to domains with fully observed,
low-dimensional state spaces. A wide range of applications
of RL had previously intractable issues, i.e. scaling RL to
decision-making problems with high-dimensional state and
action spaces. A recent development proposed a seminal
method that has the ability to learn and play Atari 2600 video
games at a superhuman level, directly from image pixels [6].
This work provided solutions for the instability of function
approximation techniques for RL and demonstrates that an
agent could be trained on raw, high-dimensional observations,
solely based on a reward signal.

In practice the deployment of the RL solutions to real-
world physical systems is often challenged by limited training
data, formulation of complicated systems and costs of potential
failures. A recent application of RL for regulating temperatures
and airflow inside a large-scale data center (DC) was reported
in [7], in which the authors developed a linear model of the DC
dynamics based on model-predictive control, their approach
uses safe and random exploration to start with little or no prior
knowledge, and subsequently recommends control actions at



each time-step by optimizing the cost over model-predicted
sequences.

In this study, we develop a Q-learning algorithm to study
the competencies of the algorithm on the tasks of obtaining
optimal policies. We developed a flexible agent, which is able
to operate under deterministic and stochastic policies in the
same environment, to investigate the effect of a varied range of
policy parameters in maximising the cumulative reward. These
results provide significant insights into real-world applications
of reinforcement learning.

II. REINFORCEMENT LEARNING

RL problems involve learning from interaction with the
environment to achieve a goal. A model of this nature consists
of two main components: the agent and the environment.
The agent is the computational component that learns, makes
decisions, and receives rewards. The environment is what the
agent interacts with, and it is comprised of everything outside
of the agent. Anything the agent cannot control is considered
to be part of the environment [4].

The reward is a numerical value that may be positive or
negative values, it gauges the effect of the actions taken by
the agent. Each choice of action that the agent makes occurs
on one time-step. The chosen action may or may not result
in a change in state for the agent. This is dependent on
the legality of the action from the current state within the
environment. If the agent makes the choice of movement
outside the environment, it will remain in its current state,
but a time-step is counted. Thus when an agent in a state
choses an action within the environment, the environment then
sends an update to the agent of the new state and the reward
gained from the chosen action. This process is formulated as
a Markov Decision Process (MDP), consisting of four major
concepts [4] as follows:

• State - A variable that communicates characteristic infor-
mation about the environment to the agent, denoted by
S = {s1, s2, ..., sN}.

• Action - An interaction with or movement within the
environment, denoted by A = {a1, a2, ..., aK}.

• Reward - A numerical value received by the agent,
denoted by R, where for any reward r, r ∈ R

• Policy - A policy π is a map from a state s ∈ S to an
action a ∈ A, where π(s) represents an action taken in
state s under deterministic policy, and π(a|s) represents
probability of taking action a in state s under stochastic
policy π.

The dynamic trajectories of an MDP are described by
the probability of transitioning between certain states. The
probability distribution,

p(s′, r|s, a) = Pr{St+1 = s′, Rt = r|St = s,At = a}, (1)

gives the probability of transitioning to state s′ and receiving
reward r at time t+1 if at time t the environment was in state
s and action a was taken. MDPs are defined by the Markov
Property;

Pr{St+1|St} = Pr{St+1|S0, S1, ..., St}, (2)

which asserts that the transition to the next state is dependent
only on the current state; the history of the system is not
relevant.

The agent aims to maximise the reward, which is the
expected return in the long run, rather than the immediate
reward. This can be achieved through either the state-value
function or the action-value function [4].

The long term value of a given state under policy π is
described by the state-value function;

vπ(s) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
. (3)

The value of a state is the expected future reward with a
discount rate, γ.

The long term value of an action given the state, under
policy π, is described by the action-value function;

qπ(s, a) = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
. (4)

This is similar to Equation 3, however, this formulation
considers state-action pairs rather than just the state.

The discount rate is a hyperparamter that determines the
degree to which future rewards are considered at the current
time step. As γ → 0, the agent becomes more ”myopic”
and only considers immediate rewards. As γ → 1, the agent
becomes more ”far-sighted” and considers future rewards to
be as important as current reward.

For the model to learn to complete a task effectively, the
agent must aim to find an optimal policy to maximise v(s) or
q(s, a) . To do this, one must consider the Bellman Optimality
Equations. These equations highlight that if an agent uses an
optimal policy then the value of a state is equal to the expected
return of the action from that state that has the highest value.
The Bellman Optimality Equations for the state-value function
and action-value function, respectively, are as follows:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)(r + γv∗(s
′)), (5)

q∗(s, a) = max
a′

∑
s′,r

p(s′, r|s, a)(r + γmax
a′

q∗(s
′, a′)). (6)

The main objective for an RL task is to solve one of these
equations as that would represent an agent that has the optimal
policy, such that it can perform the desired task to a high
degree of competence.

III. THE GRIDWORLD PROBLEM

A grid world is a two-dimensional cell-based environment,
where the agent has five possible actions within the environ-
ment in terms of up, down, left, right, jump, and the state is
defined as the agents position on the cells. The agent starts
from one cell and moves toward the terminal cell while accu-
mulating as much reward as possible. To train an agent, we
can configure a grid world with different dimensions, starting



and ending cells, and obstacles over the cells to materialise an
environment, Q-learning algorithms would discover optimal
paths and policies on the grid to arrive at the terminal goal in
the fewest moves with the maximal reward. Fig.2 illustrates a
configuration of a grid world for this study.

Fig. 2. Gridworld environment [3]

Specifically, the agent starts from cell [2,1] and receives a
reward +10 if it reaches the goal of cell [5,5]. The possible
actions are dependent on the position of the agent. There are
two constraints for the movement of the agent. The first one is
that the agent cannot move outside the grid world as the grid
has borders in place. For instance, if the agent is in its initial
state [2, 1], it only has three possible actions of emphup, down
and emphright. The second is the black squares that denote
obstacles, these black cells cannot be positioned by the agent,
but the agent can take a jump action from cell [2,4] to [4,4]
with a reward of +5, which would encourage the agent to take
that shortcut. All other actions result in –1 reward.

IV. METHODOLOGY

A. Q-learning formulation

As previously stated, the Q-learning method is utilised to
develop a solution to this grid world task. Q-learning is able
to learn action-values over the trajectories of state-action pairs
that the agent takes from the initial state to the terminal
state. At each time-step t, the agent performs an action at
to transition from one state st to another st+1 and obtains a
reward rt as illustrated in Fig. 1. The agent aims to learn a
policy that allows it to maximise the cumulative reward over
the trajectories.

In practice Q-learning approximates the optimal action-
value function, q∗, and accumulate rt into Q-values for each of
state-action pairs. The values are incrementally updated based
on reward feedback rt and the current Q-values. The Q-value
will be calculated by the following equation,

Q(St, At)←− Q(St, At)+

α [Rt+1 + γmaxaQ(St+1, At)−Q(St, At)] , (7)

where α and γ are the hyperparamters known as the learning
rate and discount rate, respectively.

The learning rate, α ∈ [0, 1], represents how much impor-
tance is placed on new information. If α = 0 the agent will
learn nothing from new actions, whereas if α = 1, the agent
will entirely ignore previous knowledge and only value the
most recent information. The discount rate is the same as was
described earlier.

In addition, function max() takes the maximum of the
future Q-values, which is combined with the current state for
next iteration. The function uses a possible future reward to
impact the current action, as such it helps the agent select an
action with the highest return at any given state.

As Q-learning is a model-free algorithm, the agent does
not construct an internal model or MDP, instead learns from
trial and error. The algorithm uses a ϵ greedy strategy to
determine an action between exploration and exploitation
within the environment. At the beginning the agent explores
the environment and randomly chooses actions as the agent
does not know anything about the environment. With more ex-
plorations the agent progressively obtains the knowledge about
the environment and become more confident in estimating Q-
values.

With decreasing of the epsilon rate ϵ, the agent starts to
exploit the environment. However if purely exploration, the
agent will develop a good knowledge of the environment but
it will never exploit this knowledge to solve the task. If purely
exploitation, the agent may only ever use the first policy it
tries and it will not discover other methods that could provide
a higher return. The means if setting ϵ = 0, the agent never
explores but always exploit the knowledge it already has. On
the contrary, if setting ϵ = 1, the greedy strategy forces the
algorithm to always take random actions and never use past
knowledge. Usually, ϵ is selected as a small number close
to 0. The epsilon parameter introduces randomness into the
algorithm, forcing the agent to try different actions. This helps
not getting stuck in a local optimum (maxima).

As a result there is a need to make a good balance between
exploration and exploitation. The algorithm randomly generate
a value z ∈ [0, 1] when selecting an action. If z < ϵ then the
agent explores the environment, otherwise, the agent exploits
the environment and selects the action based on the largest
Q-value for the current state on the policy.

B. Deterministic and Stochastic Policies

The convergence of state-action values always depends
on a policy. As stated previously the Q-learning algorithm
implicitly uses the ϵ-greedy strategy to balance between explo-
ration and exploitation when selecting actions. This strategy
encourages the agent to explore as many states and actions as
possible. The more iterations it performs and the more paths
it explores, the more confident the agent becomes that it has
tried all the options available to find better Q-values.

Apart from trading-off between exploration and exploita-
tion, the value function given in Equations 3 and 5 determines
how good it is for the agent to be in a particular state. To
determine how good it will be in a particular state, that must
depend on some actions that the agent will take, which is



determined by a policy π, i.e. deterministic and stochastic,
which can be calculated by Equations 4 and 6.

Normally the deterministic policy is used in an deterministic
environment. In such an environment, the actions taken deter-
mine the outcome. By contrast the stochastic policy is used
when the environment is uncertain. This process is often called
a Partially Observable Markov Decision Process (POMDP).
But a deterministic policy can be interpreted as a stochastic
policy that gives the probability distribution π(a|s) = 1.

Given two policies, denoted by π and π′, there is always
one policy that is better than or equal to another, that means
π ≥ π′ if and only vπ(s) ≥ vπ′(s) for all s ∈ S or if and only
qπ(s, a) ≥ qπ′(s, a) for all s ∈ S, a ∈ A. Although there may
be more than one, we denote all the optimal policies by π∗. To
compare the performance of two policies over the sequences
of state-action pairs, we need to obtain π∗ through comparing
results produced by either Equation 5 or 6.

V. EVALUATION AND RESULTS

To compare the effectiveness of the deterministic and
stochastic policies, we have implemented a Q-learning al-
gorithm for solving the grid-world problem and manually
allocated probabilities over the five actions for studying the
stochastic policy. The evaluation mainly focuses on assessing
the effect of three hyperparameters ϵ, α and γ over a set of
values {0.2, 0.5, 0.7}, and runs the algorithm 1000 episodes
on the set of values for the three hyperparameters.

Fig. 3 shows the cumulative reward under the deterministic
policy. From the figure it can be seen that around 200 episodes,
the fluctuation of the cumulative reward appears to be stable.
With the increase of ϵ values the cumulative reward increases,
but that also brings more fluctuations. The final cumulative
reward is 66.97 on average. This result reveals that the agent
takes actions at a more random way and use less previous
knowledge learnt from the environment. Fig. 4 presents the
cumulative reward under the stochastic policy, which follows
some similar patterns with the exception of the smaller final
cumulative reward, i.e. 32.13 on average.
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Fig. 3. Cumulative reward with varied ϵ values in Deterministic policy

Fig. 5 shows the cumulative reward under the deterministic
policy, it can be observed that there are larger variations of
the reward on α = 0.5, 0.7, where for α = 0.5, the variations
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Fig. 4. Cumulative reward with varied ϵ values in Stochastic policy

occur before 500 episodes, whereas there are more variations
after 500 episodes when α = 0.7. This pattern indicates that
the agent prefers to learn from most recent information in
maximising the reward. While Fig. 6 presents the cumulative
reward under the stochastic policy in the same settings, three
different values of α = {0.2, 0.5, 0.7} have a similar effect
with more fluctuations over the training process, and the
cumulative reward is approximately 2.47 on average.
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Fig. 5. Cumulative reward with varied α values in Deterministic policy
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Fig. 6. Cumulative reward with varied α values in Stochastic policy

Fig. 7 shows the cumulative reward under the deterministic
policy. The figure clearly demonstrates the different roles
the discount rate plays, that is the larger the discount rate,



the agent takes more previous knowledge into consideration
in maximising the reward. This result reflects what effect
described in Equation 4. Fig. 8 shows the cumulative reward
under the stochastic policy in the same setting, it can be seen
that three different discount values have a similar effect, but
not positive in maximising the reward.

The final training results over 1000 episodes under the
deterministic policy is given in Fig. 9, as the calculation of
reward is in a backward way with the setting with ϵ = 0.2
α = 0.2 and γ = 0.7 , the reward in the terminal cell alway
remains the same as the initial value 10. The agent has no
prior knowledge of the grid-world environment, the Q-value
for each state-action pair is zero initially. During the training,
the agent takes a random route through the environment and
obtains a relatively low reward. With more episodes, the agent
travels through the cells, it retains the knowledge that it gains
by updating the Q-value of that state-action pair, eventually
exploits what learnt to find optimal paths with a larger reward.
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Fig. 7. Cumulative reward with varied γ values in Deterministic policy
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Fig. 8. Cumulative reward with varied γ values in Stochastic policy

VI. CONCLUSION

The study has implemented a Q-learning method for solving
the grid world problem, where the agent could learn the
optimal policy by interacting with the grid-world environment.
The optimal policy involved the agent navigating from the
initial state to the terminal state. The evaluation results reveal
that the agent performs better under the deterministic policy in

Fig. 9. Distribution of expected return on the grid cells in the deterministic
policy

comparison with the stochastic policy. The evaluation results
demonstrate that the effect of the learning rate and discount
rate play smaller roles in maximising the cumulative reward,
this could be because of a possible limitation of the grid-world
environment.

To ensure the basic Q-learning algorithm did not focus
too much on exploring the environment without exploiting
the learned knowledge, it was particularly investigated on
the ϵ-greedy algorithm for action selection with the different
values, it was found that a value of ϵ = 0.7 provided a good
balance between exploration and exploitation which allowed
the agent’s learned policy to converge to the optimal policy
relatively quickly.

Additionally, the performance of the policies could be eval-
uated against different permutations of these hyperparameters
to determine what values are useful for find an optimal policy
with the least number of actions, which will remain in future.
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