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1VTT Technical Research Centre of Finland Ltd, Espoo, Finland

Abstract

Model predictive control of buildings is a vibrant
field, but mostly focuses on buildings as “price-
takers”. While simplified resistance-capacitance
building models have previously been employed
within large-scale energy system frameworks to anal-
yse market impacts, tools for stochastic programming
are scarce. In this work, we demonstrate the viability
of the SpineOpt energy system modelling framework
for stochastic model predictive control of an imagi-
nary six-building district using different weather and
price forecasts, achieving reasonable performance and
cost savings comparable with existing literature. The
used methods could be scaled up to city or nation-
scale energy system studies, or be utilised for electric-
ity market bidding of aggregated building flexibility.

Highlights

• SpineOpt demonstrated capable of stochastic
model predictive control of district-scale energy
systems.

• Stochastic programming beyond district-level
has potential applications for electricity market
bidding of aggregated building flexibility.

• Uncertainty about weather conditions and elec-
tric load had surprisingly little impact on the
district operations.

Introduction

Electrification of traditionally fossil-fuelled sectors
like heating and transportation holds a lot of promise
for decarbonising our economies. However, supplying
the resulting electricity demand with variable renew-
able electricity requires significant flexibility from the
demand side. Since buildings contain considerable in-
herent thermal inertia, their heating, ventilation, and
air conditioning (HVAC) as well as domestic hot wa-
ter (DHW) systems can be harnessed for demand-side
management (DSM). Thus, heating sector electrifi-
cation can help mitigate its impacts on the power
system, although accessing this building-level energy
flexibility requires sophisticated control systems, e.g.
model predictive control (MPC).

Drgoňa et al. (2020) present an excellent review into
the breadth of literature on MPC of building systems.
Common objectives include minimising energy con-
sumption, cost, or CO2 emissions, while maintaining
thermal comfort, achieving savings around 10–60%
depending on the case study as reviewed by Taheri
et al. (2022). However, while these studies only con-
sider buildings as “price-takers”, in reality, electricity
markets would adapt when faced by widespread DSM.
Thus, in order to study energy market scale impacts
or viability of widespread building energy flexibility,
it needs to be depicted within large scale energy sys-
tem models. Bloess et al. (2018) provide a great re-
view on the topic of previous power-to-heat studies
on energy system scales, some including residential
building energy flexibility as well. Ever since Hede-
gaard and Balyk (2013) pioneered the use of simpli-
fied resistance-capacitance (RC) building models for
studying flexible residential heat pump investments
for wind power integration, similar approaches have
been successfully employed by e.g. Cooper et al.
(2016) for examining impacts of mass adoption of
heat pumps on peak load in the UK, by Arteconi
et al. (2016) and Rasku and Kiviluoma (2018) for
looking into the impact of HVAC DSM market pen-
etration in Belgium and Finland respectively, as well
as by Huckebrink and Bertsch (2022) comparing dif-
ferent flexible heating options for Germany. Re-
cently, deterministic MPC for individual buildings
has been demonstrated using the Backbone energy
system modelling framework by Rasku et al. (2023).

To the authors’ best knowledge, simplified RC ther-
mal models of building energy flexibility for energy
system scale studies have not been previously exam-
ined under price, weather, and load uncertainty. In
this work, we demonstrate the open source energy
system modelling framework SpineOpt for stochastic
MPC of a small imaginary district capable of utilis-
ing the building-level energy flexibility. This enables
studying the impact of widespread building energy
flexibility on energy system operations while account-
ing for uncertainty. Furthermore, similar approaches
could be used for electricity market bid optimisation
for aggregated building energy flexibility.



Methods

In this work, we demonstrate that district-scale
stochastic MPC can be implemented and solved using
the SpineOpt energy system modelling framework by
Ihlemann et al. (2022). In brief, the mixed-integer-
linear-programming-based SpineOpt is primarily de-
signed for solving large-scale energy system invest-
ment planning, unit commitment, and economic dis-
patch problems. However, thanks to its generic sys-
tem and temporal depictions, it can be adapted to
represent systems with drastically different features.
Since unit commitment and economic dispatch for
large-scale energy systems are typically solved as
rolling horizon optimisation problems as well, imple-
menting simple MPC was achieved through model
definitions and data alone, without the need to mod-
ify SpineOpt itself.

As a case study, a small electrically heated imaginary
district of six different buildings with photovoltaic
(PV) generation and a shared battery was set up.
Simplified RC thermal models of the buildings were
employed for capturing the flexibility in their heat-
ing and cooling demand. It is important to note that
the district modelled in this work does not aim to be
strictly realistic, but instead allow for easy examina-
tion of the MPC operation in order to verify SpineOpt
performing in a reasonable manner. The Spine Tool-
box (Kiviluoma et al. (2022)) workflow containing all
the data and code used in this work has been made
available by Rasku (2023) for interested readers.

The modelled district energy system

The modelled imaginary district contains six build-
ings, illustrated in Figure 1, based on the set of ex-
ample buildings from IDA ESBO v1.13 (EQUA Sim-
ulation AB and Aalto University (2013)) adhering
to the 2012 Finnish building regulations. For the
sake of brevity, their detailed properties are not repli-
cated here, and interested readers are instead referred
to Rasku et al. (2023). The simplified RC building
models, as well as their heating systems, were pro-
cessed for SpineOpt using ArchetypeBuildingModel.jl
(Rasku (2022)), with the district energy system illus-
trated in Figure 2 along with the building RC model.
Note that even though the structure of the building
RC models was identical, their properties were pro-
cessed differently, as detailed in Rasku et al. (2023).
The building energy flexibility in the modelled dis-

trict arises from the permitted indoor air and DHW
tank temperature ranges presented in Table 1. While
technically abiding by the Finnish building code by
the Finnish Ministry of the Environment (2017), large
rapid changes in the indoor air temperature are detri-
mental to the thermal comfort of the inhabitants.
Ideally, proper indicators would be used to constrain
the space heating flexibility, but implementing them
within SpineOpt was outside the scope of this work.

Table 1: Permitted temperature ranges in the model.

Indoor air Range
Detached house 1 (DH1) 21–25◦C
Detached house 2 (DH2) 21–25◦C
Apartment block (AB) 21–25◦C
Office building (OB) 21–25◦C
Service building (SB) 18–25◦C
Communal building (CB) 21–25◦C

DHW tanks 60–90◦C

The buildings were assumed to be equipped with
ground-to-water heat pump (G2WHP) systems for
both space and water heating, as well as ground
source cooling. For simplicity, the G2WHP was
modelled using a seasonal performance factor (SPF)
of 2.5 for space heating, corresponding to typical
Finnish hydronic radiator heat distribution systems
with 60 ◦C maximum temperature as suggested by
the Finnish building code calculation guide by Eskola
et al. (2012). For water heating using the G2WHP, an
SPF of 1.58 was assumed accounting for direct elec-
tric topping up to 90 ◦C from the permitted minimum
DHW tank temperature of 60 ◦C, while the ground
source cooling used a SPF of 30 again based on Es-
kola et al. (2012). The DHW storage tanks for each
building were sized to cover an assumed daily con-
sumption of 1.64 litres per m2, with their properties
based on a Finnish building code calculation guide
by Kurnitski et al. (2011). The resulting DHW tanks
are frankly unrealistically large for the modelled non-
residential buildings, but add more flexibility to the
heating demand for this demonstration.

All of the modelled buildings were connected behind
a common point of electricity import/export, which
also included a shared 500 kW/1MWh battery sized
to cover the average appliance and lighting load of the
district for roughly ten hours with a peak power five
times the average load. The district also contained
around 680 kWp of PV generation, distributed among
the buildings to match their yearly total appliance
and lighting loads. The import/export power was
constrained to 1 MW, limiting excessive power peaks
in the winter for the MPCs.

Processing data and forecasts

In order to perform stochastic MPC for the modelled
district, forecasts were generated for the future elec-
tricity price, ambient temperature, solar irradiation,
as well as appliance and lighting electric load of each
building. For processing the PV generation as well as
the ambient temperature and solar gains for the RC
models, ERA5 (Hersbach et al. (2020)) weather data
for the coordinates of the Helsinki-Vantaa airport for
the years 2015–2022 was fetched via PyPSA/atlite
(Hofmann et al. (2021)). Similarly, day-ahead elec-
tricity spot prices for the years 2015–2022 were ob-
tained from the ENTSO-E transparency platform for
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Figure 1: Illustrations of the modelled buildings and their gross floor areas (edited from Rasku et al. (2023)),
including two detached houses (DH1 & DH2), an apartment block (AB), an office building (OB), a service
building (SB), and a communal building (CB).
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Figure 2: District model structure. Each building had their own “Building electricity grid” node, “Appliance
and lighting electric load”, heating systems, and RC models connected to the shared “District electricity grid”
node.



Finland. A 10% retail profit margin as well as elec-
tricity taxes and transmission fees totalling around
50EUR/MWh were assumed to apply on top of the
electricity import spot market price, while electricity
exported from the district was sold at the spot price.

The appliance and lighting electric load profiles were
based on the Electricity Hourly Dataset by Godahewa
et al. (2020), containing 321 time series from 2012
to 2014. Inconsistent and season-dependent profiles
were filtered out to improve the forecasts and avoid
exaggerating the electric heating load. Six profiles
that were deemed appropriate were hand-picked for
the buildings, while the rest were used for generating
the forecasts.

All of the aforementioned data was organised into
four scenarios for the MPCs:

Realization contains data of what actually hap-
pens during the year 2022.

Mean represents the expected future, formed by
taking the mean value for each hour of each sam-
pled year.

Optimistic represents a best-case future, formed
by taking the maximum ambient temperature
and solar irradiation, as well as the minimum
electricity price and load for each hour of each
sampled year.

Pessimistic represents a worst-case future, formed
similar to the above, but with opposite extremes.

When generating the scenarios, all time series data
was first normalised for the processing using the mean
value of each year, and later scaled for the year 2022
using its respective yearly mean values. 48-hour fore-
casts updating every 6 hours were then generated for
SpineOpt, with the forecasts improved for the imme-
diate future using via interpolation using the Real-
ization data. However, note that the electricity day-
ahead market was assumed to follow NordPool con-
ventions, clearing the market and setting the prices
for the next day at 12:00 UTC+00. Thus, the elec-
tricity prices were known 12–36 hours in advance for
all scenarios depending on when the forecasts were
created.

Unfortunately, due to lack of meaningful data, fore-
casts for DHW demand and internal heat gains could
not be generated, and standard daily profiles from the
Finnish building code calculation guide by Kurnitski
et al. (2011) were used for every building and fore-
cast. It is worth noting that forecasts generated this
way are not particularly accurate or realistic. How-
ever, for the purposes of demonstrating the viability
of stochastic MPC using SpineOpt in this work, they
were deemed sufficient.

MPC using SpineOpt

Exploiting the generic design of SpineOpt, the rolling
horizon optimal MPC problem for the district was
implemented as

Min.
v

f =
∑
t∈T

∑
s∈St

pweight
s ∆t

(
(1)

pvom cost
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vflowu,d,n,t,s = pratiou,d,n,d′,n′vflowu,d′,n′,t,s (3)

∃ (u, d, n, d′, n′) pratiou,d,n,d′,n′ ̸= 0,

∀ t ∈ T, s ∈ St
and pstate min

n ≤ vstaten,t,s ≤ pstate cap
n (4)

∃n vstaten,t,s ,∀ t ∈ T, s ∈ St
0 ≤ vflowu,d,n,t,s ≤ pcapacityu,d,n,t,s (5)

∃ (u, d, n) pcapacityu,d,n,t,s,

∀ t ∈ T, s ∈ St

where p and v represent the used parameters and deci-
sion variables from SpineOpt respectively, with their
names indicated by the superscripts and their indices
by the subscripts. The set of time steps t ∈ T con-
tains the hourly (∆t = 1h ∀ t ∈ T) time steps for
the current 48-hour optimisation horizon, while the
set of scenarios s ∈ St contains the scenarios s ac-
tive on each time step t. Meanwhile, the sets n ∈ N,
u ∈ U, and d ∈ D represent the different nodes n,
units u, and energy flow variable directions d of the
modelled system illustrated in Figure 2. Please note
that Eqs. (1)–(5) have been considerably simplified
from their full formulation in SpineOpt, omitting a
lot of unused features, as well as condensing some of
the parameter and variable names.

The objective function in Eq. (1) captures the ex-
pected total costs of the district over the 48-hour op-
timisation horizon t ∈ T across the scenarios s ∈ St
active on each time step. The vom cost [€/Wh] pa-
rameters of the import and export units represent the
hourly costs/profits of their respective flow [W] vari-
ables into and from the district electricity node. Each
scenario s was assigned a probability weight to ac-
count for the expected costs across potentially mul-



tiple scenarios. Note that any potential costs of cy-
cling the battery or the heating/cooling equipment
were omitted for simplicity.

The node energy balance constraint in Eq. (2) en-
forces the key dynamics of the MPC. The state coeff
parameters represent the effective thermal masses
[Wh/K] of the building RC model temperature nodes,
while the state variables depict their temperatures
[K]. The s and s′ scenarios differ only over the bound-
ary between the first and second time steps, when
the model transitions from known Realization sce-
nario to the future forecast scenarios for the rest of
the horizon. The set Nn contains the nodes n′ linked
to the current node n via heat transfer coefficients
[W/K], implemented using the diff coeff parameter.
Unfortunately, SpineOpt lacks dedicated parameters
for ambient temperatures, but the related heat trans-
fer term was separated into its node temperature and
ambient temperature dependent constituents and im-
plemented using a combination of the frac state loss
[W/K] and demand [W] parameters. Similarly, the
impact of solar and internal heat gains as well as
DHW demand were processed into the demand pa-
rameter for the applicable nodes. For further de-
tails about the building RC model processing for Spi-
neOpt, please refer to the ArchetypeBuildingModel.jl
online documentation by Rasku (2022). The heat-
ing/cooling equipment flow variables add or remove
heat from the temperature nodes while consuming
electricity from the electricity nodes. Similarly, the
flow variables handle electricity transfer between the
district electricity node and the individual building
electricity nodes. For the electricity nodes, the state
variables were disabled, effectively reducing Eq. (2)
to a power balance constraint instead.

The flow ratio constraint in Eq. (3) enforces the SPF
between the flow variables from the input node n′

into the output node n of each unit u, with the excep-
tion of the ground-source cooling units. Instead, the
ratio parameter for the cooling units constrains the
flows from both the building electricity node and the
interior air and furniture node. Electricity transfer
between the district electricity node and the build-
ing electricity nodes was assumed to have negligible
losses.

Finally, Eqs. (4) and (5) set the upper and lower
bounds permitted for the state and flow variables.
While the state min and state cap parameters were
set for all temperature nodes for computational rea-
sons, only the bounds shown in Table 1 were tight
enough to impact model operation. Similarly, the
heating and cooling units had their capacity param-
eters set according to the previous sections, sized to
survive the baseline full-year simulations without is-
sues. The PV generation was implemented using
stochastic time series data for the capacity param-
eter, allowing the PV to be curtailed.

Four full-year simulations were performed in order to
compare their performance:

Baseline was calculated directly from the input
data without SpineOpt, assuming the district
does not consider the hourly electricity prices.
This meant the heating and cooling systems were
simply operated to satisfy demand and thermal
comfort, and the battery was charged and dis-
charged solely to reduce electricity export and
import for each hourly time step separately.

Perfect MPC only used the Realization scenario,
thus having perfect information about the future.

Deterministic MPC used the Mean scenario,
thus making decisions based solely on the ex-
pected future.

Stochastic MPC used the Mean, Optimistic, and
Pessimistic scenarios with equal weights, giving
the MPC an idea of the range of possible futures.

Note that the first hour of every window of all MPCs
used the Realization scenario before branching into
the forecast scenarios for the remaining 47 future
hours, in order to simulate the MPC making decisions
in real time. The full-year MPC simulations were
performed using a rolling horizon approach, where
the optimisation problem in Eqs. (1)–(5) was solved
hourly, recording the resulting variable values only
for the first Realization hour of each iteration.

Results

The full-year simulations were performed on a 64-
bit Windows 10 laptop with a Intel(R) Core(TM) i7-
8665U CPU @ 1.90GHz 2.11 GHz processor and 16
GB of RAM. The Perfect and Deterministic MPCs
took roughly 2–3 hours to solve for the full year, while
the Stochastic MPC took around 5–6 hours. This
equals less than three seconds per solve, making real-
time operation feasible. Figure 3 presents an illus-
tration of the Stochastic MPC operation compared to
the Baseline for example 48-hour periods during both
winter and summer. Furthermore, Table 2 provides
a summary of the key results of the simulated MPCs
compared to the Baseline. Note that the presented
costs were post-processed based on the final realised
electricity consumption and prices for all MPCs, not
on the expected future costs of each iteration repre-
sented by the objective function in Eq. (1).

The Stochastic MPC can be seen to perform as ex-
pected in Figure 3, saving costs in winter by shifting
heating and cooling demand towards cheaper hours,
as well as using the battery in a similar manner.
This can also be seen in Table 2, with the total and
average import costs reducing by 4.43–6.10% and
15.81–16.18% respectively despite the 11.92–13.53%
increase in total electricity imports across the differ-
ent MPCs. While shifting the heating and cooling de-
mand did result in increased electricity consumption
between 2.81–4.66% due to increased heat losses, it’s
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Figure 3: Baseline and Stochastic MPC district operation for example 48-hour periods. Electricity supply
into the district is indicated by positive values, while electricity consumption is indicated by negative values.
Furthermore, the areas above and below zero mirror each other, as the supply and demand of electricity within
the district need to be in balance each hour.

Table 2: Summary of the key results and their change relative to the Baseline for each MPC.

Import & Export Baseline Perfect Deterministic Stochastic
Total import [MWh] 2340.33 2619.36 (11.92%) 2625.22 (12.17%) 2656.73 (13.52%)
Total import costs [kEUR] 499.73 469.24 (-6.10%) 469.86 (-5.98%) 477.61 (-4.43%)
Average import price [c/kWh] 21.35 17.91 (-16.10%) 17.9 (-16.18%) 17.98 (-15.81%)
Total export [MWh] 146.54 320.94 (119.01%) 321.13 (119.14%) 319.56 (118.07%)
Total export revenue [kEUR] 27.47 92.64 (237.27%) 92.34 (236.17%) 91.94 (234.70%)
Average export price [c/kWh] 18.74 28.87 (54.00%) 28.75 (53.40%) 28.77 (53.48%)
Total net costs [kEUR] 472.26 376.6 (-20.26%) 377.52 (-20.06%) 385.67 (-18.34%)

Consumption & Generation
Total heating electricity [MWh] 2177.23 2238.51 (2.81%) 2244.41 (3.09%) 2278.72 (4.66%)
Total other electricity [MWh] 968.55 968.55 (0.00%) 968.55 (0.00%) 968.55 (0.00%)
Total PV generation [MWh] 968.58 968.58 (0.00%) 968.58 (0.00%) 968.58 (0.00%)
Total battery charging [MWh] 164.98 561.03 (240.06%) 558.37 (238.45%) 545.64 (230.74%)
Total battery discharging [MWh] 148.39 503.97 (239.63%) 501.56 (238.01%) 490.07 (230.27%)



not enough to account for the increased imports con-
sidering the MPCs had no control over other electric
loads. Instead, the majority of the increased elec-
tricity imports were due to electricity trading with
the battery in summer, seen to discharge during ex-
pensive hours in Figure 3. Table 2 also shows sig-
nificant increases in battery charging and discharging
by 230.27–240.06%, exported electricity and its rev-
enue by 118.07–119.14% and 234.70–237.27% respec-
tively, as well as average export prices increasing by
53.40–54.00%. Note that this behaviour is extremely
dependent on the assumed electricity prices, though,
and more conservative electricity price assumptions
would likely result in more focus on increasing self-
consumption.

The behaviour of the Perfect, Deterministic, and
Stochastic MPC were very similar overall, with only
slight deviations here and there accounting for the
differences in Table 2. As expected, the Perfect MPC
achieved the largest reduction in total net costs of
20.26% compared to the Baseline, while the De-
terministic and Stochastic MPCs achieved relative
savings of 20.06% and 18.34% respectively. While
the Stochastic MPC had more information about
the range of possible futures than the Deterministic
MPC, it does not necessarily translate to better per-
formance. In this case, knowledge of the rather ex-
treme Optimistic and Pessimistic forecasts resulted
in the Stochastic MPC preferring more robust con-
trol, losing to the Deterministic MPC in terms of
savings. However, it is entirely possible that tweak-
ing the weights of the scenarios for the Stochastic
MPC could result in it outperforming the Determin-
istic MPC, but such analysis is outside the scope of
this work.

Overall, it is quite surprising how little difference
there was between the Deterministic and Stochas-
tic MPCs compared to the Perfect MPC. This would
seem to indicate that the weather and load forecasts
were of less importance to the MPC than the elec-
tricity prices, which were assumed to be known 12–
36 hours in advance regardless of the MPC according
to current NordPool day-ahead market clearing con-
ventions. One possible explanation is, that only the
space heating and cooling flexibility is directly influ-
enced by weather conditions, while the battery is only
indirectly affected through PV generation and load
forecasts. Furthermore, due to lacking DHW demand
profile data, the DHW storage tanks were practically
independent of any forecasts, except for the electric-
ity prices. Recent research by Rasku et al. (2023)
also indicates that water heating offers more relative
flexibility than space heating due to less dependence
on ambient weather conditions.

Conclusions

This work demonstrates that SpineOpt is a viable tool
for modelling district-level energy systems using a
small imaginary six-building system with PV genera-
tion and a shared battery. Three economic MPCs us-
ing different 48-hour forecasts of future weather con-
ditions, electric load, and electricity prices were im-
plemented in SpineOpt, and solved hourly for the full
year of 2022. Overall, the MPCs behaved as expected
of their cost minimisation objective, achieving total
net cost savings around 18.34–20.26% in line with
comparable existing literature reviewed by Taheri
et al. (2022). Thus, a similar approach seems viable
to be employed on city or nation-scale as well, depict-
ing flexible building stock operation within large-scale
energy system models. This, in turn, can help better
capture the potential value of building-level flexibil-
ity in system-scale scenario analysis for the coming
decades.

The performance of the Perfect, Deterministic and
Stochastic MPCs was surprisingly similar, empha-
sising the importance of day-ahead electricity prices
known in advance. Furthermore, the rather extreme
electricity prices in 2022 seemed to encourage primar-
ily utilising the common battery for exploiting the
electricity price arbitrage in the summer, resulting in
increased import and export volumes. While this is
extremely dependent on the electricity import and ex-
port price assumptions, it does highlight the potential
need for better electricity market bidding tools also
on the district level. However, suitable business mod-
els and legislation are still required in order to make
building energy flexibility attractive to the stakehold-
ers.
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ter, D. L. Vrabie, and L. Helsen (2020). All you
need to know about model predictive control for
buildings. Annual Reviews in Control 50, 190–232.

EQUA Simulation AB and Aalto University (2013).
IDA Early Stage Building Optimization (ESBO)
v1.13.

Eskola, L., J. Jokisalo, and K. Sirén (2012).
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aux, P. Lopez, C. Lupu, G. Radnoti, P. de Ros-
nay, I. Rozum, F. Vamborg, S. Villaume, and J.-
N. Thépaut (2020). The ERA5 global reanalysis.

Quarterly Journal of the Royal Meteorological So-
ciety 146 (730), 1999–2049.

Hofmann, F., J. Hampp, F. Neumann, T. Brown,
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