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Abstract. Malaria remains endemic in 17 countries in the Americas, where 723,000 cases were reported in 2019. The
majority (. 90%) of the regional malaria burden is found within the Amazon Basin, which includes nine countries and territo-
ries in South America. Locally generated evidence is critical to provide information to public health decision makers upon
which the design of efficient and regionally directed malaria control and elimination programs can be built. Plasmodium vivax
is the predominant malaria parasite in the Amazon Basin. This parasite species appears to be more resilient to malaria control
strategies worldwide. Asymptomatic Plasmodium infections constitute a potentially infectious reservoir that is typically missed
by routine microscopy-based surveillance and often remains untreated. The primary Amazonian malaria vector, Nyssorhyn-
chus (formerly Anopheles) darlingi, has changed its behavior to feed and rest predominantly outdoors, reducing the efficiency
of core vector control measures such as indoor residual spraying and distribution of long-lasting insecticide-treated bed nets.
We review public health implications of recent field-based research carried out by the Amazonia International Center of Excel-
lence in Malaria Research in Peru and Brazil. We discuss the relative role of traditional and novel tools and strategies for bet-
ter malaria control and elimination across the Amazon, including improved diagnostic methods, new anti-relapse medicines,
and biological larvicides, and emphasize the need to integrate research and public health policymaking.

INTRODUCTION

The past decade has seen significant progress toward
malaria elimination in the Americas. Of note, Paraguay, Argen-
tina, and El Salvador were certified malaria-free by the WHO in
2018, 2019, and 2021, respectively. However, malaria remains
endemic in 17 countries and territories in the region; 723,000
cases (76% of them resulting from Plasmodium vivax) were
reported in 2019, and an estimated 139 million people remain
at risk of locally acquired infection.1 The Amazon contributes
90% of the malaria burden in the Americas, with more intense
transmission in riverine villages, farming settlements, gold min-
ing camps, and Amerindian reserves.2 Together, Brazil and
Peru account for 31% of all malaria cases in the Americas.1

There is no one-size-fits-all global strategy for malaria control
and elimination. Human populations worldwide differ in levels
of exposure and susceptibility to the five malaria parasite spe-
cies transmitted to humans by 70 different species of Anophe-
les and Nyssorhynchus mosquitoes. Because sub-Saharan
Africa and South and Southeast Asia account disproportion-
ately for the worldwide disease burden of malaria, including

the vast majority of malaria-attributable deaths,1 Amazonian
malaria remains a relatively low-priority topic on the global pub-
lic health agenda. Thus, locally generated evidence plays a crit-
ical role in the design of elimination strategies tailored for
malaria-endemic settings across the Amazon.
The Amazonia International Center of Excellence in

Malaria Research (ICEMR) program started in 2010 and cur-
rently involves investigators from five research institutions in
the United States, one in Peru, and three in Brazil, in addition
to a range of public health professionals from the Ministries
of Health of Peru and Brazil. The program is funded by the
National Institute of Allergy and Infectious Diseases, NIH.
Key contributions from the Amazonia ICEMR network and
collaborators in Peru and Brazil, with clear implications
for the regional malaria elimination agenda, are highlighted
in Table 1. These include improved case-finding stra-
tegies, novel field-deployable laboratory diagnosis, monitor-
ing of antimalarial treatment efficacy and testing of new
antimalarials, and tools for integrated vector control
management.

POLICY IMPLICATIONS OF LOCALLY
GENERATED EVIDENCE

The Pan American Health Organization (PAHO) has out-
lined its new Diagnosis, Treatment, Investigation and
Response (DTI-R) strategy as a way of “operationalizing in
the Americas the concept of malaria surveillance as an inter-
vention, promoted by the WHO in the Global Technical
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Strategy against Malaria.”3 The DTI-R comprises actions trig-
gered by the routine detection of an isolated malaria case or a
cluster of cases (Figure 1). The strategy aims to provide access
to 1) laboratory diagnosis and 2) prompt malaria treatment,
combined with an effort 3) to detect additional cases when
an index case has been diagnosed, and 4) to implement vec-
tor control measures—mostly indoor residual spraying (IRS)
and distribution of long-lasting insecticide-treated bed nets

(LLINs)—in the vicinity of passively detected cases (Figure 13).
During the past decade, the Amazonia ICEMR network has
addressed each of the four components of the DTI-R strategy
and provided evidence that can be translated into real-world
interventions.
Our research on laboratory diagnosis of malaria addresses

step 1 of the DTI-R strategy. First, we have shown that
most parasite carriers in Peru and Brazil harbor low-density

TABLE 1
Challenges for malaria control in the Amazon and their public health implications

Challenge Evidence from field studies in Amazonian Peru and Brazil Public health implications

Case finding 1) Extensive asymptomatic parasite reservoir that remains undetected
and untreated. 2) Asymptomatic Plasmodium vivax carriers are
infectious to local vectors. 3) Reactive case detection–based
strategies can identify a large proportion of parasite carriers that
would be missed by passive case finding.

Active case-finding strategies are
needed to eliminate the infectious
human reservoir.

Laboratory
diagnosis

1) Low-density parasitemias are common in low-endemicity settings
and are typically missed by microscopy. 2) Rapid diagnostic test
sensitivity for Falciparum malaria detection may be reduced
drastically as a result of hrp2 gene deletion. 3) Field-deployable
molecular tests can detect submicroscopic parasitemias.

Infections are often missed by
conventional microscopy and rapid
diagnostic tests.

Treatment 1) First-line chloroquine–PQ treatment remains efficacious for P. vivax
malaria, but . 10% of infections relapse despite routinely prescribed
PQ treatment, possibly because of poor adherence and low
cytochrome P450 2D6–mediated PQ metabolization. 2) Artemisinin-
based combination therapies (artesunate–mefloquine and
artemether–lumefantrine) remain highly efficacious for P. falciparum
malaria. 3) Tafenoquine is as effective as low-dose PQ to prevent
P. vivax relapses.

Malaria treatment regimens may be
suboptimal despite their high
efficacy when administered under
supervision in clinical trials.

Vector control 1) Local vectors have shifted to predominantly exophagic and exophilic
behavior. 2) Nyssorhynchus darlingi blood-feeding is mostly
crepuscular. 3) Areas with accessible breeding habitats may benefit
from larval source management strategies (e.g., larviciding).

Changes in biting behavior may
undermine the efficacy of core
vector control measures (indoor
residual spraying and long-lasting
insecticide-treated net distribution).

hrp25 histidine-rich protein 2; PQ5 primaquine.

FIGURE 1. The Diagnosis, Treatment, Investigation, and Response strategy of the Pan American Health Organization for malaria control and
elimination in the Americas. ILS 5 indoor residual spraying; LLIN 5 long-lasting insecticide-treated net; RDT 5 rapid diagnostic test. Reproduced
from the Pan American Health Organization.3
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parasitemias that are often missed by conventional micros-
copy.4–7 Mature gametocytes are detected by molecular
methods in the vast majority of submicroscopic P. vivax car-
riers,4,6,8 consistent with their possible role as an infectious
reservoir that maintains ongoing malaria transmission.
Next, we and others identified the rapid spread of Plasmo-

dium falciparum lineages lacking the histidine-rich protein 2
(HRP2), which severely limits the utility of HRP2-based
malaria rapid diagnostic tests (RDTs) in our field sites in the
Amazon.9,10 The WHO has developed standardized survey
protocols to measure the prevalence of HRP2 deletion, but
not all malaria control programs have the capacity to per-
form the required molecular tests. To fill this gap, ICEMR
investigators in Peru joined the international laboratory net-
work set up by the WHO to support the ongoing global map-
ping of HRP2 deletions (https://www.who.int/malaria/mpac/
mpac-mar2017-hrp2-3-deletions-session7.pdf?ua=1).11

Malaria infections that are missed by microscopy or RDTs
may potentially be detected by field-deployable molecular tests
such as simplified protocols for loop-mediated isothermal
amplification of nucleic acids.12–14 As examples of policy
changes associated with the use of nucleic acid-based diag-
nosis, we note that a positive molecular test result is now
accepted by the Ministry of Health of Brazil as evidence of
infection that must trigger antimalarial treatment.15 Similarly,
molecular tests carried out within the National Network of
Public Health Laboratories can confirm malaria diagnosis
leading to treatment in Peru.16 We note that polymerase
chain reaction was recently shown to detect substantially
more malaria infections than conventional microscopy in
community-wide active case detection rounds in the Loreto
region of Peru.17 Moreover, the National Plan towards
Malaria Elimination in Peru (2021–2030) envisages the grad-
ual implementation of polymerase chain reaction-based and
loop-mediated isothermal amplification-based diagnosis in
reference laboratories and selected health centers country-
wide, consistent with the notion that molecular diagnostics
may be incorporated by the national malaria control pro-
grams in the Amazon.
Clinical trials are typically outside the scope of the ICEMR

research program. However, ICEMR investigators and their
partners have contributed to step 2 of the DTI-R strategy by
planning, executing, and analyzing clinical studies to monitor
the efficacy of antimalarial regimens currently in use in the
Amazon. Chloroquine was shown to remain highly effica-
cious for P. vivax malaria in the main transmission hotspot of
Brazil,18 but mathematical modeling estimates that 11% of
P. vivax malaria infections will relapse within 12 months
despite the routinely prescribed standard low-dose (3.5 mg/kg
over 7 or 14 days) treatment with primaquine.18 Low cyto-
chrome P450 2D6, or CYP2D6, enzyme activity, which may
impair primaquine metabolization and reduce its anti-relapse
efficacy,19 occurs in 20% to 35% of Amazonians and may
account for some primaquine failures.18,21

We have also confirmed the high efficacy of the fixed-
dose artesunate–mefloquine combination therapy for P. fal-
ciparum infection in Brazil,22 despite the extensive local use
of mefloquine as a monotherapy in the 1990s. This result
paved the way for a treatment policy change in Brazil:
artesunate–mefloquine was officially reintroduced as a first-
line treatment of P. falciparummalaria in January 2020.15

ICEMR investigators played a leading role in the multicen-
tric DETECTIVE and GATHER trials, which demonstrated
that single-dose tafenoquine is as efficacious as the stan-
dard low-dose primaquine regimen used across the Amazon
to prevent P. vivax relapses.23–25 These findings have sup-
ported tafenoquine licensing by the U.S. Food and Drug
Administration and similar agencies in several malaria-
endemic countries, including Peru and Brazil (https://www.
keepingthepromisereport.org/case-studies/tafenoquine).
Moreover, these studies provided further evidence that sub-
optimal primaquine doses are routinely prescribed to
patients with P. vivax malaria who weigh more than 60 kg,
leading to more frequent relapses.23–25

Step 3 of the DTI-R strategy comprises reactive case
detection and treatment. The ICEMR network generated evi-
dence that supports reactive case detection as a strategy to
find additional P. vivax infections, most of them asymptom-
atic, in the vicinity of passively detected index cases in resid-
ual malaria settings in the Amazon.26 Subclinical P. vivax
infections missed by routine surveillance tend to be long
lasting, and asymptomatic carriers can infect the primary
local malaria vector, Ny. darlingi, although much less effi-
ciently than symptomatic ones.27

Finally, we have identified major challenges for vector con-
trol—a key component of the “response” step of the DTI-R
strategy. Nyssorhynchus darlingi has gradually changed its
biting behavior during the past few decades. This vector is
now predominantly exophilic and exophagic,28–30 and its bit-
ing activity may peak at dusk and dawn or around mid-
night.31 These findings highlight the need for vector control
tailored to the changing biting behavior of Amazonian vec-
tors, because outdoor biting and early-evening feeding may
undermine the effectiveness of LLINs and IRS in the
region.32

Larval source management (LSM) is defined as “the tar-
geted management of mosquito breeding sites, with the
objective to reduce the number of mosquito larvae and
pupae.”33 This can be achieved by permanent or recurrent
habitat modification, biologic control with natural predators,
and chemical or biologic larviciding,33 but LSM remains little
explored as a supplementary vector control measure in the
Amazon. One reason is that vector breeding sites are often
not easy to find in densely vegetated areas.5 However, we
showed that the most productive natural larval habitats may
be located accurately using drones equipped with high-
resolution multispectral imagery, as distinctive spectral pro-
files can be characterized for water bodies that are positive
for Ny. darlingi.34

Since the mid-2000s, aquaculture has become an important
economic activity in the Amazon, especially in Brazil. We and
others have shown that natural and human-made fish-farming
ponds are now significant larval habitats across the
region.30,35–37 These easily located breeding habitats are suit-
able targets for LSM. Accordingly, we have shown that the
monthly application of environmentally safe biologic larvicides
with extended residual activity, such as commercially available
granular formulations of toxins from Bacillus thuringiensis sero-
var israelensis and Lysinibacillus (formerly Bacillus) sphaericus,38

is an effective way of reducing larval density in fish-farming
ponds,38,39 with a potential impact on malaria transmission.39

Importantly, these products do not appear to impact
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biodiversity or interfere with the safety of the water and food
sources.40,41

THE MALARIA ZERO PLAN IN PERU

ICEMR investigators were key contributors to the design
and implementation of the malaria elimination program known
as Malaria Zero Plan (MZP), which targets the Loreto region,
the main transmission area of Peru. Launched in April 2017,
the MZP takes a community-level approach to malaria control
with the ultimate goal of elimination.42 Major components of
the Amazonia ICEMR research agenda have been incorpo-
rated by the MZP, such as the need to identify and treat
asymptomatic parasite carriers and the application of biologic
larvicides to supplement core vector control interventions.
The plan comprises three complementary and partially over-

lapping phases (Figure 242). The control phase, with an
expected duration of 3 years, prioritizes symptomatic infec-
tions with the aim of reducing malaria transmission by 70% in
settings with very high, high, and moderate endemicity. The
next phase aims to eliminate malaria parasites circulating at a
regional level by targeting asymptomatic and low-density
infections, in addition to symptomatic infections. It will extend
over 10 years. The final elimination phase aims to identify and
eliminate residual malaria foci and prevent malaria reintroduc-
tion. This final phase is expected to last 15 years.
The first phase of MZP targets high-endemicity settings in

Loreto. The MZP test-and-treat strategy comprises the pro-
vision of RDTs and antimalarials to trained community health
promoters to support village-based diagnostics and treat-
ment. These are complemented with vector control meas-
ures, such as IRS with the phosphorothioate insecticide
pirimiphos–methyl, LLIN distribution, and targeted larvicid-
ing. Most community health promoters are members of

malaria-endemic Amerindian populations in rural Loreto.
Importantly, the Amazonia ICEMR has provided crucial labo-
ratory support to monitor the efficacy of antimalarials and
insecticides used in the MZP.43

The number of malaria cases recorded in the Loreto region
has decreased by 74.5% from 2017 to 2021. The Andoas
District in Datem, Mara~non Province, was recognized by the
PAHO as one of the “Malaria Champions of the Americas” in
2021.44 The Malaria Champions of the Americas Award rec-
ognizes innovative efforts that contribute significantly toward
reducing malaria transmission. Andoas was cited for its
steadfast implementation of the MZP, including extensive
capacity-building among community health workers, and for
maintaining running of the program despite the dramatic
effects of the COVID-19 pandemic in the Loreto region.45

INFORMATION AND DATA SHARING

The examples presented here illustrate how the Amazonia
ICEMR network has collaborated with policymakers in the
Ministries of Health of Peru and Brazil, and PAHO to promote
evidence-based malaria control measures across the region.
In addition, ICEMR investigators were members of the PAHO
Malaria Technical Advisory Group (2015–2021) and the Expert
Advisory Committee of the MZP in Peru (2017–2021), and cur-
rently serve as technical reviewers of the new National Plan for
Malaria Elimination in Peru (2021–2030). The new plan aims to
allow continuity of the actions that have been developed in
Loreto and extend them to other malaria-endemic regions
in Peru.
Communication with study populations exposed to malaria

transmission in the Amazon has also been prioritized via regular
face-to-face meetings with local stakeholders. Moreover, we
have produced a series of podcasts46 and short videos47–49

FIGURE 2. The Malaria Zero Plan strategy of the Ministry of Health of Peru for malaria elimination in the Loreto region. Adapted from Ministry of
Health.39
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targeted at urban and peri-urban communities where ICEMR
activities take place and Internet access is widespread.
The collaboration within the malaria research community,

including investigators of several ICEMRs, has been facili-
tated by extensive sharing of protocols, data, and biologic
specimens. Data generated by the Amazonia ICEMR have
been made publicly available in open-access online data-
bases such as ClinEpiDB,50 PlasmoDB,51 and VectorBase,52

which are now part of the VEuPathDB resource center53

(Table 2). Data sharing has allowed others to reuse data for
research and teaching purposes, and to increase the reach
and impact of the original studies. Epidemiological data from
ClinEpiDB can be used to explore associations between risk
factors and malaria, compare diagnostic tests, and so on,
whereas serum antibody data shared via PlasmoDB may be
used to identify common antigens recognized across geo-
graphically disparate areas.54 Our extensive data on vector
biology in the Amazon can be used to look at abundance of dif-
ferent species and blood meal types and risk of transmission.

IMPLICATIONS FOR FUTURE RESEARCH

We identified at least four areas where implementation
research is urgently needed to translate scientific evidence
into malaria control interventions.
First, control and elimination efforts in the Amazon require a

quantitative understanding of malaria transmission dynamics
for planning, monitoring, and evaluating the effectiveness of
interventions. This can be achieved with mathematical models
that properly account for risk heterogeneity in communities
approaching elimination, where a few high-risk individuals con-
tribute disproportionately to overall malaria burden and onward
transmission.55 Nevertheless, the potential of mathematical
modeling to identify priority targets (e.g., high-risk populations)
for interventions remains largely neglected in the Amazon.
Building malaria modeling capacity in the region is clearly a top
priority.
Second, serological markers can be explored further to

identify recent exposure to malaria and support decision mak-
ing.56,57 For example, the absence of antibody reactivity in
children can confirm that malaria transmission has ceased in
recent years. Levels of antibodies are useful to map and strat-
ify malaria risk at a regional level, and to assess the effect of
control interventions.58 Moreover, serology may allow stratifi-
cation by malaria burden and thus optimize local interven-
tions.58 Importantly, whether serological evidence of recent
P. vivax infection may be used to trigger anti-relapse treatment
in public health campaigns remains to be explored. However,
surprising little research has addressed the use of novel

high-throughput antibody detection methods to guide malaria
control policies in the Amazon.
Third, cluster-randomized controlled trials are required to

test whether LSM with periodic application of biologic larvi-
cides can supplement core vector control measures to
reduce community-wide malaria transmission. Larviciding is
well suited to control exophagic and exophilic mosquito vec-
tors in densely populated areas with well-delineated, easy-
to-find, and readily accessible breeding sites.59 Fish-farming
ponds, which are now commonly found in the periphery of
cities and towns across the Brazilian Amazon, offer a perfect
fit for these criteria.30,35–39

Last, cluster-randomized controlled trials are needed to
evaluate the effectiveness of focal mass drug administration
to reduce P. vivax transmission in selected transmission hot-
spots. The pre-elimination phase of the MZP has incorpo-
rated targeted antimalarial drug administration as a key
strategy in Peru (Figure 2), although locally generated evi-
dence is currently lacking to support its use in public health
campaigns across the Amazon.

CAPACITY-BUILDING AND TRAINING IN
RESEARCH CONTEXT

Field and laboratory research carried out by the Amazonia
ICEMR investigators has provided graduate and postdoc-
toral training opportunities for students and scientists from
Latin America and other regions across the globe. At the
Universidad Peruana Cayetano Heredia in Peru, 10 master
of science (MS) candidates, 2 doctoral candidates, and 5
postdoctoral fellows have completed their training since the
project onset in 2010; 2 MS candidates, 5 doctoral candi-
dates, and 3 postdoctoral fellows are currently involved in
ongoing research projects. At the University of S~ao Paulo in
Brazil, 10 MS candidates, 6 doctoral candidates, and 5 post-
doctoral fellows have completed their training, and 2 doc-
toral candidates and 2 postdoctoral fellows are associated
with ongoing research. At Fiocruz in Brazil, three MS candi-
dates, two doctoral candidates, and four postdoctoral fel-
lows have participated in the ICEMR projects as part of their
training. At SUNY-Albany and the Wadsworth Center, New
York State Department of Health, two doctoral candidates
and one postdoctoral fellow have completed their training,
and one master of public health candidate and one postdoc-
toral fellow are involved in ongoing research. At the Univer-
sity of California-San Diego and Yale University, a combined
total of four MS candidates, four doctoral candidates, and
four postdoctoral fellows have carried out onsite training to
supplement their education and training in Peru and Brazil.
These visiting research experiences were designed to

TABLE 2
Data generated by the Amazonia International Center of Excellence in Malaria Research made accessible via open-access databases

such as ClinEpiDB, PlasmoDB, and VectorBase

Study Data resource Data description

Peru cohort ClinEpiDB Amazonia ICEMR Peru cohort Human clinical and epidemiological data 2012–15
PlasmoDB data set DS_4267c95a1c Human serum antibody levels
VectorBase MapVEu Project VBP0000527 Mosquito microsatellite data 2012
VectorBase MapVEu Project VBP0000166 Mosquito blood meal data 2013

Brazil cohort ClinEpiDB Amazonia ICEMR Brazil cohort Human clinical and epidemiological data 2010–14
VectorBase MapVEu Project VBP0000323 Mosquito abundance data 2017

ICEMR5 International Center of Excellence inMalaria Research.
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supplement home-country training with exposure to U.S.-
based training.
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