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Abstract

This paper presents a review of CBD and its application to building design in particular. Case-based design is the
application of case-based reasoning to the design process. Design maps well to case-based reasoning because designers
use parts of previous design solutions in developing new design solutions. This paper identifies problems of case
representation, retrieval, adaptation, presentation, and case-based maintenance along with creativity, legal, and ethical
issues that need to be addressed by CBD systems. It provides a comprehensive review of CBD systems developed for
building design and provides a detailed comparison of the CBD systems reviewed.
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1. INTRODUCTION

Case-based design (CBD) is the application of case-based
reasoning (CBR) to design; thus, solving design problems
by adapting solutions that were used to solve previous de-
sign problems. Design is an ill-structured domain (Simon,
1973) where knowledge required for problem solving cannot
be formalized into a robust model. This makes traditional
artificial intelligence (AI) techniques such as rule-based ex-
pert systems inadequate for design problem solving. De-
signers use context-based knowledge and problem-solving
skills along with previous design experience to solve de-
sign problems. The uniqueness of a design solution often
depends on the creative ability of the designer to satisfy con-
straints within the problem context.

Because experience plays a key role in developing design
solutions, a reasoning method which organizes previous ex-
periences as cases to reason—namely, CBR seems well suited
to design problem solving. It is known that designers use
their experience of design along with combinations and ad-
aptations of previous designs or parts of designs in creating
a new design (Akin, 1986). Schmitt et al. (1994) point out
that such adaptations and combinations of previous design

Reprint requests to: Dr. Ian Watson, AI-CBR, Bridgewater Building,
University of Salford, Salford, M5 4WT, U.K. E-mail: i.d.watson®
surveying.salford.ac.uk.

features in the architectural design of buildings have re-
sulted in many impressive and innovative designs. Oxman
and Oxman (I993a,b) term this precedent-based design.

The design of simple buildings, such as houses, provides
a classic example of CBD. In such instances, especially in
the case of dwellings in large housing estates, an individual
house design is an adaptation of a basic house plan suited to
its location and the specific requirements of its prospective
occupants. Adaptation of the basic plan may involve the ad-
dition of some extra facility to the house, such as a conser-
vatory or garage, and commonly involves creating mirror
images or simple rotations of the basic plan.

This paper has the following objectives:

• to briefly introduce the techniques of CBR;

• to analyze the Design Task to demonstrate the suitabil-
ity of CBR for design;

• to identify socio-technical issues in CBD; and

• to provide a comprehensive review, analysis, and com-
parison of CBD systems developed for building design.

2. CASE-BASED REASONING

The origins of the present state-of-the-art in CBR date back
to the work of Schank and Abelson (1975, 1977) on dy-
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namic memory and the central role that earlier situations
and situation patterns have in problem solving and learning
(Slade, 1991; Kolodner, 1993; Aamodt & Plaza, 1994; Wat-
son & Marir, 1994). Case-based reasoning has grown out of
psychological models of episodic memory and the techno-
logical impetus of AI. Thus, CBR provides a methodology
for building intelligent systems and a cognitive model of
reasoning.

In the words of Slate (1991):

Expertise comprises experience. In solving a new prob-
lem, we rely on past episodes. We need to remember what
plans succeed and what plans fail. We need to know how
to modify an old plan to fit a new situation. Case-Based
Reasoning is a general paradigm for reasoning from ex-
perience. It assumes a memory model for representing,
indexing and organising past cases and a process model
for retrieving and modifying old cases and assimilating
new ones. Case-Based Reasoning provides a scientific
cognitive model.

Case-based reasoning is commonly described as a cycli-
cal process as shown in Figure 1 [after Aamodt and Plaza,
(1994)]. A CBR system retrieves a suitable case from the
case library by matching indexes established for the new
problem. The information and knowledge in the retrieved
case are then reused to provide an initial solution to the prob-
lem posed. Where the initial solution does not fully satisfy
the problem specification, the retrieved case's solution is
adapted using domain rules, heuristics, or human interven-
tion; that is, the solution is revised. The adapted solution is
evaluated to assess the suitability of the new solution. If it

Confirmed
Solution

Proposed
Solution

provides a sufficiently valuable solution, it may be retained
and added to the case library.

The next section examines design and assesses how it
matches the CBR cycle.

3. DESIGN TASK ANALYSIS

The design of a complex artefact such as a building in-
volves a process with distinguishable stages, each generat-
ing more detail in the design (Mackinder & Marvin, 1982;
Perera, 1989). In general, any design involves mapping from
the design specification to components and building ele-
ments, that is, mapping from behavior to structure. This typ-
ically involves a search or exploration of the possible
subassemblies of constituent components (Fig. 2). Hence,
design is a synthesizing task (Chandrasekaran, 1990).

This paper does not discuss design methods in detail, as
this is not the objective of the paper. The propose critique
modify (PCM) design methodology of Chandrasekaran
(1990) is described to indicate the suitability of the design
task to CBR. Further discussion and analysis of other de-
sign methods can be found in Asimov (1965), Pahl and Be-
itz (1984), Darke (1984), Dixon (1988), Tomiyama and
Yoshikawa (1987), Mostow (1989), Gero (1990), Suh (1990),
Flemming et al. (1992), Fey and Vertkin (1993), Arcisze-
wski and Michalski (1994).

3.1. Definition of the design task

A designer is assigned the task of specifying an artefact that
delivers some function and satisfies some constraints using
a set of design primitives, subject to interrelationships of
components. For example, an architect can assume the avail-
ability of walls, floors, roofs, doors, and windows as design
primitives for a building. Chandrasekaran (1990) defines the
design task as follows:

The design problem is specified by (1) a set of functions
(those explicitly stated by the design consumer as well as
those implicitly defined by the domain) to be delivered
by an artefact and a set of constraints to be satisfied and
(2) a technology, that is, a repertoire of components as-
sumed to be available and a vocabulary of relations be-
tween components.

The constraints might pertain to the design parameters
themselves, the process of making the artefact, or the de-
sign process. The solution to the design problem consists
of a complete specification of a set of components and
their relations that together describe an artefact that de-
livers the functions and satisfies the constraints.

Hence, design is a recursive process where primitives are
adjusted to satisfy the specification for the artefact to ob-
tain the desired function while satisfying conditions of in-
terrelationships between components. The fact that at the
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Fig. 2. The design task.

inception of a design the design problem specification is
often minimal in terms of functional constraints, contrib-
utes to the recursiveness.

3.2. Use of methods in the design process

A method can be described in terms of the operators it uses,
the objects it operates on, and any additional knowledge
about how to organize operator applications that satisfy the
goal (Chandrasekaran, 1990). He further classifies design
problem-solving methods into either:

1. a problem space search [after Newell (1980)], or

2. algorithmic solutions.

Algorithmic solutions are more applicable to structured do-
mains. But for ill-structured domains, such as design, a prob-
lem space search or a combination of both methods are more
relevant. Chandrasekaran calls these methods Propose-
Critique-Modify (PCM). These have the subtasks of pro-
posing partial or complete design solutions, verifying
proposed solutions, critiquing the proposals by identifying
causes of failure if any, and modifying proposals to satisfy
design goals. Figure 3 provides an overview of the PCM
process, each of which is described below.
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Fig. 3. Overview of PCM method for design.
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• Propose—involves using domain knowledge to map
part or all of the specification to partial or complete
design proposals. This involves:

1. problem decomposition,

2. retrieval of designs from memory—that is CBR, and

3. constraint satisfaction and solution composition.

The first method uses domain knowledge to map sub-
sets of design specifications into a set of smaller de-
sign problems. Case-based reasoning retrieves designs
from memory to propose a design as a solution or par-
tial solution. Constraint satisfaction uses a variety of
quantitative and qualitative optimization and con-
straint satisfaction techniques.

• Verification—is the process of checking that the de-
sign proposal satisfies functional and other specifica-
tions. It can either be by use of domain-specific
algorithms or by visual simulation. Case-based design
systems use both verification methods.

• Critiquing—is the assessment of the proposed design
solution. Here instances of a design's failures may be
analyzed. Parts of the design are identified as poten-
tially responsible for unacceptable behavior or con-
straint violation; that is, mapping from undesirable
behavior to parts of the structure responsible for that
behavior. Two methods are commonly used for this pur-
pose:

1. Dependency Analysis (Stallman & Sussman, 1977)
is used where explicit information is available in
the form of knowledge that explicitly relates types
of constraints or specification violations of prior de-
sign commitments.

2. Functional Analysis (Goel, 1989) identifies viola-
tions of behavior or relationships between structure
and the intended functions.

Both of these methods are used for critiquing and the
subsequent adaptation of design in CBD systems. It is
often difficult to differentiate between the two meth-
ods in practical instances of critiquing. However, some
form of critiquing is a prerequisite for design adapta-
tion.

• Modification—takes information about a failure of a
proposed design as its input and then changes the de-
sign to get closer to the desired specification. Domain-
specific knowledge can be used to guide the adaptation
process. The strategies available are numerous and their
usage in CBD systems vary considerably.

The design methodology described in this section clearly
demonstrates parallels with the CBR cycle, as is shown in
Figure 4.

/. Watson and S. Perera

Previous ±
solutions ;;

-~———

f Problem ^
V Description J

/ ' D e s i g n >v '\

V Problem J '

Deagn
: solutions

ff ar*
Fig. 4. Mapping the design task to the CBR-cycle.

4. CASE-BASED DESIGN

Case-based reasoning is a useful tool for intelligent system
development in a domain where either an explicit model does
not exist or one is not yet adequately understood (Kolodner,
1993). Design is one such domain. Simon (1973) describes
design as an ill-structured problem, and Maher and Zhang
(1993) state that design experience plays an important role.
This supports the suitability of CBR for design problem solv-
ing. The analysis of the design task using the PCM method
of design also clearly supports the suitability of CBR for
design.

During the design process, designers reason using previ-
ous designs (either parts of designs or whole designs) (Mac-
kinder & Marvin, 1982; Akin, 1988; Schmitt, 1993a;
Bartsch-Sporl, 1995). In CBD the designer is offered pre-
vious solutions to a similar problem indicating how a pre-
vious combination of constraints was handled (Schmitt,
1993a). This process of using previous designs in the cre-
ation of new designs is case-based design. Case-based de-
sign can be defined as:

The process of creating a new design solution by com-
bining and/or adapting previous design solutions.

Maher and Zhang (1993) describe CBD as a hybrid ap-
proach, as it uses specific design cases in conjunction with
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generalized or compiled knowledge. It provides the de-
signer with at least a starting point if not a complete or com-
prehensive solution.

The following sections examine how CBR was first used
in design and discuss its applicability to design in more de-
tail.

4.1. History of CBD

The earliest CBD systems can be found in work related to
AI in design. These were developed as expert systems for
design and were aimed at automating routine design tasks
mostly at the conceptual design stage in mechanical engi-
neering (Dixon & Simmons, 1983, 1984). PRIDE (Mittal
et al., 1985), an expert system for the design of paper han-
dling systems in copiers, used previous designs for routine
design tasks and design experience held in a large knowl-
edge base to solve more complex design problems. This work
tends to conform with the PCM method and thus conforms
to the CBR cycle.

A clearer example of CBD comes from the work related
to the subsequent development of STRUPLE by Maher
(1987). STRUPLE is an expert system for preliminary struc-
tural design in which an intelligent database interface was
developed. The database STRUPLE used contained designs
of multistorey buildings (this system will be discussed in
detail in Section 6).

CYCLOPS (Navinchandra, 1987, 1988, 1991) is widely
considered as the first true CBD system. It combines
constraint-based solution generation with case-based debug-
ging and repair for landscape designs (this system will also
be discussed in detail in Section 6).

The concept of using design prototypes as the basis for
creative design (Gero, 1987,1990; Rosenman & Gero, 1993)
also relates to CBD and its early developments as a re-
search paradigm. A system based on design prototypes as a
generalization of design elements provides a framework for
storing design experience incorporating necessary func-
tional, behavioral, and structural information. These con-
cepts have been used in CBD systems such as CADSYN
(Maher & Zhang, 1991).

Interestingly, none of these systems used the term CBD.
Navinchandra (1987) used the term "precedent-based de-
sign," while Maher (1987) used the term "experience-
based design." She used the definition of "analogical
reasoning" by Carbonell (1986) as the theoretical basis for
her work in creating STRUPLE. It was the first workshop
on CBR (Kolodner, 1988) that saw the formalization of CBD
as a distinct research area. This workshop saw the presen-
tation of many CBD systems from various design disci-
plines (Pu, 1993), including: JULIA (Hinrichs, 1988), ameal
planning system, and CYCLOPS. These were soon fol-
lowed by many other CBD systems, such as KRITIK (Goel,
1989), ARCHIE (Goel et al., 1991), CADSYN, CAB-
Assembly (Pu & Reschberger, 1991), CADET (Navinchan-
dra etal., 1991;Sycaraetal., 1992; Sycara& Navinchandra,

1992), DEJAVU (Bardasz & Zeid, 1993). All of these sys-
tems address issues of CBR related to design.

4.2. Overview of CBD approaches

From this section onward, in line with the objectives of this
paper, attention focuses on building design. Due to the com-
plexity of buildings, design commonly involves many par-
ticipants thus creating different perspectives of the design
including: architectural, structural, and services design plus
cost-estimating perspectives. Of these perspectives, archi-
tectural design forms the core. Schmitt (1993 a) defines ar-
chitectural design as "the art of producing a complete
building specification from an incomplete problem descrip-
tion." During the design process, architects reason using pre-
vious architectural design cases. During such rememberings,
the knowledge of significant design concepts may be de-
rived from past designs to aid the current design solution.
This process, of using previous design cases or precedents
has also been termed precedent-based design (Oxman & Ox-
man, 1993a, b).

Domeshek and Kolodner (1993) identified the emer-
gence of two approaches in the use of CBR for design sub-
sequent to the 2nd International Conference on AI in Design,
held in 1992 at Carnegie Mellon University Namely:

1. Systems that help designers recall past designs—
these use libraries of designs to remind the user of ap-
propriate design solutions. ARCHIE, ARCHIE-II
(Domeshek & Kolodner, 1991), MEMORABILIA (Ox-
man, 1993, Oxman & Oxman, 1993a, b), CASECAD
(Maher & Balachandran, 1994a, b) are examples of de-
sign recall systems.

2. Systems that aim at automating design either fully or
partially—these use libraries of previous designs and
retrieve appropriate designs for adaptation either by a
designer or by the system. CADRE, CADSYN, and
NIRMANI (Perera et al., 1995; Perera & Watson, 1995,
1996) are examples of such systems. Design automa-
tion systems use varying degrees of adaptation sup-
port. Some leave adaptation to the user but provide
adaptation verification knowledge. Others help the user
adapt the design with modification and verification
knowledge, while some provide fully adapted solu-
tions to the designer.

However, Domeshek and Kolodner (1993) and Raphael et
al. (1994) point out that both of these approaches raise many
of the same issues of representation of design problems and
solutions, segmentation of the representations into useful
chunks, indexing of the resulting chunks for retrieval at ap-
propriate times, content analysis, and tracking the knowl-
edge requirements throughout the design process.

Schmitt (1993a) identifies the following major charac-
teristics of CBD systems:
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1. A CBD system does not require a complete domain
model but can produce complete and complex designs
based on a relatively small knowledge base.

2. Design starts from complete cases, implicitly achiev-
ing trade-offs between several constraints.

3. Applying the design history of existing cases can make
design problem solving more efficient.

4. Using cases as the source of knowledge allows learn-
ing by storing new cases.

These characteristics are inherent to CBR systems. How-
ever, the third point leads to an important issue that CBD
systems for building design must address. This relates to
the fact that designs are context dependent. Building de-
signs are a product of their environment and therefore a so-
lution derived from a past design needs to be contextually
compatible. This issue is examined in Section 5.

4.3. Using CBR for design

The design process relies on many types of knowledge, such
as design styles, heuristics, and other domain knowledge.
Maher and Zhang (1993) consequently describe CBD as a
hybrid method because it uses specific design cases in con-
junction with generalized knowledge in the form of design
rules, or causal models.

Figure 5 depicts a framework for CBD systems that in-
tegrates designers' experience in the form of cases with
domain-specific and context-based knowledge to solve de-
sign problems.

In a CBD system the experience of designers can be cap-
tured as design cases stored in a case base. Design cases
can be indexed and retrieved to provide solutions to design
problems. However, where wholly acceptable solutions can-
not be found, domain-specific knowledge-guided adapta-
tion may be required. Domain-specific knowledge may be
represented as domain rules or models.

Sycara et al. (1992) identify characteristics of domains
where CBR is most applicable, taking into consideration ef-
ficiency as a desideratum in knowledge acquisition, system
implementation, and maintenance. These are illustrated in
Table 1, which maps CBR criteria to building design in a
similar way that Sycara et al. (1992) did for mechanical en-
gineering design. It clearly illustrates the usefulness of CBR
in building design and also the similarity of CBD ap-
proaches to the way buildings are designed.

5. SOCIAL AND TECHNICAL ISSUES IN CBD

In this section we identify several issues that affect the use-
fulness of CBD systems for building design. Case-based
design issues can be categorized as social or technical. So-
cial issues deal with problems of creativity, ethical, and legal
issues related to storing and reusing design cases. Technical
issues deal with aspects of case representation, retrieval, pre-
sentation, adaptation, combination, and maintenance.

5.1. Social issues

Social issues are important as these directly affect any prac-
tical use of CBD systems. The degree of success in address-

Case-Based
Reasoning

Model-Based
and/or Rule based
Adaptation

Case-Based Design
Design

Solution

Fig. 5. A framework for CBD systems.
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Table 1. Compatibility of CBR with design criteria

65

Criteria Building Design

An expert knows what he/she means by a case.
Domain experts draw inferences from comparing

a current problem to cases.
Experts adapt cases to solve new problems.
Cases are available in bibliographic sources, in

experts' memories, or can be recorded as new
solutions are generated.

There are means in the domain to assign an
outcome to a case, explain it and deem it a
success or a failure.

Cases can be generalized to some extent.
Features that make them relevant can be
abstracted.

Comparisons can be implemented computationally
with some level of effectiveness.

Cases retain currency for relatively long time
intervals.

The domain may, or may not, have a strong model.

Cases are used in training professionals in the
domain.

A case is a previous building design or part of a building design.
Design experts generate designs from prior cases and use analytical models to verify that the

generated design meets its specifications.
Design specifications, simulation, and prototyping results guide adaptation of design cases.
Design cases are readily available in design catalogues and record books. Companies that keep

records of designs they generate try to reuse the designs when similar tasks or problems are
encountered.

Simulations, prototypes, and field tests are means by which designs are tested and evaluated.
However, building design prototypes are rare. User or expert evaluation of designs and
constructed buildings are commonly used.

Dissimilar structural configurations can deliver the same behavior. Hence, behavioral
descriptions are natural abstractions of design.

Case comparisons and adaptations can be done effectively.

Designs retain currency for long periods of time. For example, the basic design of a door has
not changed for several hundred years. Technological innovations may cause design
adaptations.

Despite the existence of physical laws and principles, design is a creative and poorly under-
stood process.

Building design students are taught design through the use of numerous cases. When an entry-
level architect or engineer joins a design office, an important part of his training involves
going through the design records of previous projects.

ing these issues, therefore, will directly affect the success
of CBD systems in practice.

5.1.1. Creativity

Schmitt (1993 a) defines creativity as "the art of causing
to exist original ideas or objects." Interpretation of creativ-
ity varies from a view of creativity as a mystical activity to
Schank's provocative statement that "creativity is mechan-
icar (Schank, 1986). We consider creativity to be more a
social than a technical issue because it is the way in which
society perceives a design that will ultimately judge it to be
creative or not. Creativity in a design is society's interpre-
tation of the success and novelty of the design. However,
CBD systems can incorporate technical features to support
or enhance creativity (these will be discussed in detail in
Section 5.2).

Maher (1994a) states that new designs and correspond-
ing design knowledge are based on existing designs and de-
sign knowledge. If invention or discovery takes place by
combining ideas, we can view creative design as a juxtapo-
sition of designs or design styles that have worked well in
the past (Goldberg, 1989). Schmitt quotes Brock's (1992)
definition of creativity as "giving a new order to existing
components." Gero and Maher (1992) identify routine, in-
novative and creative design, and offer graphical explana-
tions of the creative solutions that may be formed. Rosenman
and Gero (1993) explain creative design as dealing with the
formulation of new structures. That is, the creation of new

vocabulary elements or new configurations of existing vo-
cabulary elements in response to either existing or new func-
tional requirements.

In examining these and other definitions, it can be con-
cluded that design creativity does involve some elements of
the reuse of past experience in designing similar artefacts
and reorganizing elements in a novel and useful manner
(Hayes, 1981; Oxman, 1993). Thus, creativity can be said
to build on knowledge and experience.

Table 2 illustrates how CBD supports creativity in build-
ing design. It has been compiled from views expressed by
Domeshek and Kolodner (1993), Maher and Zhang (1993),
Oxman (1993), Pu (1993), Schmitt (1993a,fc), and Maher
(1994a). These clearly indicate that CBD systems can be
used in a manner that would enable the human designer to
improve designs by enhancing creativity. Case-based de-
sign systems can provide useful remindings of previous in-
stances of a particular form of design. Case-based design
can also provide the designer with useful insights as to the
way in which certain sets of design components were com-
bined to provide the designed performance of the artefact.

From a different perspective, it can also be argued that
CBD systems could negate creativity. This could happen
where a blind use of previous designs is encouraged. Cer-
tainly, use of previous designs could force the designer in a
particular direction. But we believe it is the way in which
system designers envisage the use of previous designs in
the creation of new designs that govern whether a CBD sys-
tem would enhance or negate creativity in design.
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Table 2. Satisfying the aspects of creativity in CBD

Aspect of Creativity How CBD Satisfies Creativity

Knowledge of a set of precedents. Past cases of building designs and
components or elements.

Creativity is a function of the designer's ability to explain the
precedents and their reasons for being in the case base.

Creativity relies on heuristics to find applicable solutions.

Creativity builds on the capacity of the designer or an external critic
to ask harsh, uncomfortable, or seemingly unrelated questions.

Creativity is a function of idiosyncratic experience of individual

designers.

Indexed case library or an object-oriented or relational database storing
previous design cases.

Perform inferences or explanation by identifying similarities and differences
in cases.

Heuristic search and inductive reasoning to select an appropriate case from a
case library.

This is related to inductive reasoning and is almost the inverse of deductive
inference.

Use of multiple case libraries containing the design experience of many

designers.

5.1.2. Ethical and legal issues

The use of information technology in industry has raised
many ethical issues. Huff and Martin (1995) recently iden-
tified AI as one of the key areas that needs a greater degree
of consideration in terms of ethical issues. For example, in
a CBD system designs could be by different designers. Using
many design cases from different designers may benefit the
CBD process by providing a richer knowledge source. This
clearly attracts not only ethical issues but also legal issues.
Is it ethically correct to combine or modify designs of other
designers? This may also cause legal issues relating to copy-
right.

One solution to this problem could be to limit the designs
in a case base to those of one particular designer or design
organization. This may avoid legal claims but may result in
an insufficient number of cases to populate the case base.

In terms of design education, Schmitt (1993 a) points out
that the worst case scenario is that reasoning with cases might
cause plagiarism and the inappropriate combination of ele-
ments or features. As a solution he proposes CBD systems
should be used by upper level design students rather than
beginners, for whom he prescribes bottom-up design meth-
ods, such as grammar-based design.

A more detailed discussion of ethical and legal issues ex-
ceeds the scope of this paper. We recognize this as one of
the major areas to be investigated by CBD system develop-
ers. The fact that the Communications of the ACM has de-
voted one full issue to the subject of ethical issues in the use
of information technology confirms our view and indicates
that it is receiving some attention (Communications of the
ACM, 1995).

5.2. Technical issues

In this section we examine in detail the issues that concern
CBD system development and draw examples from CBD
systems found in the literature.

Sycara (1992) identifies four challenges for CBD systems.

1. Relating behavior and structure. The design process
involves the transformation of largely ill-defined func-
tional descriptions for an artefact into detailed physical
description that satisfies the functional. This requires
reasoning at different levels of abstraction ranging from
physical to functional. Thus, case representation should
support vocabularies that express and capture relation-
ships between function, behavior and structure of ar-
tefacts (Sycara & Navinchandra, 1989).

2. Designs often represent a tight integration of numer-
ous components or elements. Thus, indexing schemes
should support interaction and integration of ele-
ments.

3. Because functional description of the design object is
often under-specified, the designer is dynamically gen-
erating subgoals and filling information gaps. Thus,
an indexing system should generate indexes dynami-
cally for generated subgoals.

4. Case-based design systems should allow access to in-
dividual element or component designs separately, but
at the same time the system should consider element
interactions and relationships, thus maintaining the
overall performance of the ultimate artefact.

These points form a broad performance specification for
CBD systems. They indicate the level of complexity in de-
sign that is needed to be accommodated by CBD systems.
To analyze these and other issues related to CBD in a struc-
tured manner, we define the issues to be: case representa-
tion, case retrieval, case presentation, case adaptation, and
case-base maintenance. These central issues of CBD are in
fact the same as those of CBR in general. The following
subsections examine each of these issues in more depth.

5.2.1. Case representation

Representation of cases is fundamental to a CBD system.
Representation forms the core of a CBD system on which
all other issues depend upon. Maher (1994a) identifies three
main issues in case representation:
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1. the content of design cases,

2. the case memory organization, and

3. the presentation of design cases to the user.

Of these issues, the first two will be examined here while
case presentation is discussed in Section 5.2.3.

To identify the content of a design case, it is important to
find out how design and design requirements are repre-
sented in practice. Requirements for a building are ex-
plained in terms of client briefing documents as text and as
verbal communications. The final design solutions are rep-
resented as drawings, specification documents, Bills of Quan-
tities, or cost reports and other performance specifications.
A case is the final complex result of a successful design pro-
cess. It does not necessarily reveal causal relations between
design decisions, but it may lead to the discovery of such
relations (Schmitt, 1993fc).

Raphael et al. (1994) state that design cases should con-
tain the following:

• a problem specification for the design including re-
quirements,

• a final design solution,

• the rationale behind the design solution,

• an evaluation of the design, and

• histories of successful as well as unsuccessful designs,

Of these, the information included in a design case is often
determined by the problem or subproblem the reasoner is
solving. Our experience of developing CBD and estimating
systems at Salford University (NIRMANI and CBRefurb)
(Marir & Wilson, 1995a, b) and that of others (Hunt & Miles,
1995; Lehane & Moor, 1996) indicates the need for knowl-
edge elicitation to identify useful features of cases. CADET
used published data while CADSYN used the developers'
own knowledge along with consultation with designers to
identify useful case features. This task is complicated and
difficult because of the complex nature of building designs,
the interaction and interdependencies of elements, the con-
text dependency of design cases and above all the vast
amount of information pertaining to a particular building
design.

The content of a design case can be represented in many
ways. Maheret al. (1995) generalizes these approaches into:
attribute-value pairs, text, object-oriented representations,
graphs, multimedia representations, and hierarchy-based rep-
resentations. Most CBD systems use one of these represen-
tation methods or variations or combinations of them.

Design cases need to be stored in memory. Two common
methods of organizing cases in memory can be found.

1. Flat—cases are stored as records of key features
(attribute-value pairs) describing the content. Similar-
ity assessment would be on features and their values.
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2. Hierarchical—cases are clustered into groups accord-
ing to some features (identified by domain knowledge)
and classified in a hierarchy, usually from abstract fea-
tures to more specific features. Similarly assessment
may be on features and their values but can also com-
pare structural similarities between hierarchies.

CYCLOPS uses a flat representation of cases as un-
explained observations, explained observations, and ex-
plained solutions organized as attribute-value pairs.
STRUPLE also uses a flat representation of cases stored in
a relational database and structured into information cat-
egories such as: general information, geometric informa-
tion, and load information, represented as attribute-value
pairs. ARCHIE uses a frame-based attribute-value pair rep-
resentation that incorporates multimedia features. CADSYN
and NIRMANI use a hierarchical case representation that
decomposes the design problem into subproblems in the form
of super cases and different levels of subcases.

More complex content representations and memory or-
ganizations can be found in other engineering design do-
mains such as mechanical engineering. CADET is a CBD
system for the synthesis of mechanical devices from cases.
It stores cases as acyclic influence graphs, representing the
behavior of devices. These are then normalized into a rela-
tional database. KRITIK is another CBD system for the de-
sign of mechanical devices and electrical circuits. It uses a
behavioral component-substance model explicitly represent-
ing the structure, intended functions, and internal causal be-
haviors of devices. Cases are stored in memory as a flat
representation with one layer of indexes.

Case representation schema and the memory organiza-
tion of CBD systems facilitate the efficient and effective
retrieval of cases for synthesis and/or justification. The fac-
tors to consider here are the ultimate use of the CBD sys-
tem, its flexibility, and efficiency. Flexibility in storage and
retrieval means that the contents of design case memory can
shift when new technologies or design styles are being used.
Efficiency leads to better performance, especially where case
bases become large. The issues of case indexing and re-
trieval are discussed in the following subsection.

5.2.2. Case retrieval

Retrieval is a critical part of CBD systems. This raises
issues of design case indexing, retrieval, and selection. Case
indexing is closely associated with issues of case content
and memory organization. Indexes refer to pointers or la-
bels to cases or case features in the case memory. As in the
index to a book, they provide quick access to a design case
in memory. Identifying the features to label in cases (the
indexing vocabulary) is a crucial aspect of indexing. In-
dexes should be:

1. Predictive—they should identify features of a case that
were responsible for the design solution.
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2. Abstract—they should describe the design problem in
general and the context within which it was carried
out.

3. Concrete—they should describe the specific design
problem or subproblem.

4. Useful—they should describe the situations in which
a case is useful or features useful for the respective
users of a specific design domain (Kolodner, 1993;
Maher et al., 1995).

Case-based design systems use various indexing schemes
varying from: simple check-list based indexing, as in ME-
DIATOR (Simpson, 1985), to relationship-based indexing
schemes, as in CADSYN, and explanation-based tech-
niques (Barletta & Mark, 1988; Simoudis et al., 1993).

One of the most common techniques used to retrieve cases
is the establishment of a similarity metric. This could be on
keywords where a text-based representation is used, or
attribute values where a feature-based or object-oriented rep-
resentation is used. Maher and Zhang (1993) point out that
retrieval with a fixed similarity metric is a limitation in most
current systems. Because the importance of a feature de-
pends on its context, a fixed feature similarity metric would
be of less use. However, there are certain simple steps that
can be used to achieve a considerable degree of context de-
pendency. For example, where nearest neighbor algorithms
are used, the adjustment of the weight of the retrieval cri-
teria can achieve context sensitivity by making some re-
trieval criteria more important than others in different
contexts.

In building, designs evolve from an abstract specifica-
tion to a detailed one. Therefore, CBD systems should help
this process by providing a design exploration space within
the system. This could be accommodated with a flexible in-
dexing scheme. Maher et al. (1995) describe three ways to
achieve flexibility in indexing design cases:

1. Any set of features in a case description can be used
to search case memory.

2. A feature-based, object-based, or graph-based index-
ing scheme can be used to search case memory.

3. Indexes to case memory can be determined dynami-
cally.

Case indexing is often associated with retrieval strategies.
Maher et al. (1995) identify three generic types: list-checking,
concept refinement (where a hierarchical indexing tree is
used), and associative recall (which uses a relationship-
based indexing scheme). Associative recall is more suitable
where the design problem is ill-formed such as is typical in
building design.

Case-based design systems tend to use varying forms of
domain knowledge to assist the retrieval process. STRU-
PLE uses a similarity metric to compare significant com-
mon aspects of a matched case to the current case. CYCLOPS

uses causal models, whereas ARCHIE uses qualitative mod-
els for retrieval of cases. ARCHIE-II uses descriptive in-
dexes for flexible retrieval of cases and relationship indexes
for goal-directed retrievals. CADSYN creates indexes for a
whole design case and a feature-based index for the sub-
cases and then uses a hierarchical search algorithm to search
the case hierarchies.

NIRMANI uses three feature-based indexing methods to
dynamically create indexes for retrieval of cases from its
hierarchical case structure. Both CADSYN and NIRMANI
support the development of the design problem through the
use of an index revision retrieval strategy that provides it-
erative retrieval of cases.

The end result of a retrieval process is a set of similar and
potentially useful cases. Thus, CBD systems provide vari-
ous ways in which a case can be ranked and selected. The
simplest is a count of matching features. The most common
is to select a set of indexing features and attach importance
values to these features. These importance values can be
provided by the user, or can be heuristically, statistically, or
analytically derived. In CBD, context-dependent matching
is important because building designs are highly context de-
pendent. Retrieving cases out of context would require a
greater degree of adaptation (Maher et al., 1995). Hence,
some CBD systems use domain-specific knowledge to re-
trieve and select cases that are of similar context.

CASECAD uses the number of matching features to cal-
culate a match score for ranking retrieved cases. ARCHIE
uses weighted feature scores for calculating the total match
as per a typical nearest-neighbor algorithm. CADET uses
an influence graph similarity assessment to derive a best
match based on lowest cost, weight, and ease of synthesis.
NIRMANI uses weighted feature scores supported by its
indexing methods to enforce contextual compatibility. ADA,
an architectural design assistant (Hunt & Miles, 1995), uses
a mixture of direct matching and weighted hierarchical
matching in ranking retrieval cases. SEED converts its
object-based similarity assessment to a match score. It uses
an attribute and class classification to discriminate and nar-
row the search space.

5.2.3. Case presentation

Presenting design cases to the user is one of the aspects
many CBD system developers have inadequately addressed.
For example, Domeshek et al. (1994) admit that ARCHIE
lacks user friendliness and is more useful to a knowledge
engineer than an architect. The interface of ARCHIE is too
"painfuF to use by anyone other than a knowledge engi-
neer.

Designers understand and express design problems graph-
ically. Thus, visualization of the design case is of utmost
importance in the design task. Visualization enables the de-
signer to understand the underlying design concepts, func-
tionality, appearance, and similar aspects of a design. The
importance of case presentation increases if the system is to
be an interactive tool (Maher, 1994a). To improve the as-
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pects of design visualization, a multimedia approach for case
presentation can be incorporated in CBD systems (Maher
& Balachandran, \994a,b). In addition to textual descrip-
tions or attribute-value pairs, video and photographic im-
ages, CAD drawings, charts, audio explanations, and virtual
reality simulations can be used to present design cases to
the user.

Cases should be presented so as to:

1. Help the designer easily comprehend the design. For
example, an architect is more familiar with design
sketches, drawings, and models of buildings than with
textual descriptions.

2. Provide alternative presentations of the same design
so as to enhance the understanding of the design or
design subproblem, for example, the use of virtual re-
ality to simulate a design in addition to CAD draw-
ings.

Multimedia presentation of design cases has many benefits.
They can:

• convey contextual information surrounding a building
design;

• explain and elaborate certain features of a design case;

• simulate behavior through the use of virtual reality or
3D CAD;

• describe problems and constraints associated with cer-
tain design features;

• provide pointers to useful documentation, such as eval-
uations of designs, cost reports, catalogues of materials,
components, or equipment;

• convey the design rationale; and

• convey feedback on design solutions.

The benefits of multimedia presentation of cases is evident
from the increased use of multimedia in recent CBD sys-
tems. ARCHIE-II, CASECAD, and ADA use 2D and 3D
CAD drawings, text, and attribute-value pairs, while NIR-
MANI also uses video, bitmaps, and even pointers to web
sites.

5.2.4. Case adaptation and combination

Selecting a case after a retrieval process as a potential
solution to a design problem has a different meaning in CBD
depending on the intended use of the system. In design aid-
ing systems (e.g., ARCHIE-II and MEMORABILIA), it is a
reminder of a situation in which a similar design problem
was solved. Thus, these systems point to potential solutions
and allow the user to browse solutions, but they do not di-
rectly reuse potential solutions to provide a new solution.
Design automating systems (e.g., CADRE, CADSYN, and
SEED) use a design solution as the basis for providing a
new solution to a new design situation. Such systems give a
much broader meaning to a selected case.

A selected design case provides a design solution in a par-
ticular design context as in Figure 6. In most instances in
building design, the design context or the environment and
the situation in which the design solution was created are
unique. This means a potential design solution (a selected
case) must be adapted to conform to the current context.
Adaptation in CBD can be defined as the process of modi-
fying a selected case's design solution and making it con-
form to the new design context.

Design adaptation can be carried out in several ways:

• human intervention—where a designer modifies the de-
sign;

• knowledge-based adaptation—where domain-specific
or domain-independent knowledge is used to adapt or
modify a design;

• case-combination—where design cases are combined
to provide new design solutions; and

• combinations of the above approaches.

Kolodner (1993) broadly classifies knowledge-based adap-
tation methods into four categories:

1. Substitution Methods: where selected cases feature val-
ues are substituted to provide a new solution.

2. Transformation Methods: where rules, procedures, or
models are used to transform a selected case into a
new solution.

3. Special Purpose Methods: where heuristics are used
to carry out domain-specific and structure-modifying
adaptations.

4. Derivational Replay: where the methods or proce-
dures that were used to generate the selected case are
reused to generate a new solution.

A survey of adaptation in CBR systems (Hanney et al.,
1995) identifies design as having the heaviest adaptation re-
quirements above all other applications of CBR. Different
approaches to adaptation have been used by CBD systems.
For example, in CADSYN a constraint satisfaction ap-
proach is used, whereas CADRE uses dimensional and to-

[ Selected Design^
I Case J

Fig. 6. Design case adaptation.
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pological adaptation based on production rules and shape
grammars.

Whatever adaptation method is used, extensive domain-
specific knowledge is required (Raphael et al., 1994). A case
is selected in the first instance because it matches enough
of the problem to point to a prospective solution. But adap-
tation is a process that changes a once satisfactory design.
Therefore, the more radical the adaptation, the greater the
danger of losing the quality of the original design (Schmitt,
1993 a). Hence, possible cases should be retrieved so as to
minimize adaptation. This is called adaptation-guided re-
trieval (Smyth & Keane, 1996).

Adaptation knowledge can be formulated in two ways, as
illustrated in Figure 7.

1. By categorizing the case as instances of prototypical
designs that can simply be reinstantiated. Adaptation
knowledge can then be stored as case category spe-
cific knowledge. However, this raises the question of
why cases are required at all, as prototypes could ful-
fill the same function to a great extent.

2. By providing specific adaptation knowledge which
modifies aspects of cases instead of reinstantiating them
(Hua & Faltings, 1993).

Adaptation knowledge can be stored as generalized knowl-
edge in a knowledge base, it can be stored with the cases or

it can be supplied by the user at run-time. Any combination
of these three methods can also be used.

The concept of prototypical cases and relevant adapta-
tion knowledge is more amenable to CBD systems in do-
mains such as mechanical systems design [e.g., the Motor
Design System of Tanaka et al. (1992)]. However, in do-
mains such as building design where prototypical designs
are harder to identify, the use of specific adaptation knowl-
edge is more relevant. This is because there could be nu-
merous differences between individual design cases of a
particular design prototype and the adaptation knowledge
required for all these differences cannot practically be gen-
eralized or classified. In CBD systems for building design,
varying approaches for storing adaptation knowledge have
been adopted. For example, CADRE stores specific adap-
tation knowledge with cases whereas CADSYN uses a sep-
arate generalized knowledge base.

In an attempt to formalize CBD adaptation Maher et al.
(1995) identified three components in adaptation knowl-
edge. They describe adaptation knowledge as having mod-
ification knowledge and verification knowledge along with
adaptation operators that perform the task of adaptation. The
strategies used for modification and evaluation of a design
case rely on the underlying problem-solving processes. For
example, CADSYN uses constraint satisfaction, KRITIK
uses model-based reasoning, CADRE uses rule-based rea-
soning SEED, CAB-Assembly uses heuristic reasoning, and

CaseUbmy Type I

Prototypical
Case

/ Specific \
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Knowlodgo

Case Library Type 2

Fig. 7. Methods of organizing adaptation knowledge.
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CADET uses qualitative reasoning for synthesis of parts of
cases.

CADRE uses design constraints as verification knowl-
edge, production rules, and shape grammars as modifica-
tion knowledge, and dimensional adaptation as adaptation
operators. KRITIK, however, integrates modification and
verification knowledge as function, structures and behav-
iors; while functional mappings between current and previ-
ous contexts form the structural operations. NIRMANI uses
a rule base of verification knowledge to check for the sat-
isfaction of design constraints. NIRMANI also used adap-
tation methods and user interaction as adaptation knowledge.

Case adaptation can be manual or automatic or a mixture
of both. As pointed out by Raphael et al. (1994), automatic
adaptation has many limitations. It is extremely difficult to
adapt a design without any violation of interrelationships of
design components. This problem is increased because these
interrelationships are context based. Schmitt (1993 a) shows
that adaptation occurs at many levels. He further states that
where adaptation fails to generate a satisfactory solution,
the next alternative is case combination. Here, features from
one or more cases will be brought in for adaptation of the
selected case. Case combination has a sound heritage in ar-
chitecture. For example, colonial architectural designs in
South America, Asia and the Pacific, relied heavily on com-
bining different design cases. Shih (1994) has managed to
combine floor plans to create new designs, satisfying new
problem specifications. Thus, there has been some success
achieved in combination of cases in building design. Much
greater levels of success in combining cases have been
achieved in other design disciplines, especially in mechan-
ical engineering (Tanaka et al., 1992; Roderman & Tsatsou-
lis, 1993).

An evolutionary adaptation method (Hunt, 1995) that in-
tegrated case combination (cross-over: which substitutes se-
lected case features from other cases) and knowledge-based
adaptation (mutation: which modifies case features using
domain knowledge) has been successfully experimented with
in structural engineering design.

A possible problem in case combination is taking a de-
sign element out of context. In certain instances where the
design context differs a solution to an identical design prob-
lem may vary. For example, the location and positioning of
the elevator plant room in a multistorey building is affected
by building regulations, the number of storeys, the type of
elevator to be installed, and aesthetic requirements. In one
instance the plant room may be located on the roof top and
in another instance, in the basement. Thus, decisions may
be highly context dependent.

However, such problems can be overcome by storing in-
formation related to the context with the case. This refers
back to the problem of determining the extent of informa-
tion to be contained in a case. Methods of organizing the
contextual information stored with each case are an impor-
tant aspect for consideration. The design-perspective repre-
sentation of case memory used in NIRMANI stores case

information in the perspectives of the various design ex-
perts involved in the design process. Context based infor-
mation is stored within the respective design perspective
giving the view of the context applicable to the design ele-
ment in question.

5.2.5. Case-base maintenance

Case-based design systems complete the CBR cycle by
including new design solutions in the case-base. Most CBD
systems are initially developed from paper-based or
computer-based design cases in the form of documents, draw-
ings, and databases. The question to answer in case collec-
tion is "which cases to include?" Kolodner (1993) provides
three general principles for this, which are considered in
the context of design.

1. Design cases should cover the range of design tasks
the system will be required to perform.

2. For these tasks include well-known design solutions
and well-known mistakes (design faults, failures, or
problems). Successful solutions provide the basis for
new solutions whereas unsuccessful solutions avoid
the repetition of mistakes by pointing to potential pit-
falls. This helps achieve best practice in design.

3. Complete the coverage of design cases by finding what
is missing by using the case base.

Schmitt (1993 ft) identifies the following criteria as factors
to consider in deciding which cases to include in a case li-
brary.

• Architectural quality—The building must earn the re-
spect of the professional community as well as the ac-
ceptance of its users. Although this is a subjective
criterion, it is important.

• Timelessness—The design should be a product of its
time, but not be merely fashionable. However, where
case combination is used design features of an out-
dated design may be reused in a new design creating a
blend of features that may induce creativity.

• Environmental responsiveness—The building must
offer an appropriate answer to the environmental con-
ditions of the site.

• Contextual responsiveness—The building must make
a clear statement regarding its position within a con-
text by either adapting to the context or proposing a
bold new beginning.

• Functional quality—The building must fulfill all func-
tional requirements and in addition offer possibilities
for future adaptation.

• Structural stability—The design must offer struc-
tural safety and also comply with special local ordi-
nances regarding special conditions, such as earthquakes
or tornadoes.
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However, these criteria may not be fulfilled by many build-
ings. Thus, a trade-off of a few criteria may be considered
in making the final decision. This raises the issue of whether
case acquisition should be manual or automatic. This will
largely be determined by the individual application envi-
ronment. If cases are created during the design process, rou-
tines can be provided for automated case acquisition.
However, this may lead to problems if case quality is not
evaluated by using domain-specific knowledge. Another way
to acquire cases is from existing databases. NIRMANI uses
existing databases to acquire its cases.

Once a CBD system is developed and used for design, it
continually creates new design solutions to new design prob-
lems. If the system automatically adds the new solutions to
the case base it will grow with use. This requires case bases
to be maintained. The criteria detailed above to judge the
worthiness of a case for inclusion could form a basis for
pruning an ever growing case base. Another factor to con-
sider in maintenance of a case base is the frequency of use
of the cases themselves. The potential danger of using this
as criterion for pruning a case base is that this may limit the
capabilities of the CBD system and makes it more special-
ized in certain type of design. On the other hand, if one con-
siders human designers, one will easily find specialist
designers of industrial buildings, offices, hotels, prisons, etc.

Such aspects need to be considered by practical CBD de-
velopers even though they do not arise initially at the in-
ception of a system. Unfortunately, most CBD systems in
the literature rarely discuss issues of maintenance or man-
agement of case bases. This may be due to the fact that the
systems are research prototypes and not fielded design sys-
tems requiring maintenance of large case bases. However,
some reference to case-base maintenance issues can be found
in the literature.

CLAVIER, one of the most successful case-based sys-
tems in industrial use, classifies its new solutions as suc-
cessful and unsuccessful using statistical data and expert
evaluation (Hennessy & Hinkle, 1992). They do not elimi-
nate the unsuccessful cases, but store them to identify so-
lutions in the future with a potential for failure. SEED leaves
the control of the case base to the user or designers. Design-
ers are allowed the option of adding a case to the case base.
It considers the growth of the case base as side-effect of a
design firms' normal design activities.

CASECAD uses a similar approach. It contains a module
for case-base management. One of its functions is to allow
the user to create and modify cases. It allows users to add
new design solutions to the case base. A case-base cleans-
ing mechanism is suggested by Lehane and Moore (1996)
and Moore and Lehane (1996). They use the frequency of
retrieval as the criterion for pruning a case base. They argue
growth of a case base does not deepen or broaden the ex-
perience of the library but increases retrieval cases due to
increased search space.

NIRMANI also provides a similar approach based on the
frequency of usage of cases for case adaptation. A case in

NIRMANI contains an attribute that stores a list of cases
used in the generation of its solution. This lets us identify
cases that are used in the generation of new solutions. How-
ever, it does not provide for the automatic pruning of the
case base. It assigns the responsibility of pruning the case-
base to a case-base administrator who can use adaptation
usage as one criterion in assessing the usefulness of a case
in the case base.

6. CBD SYSTEMS FOR BUILDING DESIGN

Interestingly, the implicit use of CBR in building design has
a long history. Experienced architects and engineers have
always used their own accumulated experience while the
inexperienced rely more on generative methods and exter-
nal sources such as design reviews (Akin, 1986). Most ar-
chitecture students learn to design using cases by analyzing,
evaluating, and critiquing these.

The use of cost planning techniques in the quantity sur-
veying profession (the British equivalent to cost engineers
or construction cost controllers) provides another good ex-
ample. In cost planning, cost analyses of previous construc-
tion projects are used to create a cost plan for a new project.
The most appropriate analyses are selected, combined, and
modified using heuristics, rules, and experience to create a
cost plan. Usually, the cost plan forms the basis for future
design development indicating budgetary allocations for each
building element.

During the past few years many CBD systems have been
developed for building design. Most systems deal with the
structural design of buildings while a few handle architec-
tural design. The following sections examine CBD systems
developed for building design in chronological order. Space
constraints have limited this review to 12 significant sys-
tems examined on the issues identified in Section 5.

6.1. CYCLOPS

This is considered to be the first CBD prototype developed
in the Department of Civil Engineering at the Massachu-
setts Institute of Technology (Navinchandra, 1987, 1988,
1991). It was for landscape planning and design and pro-
vides assistance for the debugging of landscaping layouts.
It combines constraint-based solution generation with case-
based debugging and repair for the design of landscapes.

CYCLOPS uses ad-hoc models to represent cases as
attribute-value pairs describing the problem situation as
unexplained-observation and explained-observations, while
solutions are explained-solutions. The case memory is or-
ganized as a flat structure allowing a serial search of the
case base. Cases are retrieved in three ways: a direct match
for an exact match, a relaxed match where matching is by
similarity, and a systematicity-based match where matching
is analogical and can span across domains. Analogical match-
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ing is achieved by storing with a case, a causal explanation
of the goals and subgoals of the case. CYCLOPS uses a
problem-solving technique called Demand Posting to iden-
tify a problem, set up goals and subgoals, and to find ap-
propriate cases and subcases needed to satisfy the goals and
subgoals in an iterative process. Where direct solutions are
not possible CYCLOPS uses the A* search algorithm to com-
bine pieces of multiple cases using cross-domain analogy
to provide innovative design solutions. New solutions cre-
ated by the system act as precedents (new cases) for future
solution generation.

CYCLOPS does not actively verify analogies. It is de-
pendent on previous cases to find faults with an analogi-
cally modified case. It also assumes its causal relations are
complete and that it carries the complete context of the sit-
uation. This assumption has broader implications on build-
ing designs as design elements are often interdependent and
context sensitive.

6.2. STRUPLE

One of the earliest CBD systems for the structural design of
buildings developed at Carnegie Mellon University (Maher
& Zhao, 1987; Zhao & Maher, 1988). The system was orig-
inally developed as an expert system with an interface to a
database containing previous designs. The aim being to rea-
son from past experience.

STRUPLE's cases are represented as incomplete descrip-
tions of building designs in numerous categories including:
General Information, Geometric Information, Other Archi-
tectural Specifications, Load Information, Primary 3D Sys-
tems, Lateral 2D Systems, Floor Systems, and Foundation
Systems. The design cases are stored in a relational data-
base using the same structure. An intelligent interface is pro-
vided to the database to support retrieval of previous design
solutions given a design problem described as several ar-
chitectural and structural features of the design.

To retrieve cases STRUPLE uses a similarity metric based
on a set of retrieval criteria classified as required criteria,
designed criteria, and no-match criteria. These represent a
relative prioritization of retrieval criteria. They also define
allowable values for these criteria. The status of criteria is
assigned by STRUPLE according to the description of the
target building. A match score for a case is derived from the
weighted summation of individual feature matches—zero
reflects a perfect match and one reflects a perfect mis-
match.

Design cases are presented to the user as attribute-value
pairs. STRUPLE uses a design vocabulary that is applica-
ble to a particular design and stored in its knowledge base
as methods for transforming knowledge from existing cases
to the current case. Each element is assigned a priority for
evaluation. The subsequent synthesis process takes each sub-
set of the design vocabulary, evaluates its suitability con-
sidering the priority levels and proposes alternatives to the
user.

STRUPLE uses a fixed similarity metric to identify
matches. This limits the capabilities of the system to a par-
ticular form of design solutions. Its analogical transforma-
tion of knowledge is considered only for structural systems
and subsystems without considering the spatial layout or the
number and location to these systems.

6.3. ARCHIE

ARCHIE is an intelligent case browsing system developed
at the Georgia Institute of Technology (Goel et al., 1991;
Pearce et al., 1992; Zimring et al., 1995). Its main aim is to
provide architects with a design library for the conceptual
architectural design of office buildings. The system was de-
veloped using ReMind. ARCHIE interactively supports the
design task letting the user describe the problem and retriev-
ing past designs providing suggestions and warnings.

Contents of a case in ARCHIE are categorized as design
goals and constraints; design plans that specify building
components and their configuration; outcomes that de-
scribe how well the plan satisfies goals; and constraints and
lessons learned from each design solution.

Cases in ARCHIE are represented as attribute-value pairs
in a flat record with more than 150 features. Features can be
concepts, text, integers, real numbers, or functions. In ad-
dition to knowledge based on cases it contains domain mod-
els that capture the causal relationships between case
concepts and primitive concepts such as objects, relations,
and parameters of office buildings as a part of the language
for representing and indexing cases.

ARCHIE uses the two retrieval mechanisms provided in
ReMind, that is, nearest-neighbor matching and inductive
knowledge-guided clustering. The first uses primitive con-
cepts to retrieve building designs that satisfy a problem's
goal and constraints. These concepts are hierarchically or-
ganized to specify the goals, plans, and outcomes of design
cases. The knowledge-guided clustering approach uses sim-
ple domain relationship models to influence an induction
algorithm that clusters cases into an index tree.

ARCHIE uses multimedia features to present cases to the
user. Cases are associated to photographs, drawings, anno-
tated plans, and animations. Users are allowed to move di-
rectly from design description to stories, from stories to
problems, and between problems and responses. This is
achieved through hypertext links.

ARCHIE does not use adaptation and it is left for the user
to gain experience by using the knowledge they acquire to
help them solve their design problems.

Many practical issues were raised by ARCHIE. Building
design cases are complex, incomplete, and large in size. This
requires a large vocabulary to encapsulate the design expe-
rience. Designers use multiple sources of knowledge, do-
main models, and rules in addition to experience. These
needed to be reflected in CBD systems that aid designers. It
also emphasized the need to have more practical user inter-
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faces for CBD systems (especially for those intended for
real use).

6.4. CADSYN

CADSYN is a CBD system for the structural design of build-
ings developed at the University of Sydney in Australia (Ma-
her & Zhang, 1991, 1993; Maher et al., 1995). It is an
implementation of a hybrid design process model using CBR
with generalized decomposition and constraint satisfaction.
It uses EDESYN an expert system that integrates rules and
frames for problem decomposition and constraint satisfac-
tion. The system was developed on a SUN workstation.

CADSYN's case memory is organized as case hierar-
chies and case indexing information. A case is represented
in by a three-level hierarchy starting with the global con-
text of the building, then describing the grid representation
of each functional unit of the building, and finally descrip-
tions of structural systems. A case in each layer is repre-
sented as a frame with attribute-value pairs describing
features of the case.

Thus, the structural design of a building comprises a glo-
bal context case (1st layer), several subcases based on func-
tion or geometry of the design (2nd layer). Each subcase in
the 2nd layer has further subcases (3rd layer) describing
structural subsystems that provide a solution to the 2nd layer
case when combined together. Each subcase and supercase
in the hierarchy is intereferenced for identification. Case con-
tents were extracted from structural design drawings, doc-
uments, and design experts.

CADSYN uses a feature-based indexing scheme that uses
subcase names to label the cases. A frame named system list
(a set of slots representing systems in CADSYN) is used to
store the names of all subcases. The generalized design
knowledge base in CADSYN contains subsystems defini-
tions, decomposition knowledge, structural design con-
straints, and procedural functions. These are implemented
using a frame-based representation.

CADSYN's retrieval process retrieves a set of matching
cases using the design problem specification. It performs a
symbolic match to identify which subcases of a functional
system should be considered for retrieval by examining the
case lists in the system lists frame. Retrieved cases are ranked
according to the number of features matched. The user is
allowed to do the final selection of cases for adaptation.

A selected case is first adapted structurally through fea-
ture and value substitution. A constraint checking mecha-
nism is used to evaluate this potential solution and to flag
violations, which are then subjected to a modification pro-
cess. A set of heuristic rules and the decomposition hierar-
chy are used for the modification. Where direct solutions
cannot be found, problems are decomposed, solutions found
for the subproblems, and subsequently recomposed using
the constraint checking and modification process to pro-
vide complete solutions. New design solutions are added to

the case-base and index modified by updating the system
list frame accordingly.

CADSYN's indexing is flexible as indexing features are
selected according to problem context. But the relative im-
portance of features is set by the user. CADSYN high-
lighted the difficulty in formulating design cases from real
designs. It also raised issues of expanding the domain-
specific knowledge base for problem decomposition and in-
corporating domain-specific retrieval of cases. The constraint
satisfaction approach assumes the problem specification is
correct and appropriate. If not, this can lead to infinite loops
in the iterative process of constraint satisfaction and modi-
fication. CADSYN gives little priority to design case pre-
sentation.

6.5. CADRE

CADRE is a CBD system for design adaptation and com-
bination developed at the Swiss Federal Institute of Tech-
nology (Faltings, 1991; Hua et al., 1992; Hua & Faltings,
1993; Smith & Faltings, 1994). It supports the architectural
and structural designs of buildings. CADRE stores geomet-
ric and symbolic information pertaining to architectural and
structural design in a case. Cases contain more geometric
information than structural information and are created from
building plans stored as 3D CAD models. Presently CADRE
contains a limited set of cases but ones that are diverse and
rich in design concepts. It uses a fixed index of functional
features to support case browsing and lets the user select a
case for adaptation. Thus, the key issues this research deals
with are design adaptation and combination. Another objec-
tive of CADRE is to integrate the different perspectives of
the design team. They claim it has been achieved to a rea-
sonable degree by integrating architectural and structural de-
signs in one system.

A graphical user interface is provided and cases are pre-
sented to the user as CAD drawings on a main working win-
dow. The designer is allowed to change the free variables of
the design and CADRE carrys out adaptation of other vari-
ables. Then it attempts to compute a solution by dimension-
ality reduction. If topological adaptation is required, it will
generate possible topological alternatives, which are then
shown in pop-up windows. A selected case is first inserted
to the new site and to the new context. CADRE assigns
weights to contextual features and the insertion is opti-
mized by rotating and/or mirroring the case.

The dimensional adaptation process detects discrepan-
cies between the new design and the site and converts these
conflicts into parameters that are then resolved first. If this
process is unsatisfactory, topological adaptation is trig-
gered. This removes spaces in conflict and recreates those
spaces ensuring harmony. Once this process is completed,
the results are displayed and evaluated by the user. If un-
satisfactory, the processes of dimensionality reduction and
topological adaptation can be restarted.
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Alternatively case combination is supported where spaces
that conform to the present set of constraints can be found
from other cases and combined. The adaptation processes
above can then be reactivated to finalize the design.

CADRE contains two sources of knowledge: case-based
knowledge (synthesis knowledge) in the form of previous
design solutions and logic-based knowledge for analysis of
context dependencies and to perform modifications. This type
of knowledge is used in the dimensionality reduction and
topological adaptation processes.

CADRE is implemented using Lisp and C with the inter-
face provided by AutoCAD. Structural elements that are
graphically presented are stored as object models. User in-
teraction is through AutoCAD. Constraint posting is also
carried out graphically within AutoCAD.

CADRE provides a method for adaptation that avoids the
decomposition of the design. The hypothesis is that decom-
position may disintegrate solutions losing implicit knowl-
edge in a design while recomposition of a solution requires
additional domain-specific and computational knowledge.
It also raises the issue of the integration of the different per-
spectives of a design that they claim to achieve through di-
mensionality reduction and the geometric representation of
cases. CADRE introduces case combination as a way to
achieve innovation in CBD and to improve topological ad-
aptation.

CADRE has a few limitations. It lacks a separate verifi-
cation knowledge base and developers also recognize that
its topological knowledge base is inadequate. The system is
limited to adaptation of rectangular buildings due to the lim-
itation of the representation scheme adopted. Work related
to CADRE has been developed in the IDIOM system (Smith
etal., 1995).

6.6. ARCHIE-II

This is the successor to ARCHIE and provides similar func-
tionality but with improved usability (Domeshek & Kolod-
ner, 1991, 1992, 1993; Domeshek etal., 1994). It is a story-
based hypermedia browsing system that offers relevant
documentation, stories, problems, and responses for pe-
rusal on a requested design topic in the domain of court-
house design. Stories, problems, and responses are organized
graphically around design plans and provide multiple ac-
cess of stories on the topic.

Indexing is based on artefacts, components, functional
subsystems, and design issues and uses the nearest neighbor
algorithm for case retrieval. The system does not provide
for adaptation. The system was developed using Design-
MUSE, a CBD shell originally developed for the imple-
mentation of a system for conceptual design of aircraft
subsystems for Lockheed (Domeshek et al., 1994).

Stories represent detailed evaluations of specific build-
ings, while problems identify actual design goals and re-
sponses indicate the solutions to the problem (the synthesis

knowledge). Design cases contain text, drawings, sketches,
photographs, and other multimedia. Cases in ARCHIE-II are
not a pure by-product of design as they have been aug-
mented with evaluative material derived from explanations
given by people involved in the design process. ARCHIE-II
breaks a building design into chunks by looking for inter-
esting outcomes of design issues in particular parts of the
building.

Cases and subcases are interlinked and similar cases are
linked through a fixed relationship index. A more flexible
descriptive index allows searches for similar stories to the
current story or problem. These support two types of
searches:

1. artefact (building) retrieval based on user specified fea-
tures, and

2. lessons (story or problem) retrieval based on user spec-
ified design interests.

Design stories (lessons) are indexed in five dimensions: de-
sign issues, building space, functional components, stake-
holders (e.g., owner, builder, designer), and life-cycle phase
(e.g., design, construction, use, maintenance). Cases are
stored in memory as a flat library partitioned by the presen-
tation type (e.g., story, design, description, problems, and
solutions). It uses the nearest-neighbor algorithm to match
and retrieve cases. Cases with the highest scores are pre-
sented to the user.

ARCHIE-II has improved on the interface and usability
aspects of its predecessor. It has been completely converted
to a multimedia case-browsing system that lets users focus
on a particular subproblem of a design and broaden the search
to similar cases to include related problems. It has ad-
dressed the issue of the complex nature of designs by seg-
menting a case into a number of subcases according to the
lessons each case makes. It emphasises the need to provide
alternative solutions to architects.

6.7. MEMORABILIA and PRECEDENTS

MEMORABILIA is a library of design precedents for ar-
chitectural design developed at the Faculty of Architecture
and Town Planning, at the Israel Institute of Technology [Ox-
man & Oxman, 1993a,b; Oxman, 1993, 1994]. The system
specializes in the configuration of spatial organization in
the schematic design of museums. It is primarily an intelli-
gent case-browsing system for design. Hence, the research
focuses on indexing and retrieval of cases. The first proto-
type of MEMORABILIA was implemented in HyperCard
while future implementations are planned to be in common
LISP interfaced to hypermedia.

Oxman (1993) defines a precedent as a case that denotes
a unique idea. A precedent consists of situation descriptors
(functional key concepts for the situation), solution descrip-
tors (solution attributes, generation methods, and key con-
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cepts), and outcome descriptors (solution evaluation and
analysis). In addition, a precedent may be attached to a graph-
ical representation. A frame-based formalism is used to rep-
resent precedent cases. Slots in the frame represent problem,
solution, and outcome features.

An indexing tool provides two indexing methods that al-
low cross-contextual reminding. Functional Key Concepts
Indexing uses design concepts such as orientation or circu-
lation, to index cases within a building type. Content Infer-
ence Indexing also uses design concepts but only concepts
that are in conflict. It finds solutions in which the posed
conflict of concepts were solved. This indexing method is
domain independent and cross-contextual. The advantage
of this method is cases may be searched on how a particular
kind of conflict was solved; this is a more directed search as
opposed to an exploration of solutions.

The system retrieves appropriate cases as solutions to the
problem description of a current design. Problem descrip-
tion includes building type, site type, site conditions and
other contextual descriptors (e.g., required architectural
style). Cases retrieved can be viewed as stories or as graph-
ical representations.

Ongoing research has further expanded the concepts de-
scribed above in a system called PRECEDENTS (Oxman
& Oxman, 1993&; Oxman, 1994, 1995). It decomposes a
precedent case into design stories. A design story is an an-
notation of the conceptual design that characterizes the
uniqueness of a specific design precedent (i.e., a chunk of
knowledge emanating from a precedent). A tripartite repre-
sentational schema is used to describe a design story (i.e.,
design issues of the problem, a particular solution's concept
and related form descriptions). These generally map to the
problem, solution, and outcomes in MEMORABILIA.
PRECEDENTS' case memory uses a semantic net based on
the domain content vocabulary. From each node of the net
stories can be retrieved and hence the precedent case. Is-
sues, concepts and forms, as well as the precedents them-
selves, can be interlinked.

PRECEDENTS uses two types of index. Search indexes
for directly finding relevant solution principles and design
solution (stories) and browsing indexes for broader search-
ing using hard coded linkages between design concepts
within the semantic network. Within each type cross-
contextual searching and browsing is allowed.

MEMORABILIA and PRECEDENT consider architec-
tural design in terms of formulation or configuration of func-
tional spaces which is appropriate to the conceptual design
stage. As an intelligent case browsing system, they can re-
fresh or enlighten the designer with remindings from the
past. The way to reuse the knowledge gained from the re-
minding lies in the hands of the user.

6.8. FABEL

FABEL is a major research project for the design of com-
plex buildings with a high degree of technical installations

(FABEL, I993a,b, 1994; Bakhtari & Bartsch-Sporl, 1994;
Bartsch-Sporl, 1995). FABEL is the Al-based support sys-
tem for the A4 model prototype design system based on the
MIDI & ARMILLA design methodologies for complex in-
dustrial buildings (Haller, 1974, 1988). The project has the
broad objective of the seamless integration of case-based
and model-based reasoning in design and was first imple-
mented as a CBD support system. The system deals with
the detailed architectural design of buildings, decomposing
the design into design elements or segments where CBD
support is provided to the user when required within a CAD
environment.

FABEL's cases have many representations. Cases form
instances of object-oriented models (symbolic representa-
tion) and are also represented as CAD images. This allows
the user to switch between representations when required.
The symbolic representation works with prototypical cases.
Whenever a CAD image is required and prototype param-
eters values are given, a CAD construction program trans-
fers these objects to CAD representations enabling either
2D or 3D visualizations.

The project has identified the development of retrieval
methods that use semantic information as well as structural
information as one of their major challenges. To this extent
they have devised five methods for identifying the similar-
ity of technical drawings. Three of these have been imple-
mented as separate modules and can be used in combination
if required (FABEL, 1994, 1996).

1. An associative memory (ASM): The cases are in-
dexed according to type and attributes of technical ob-
jects and according to their frequency of occurrence.
An associative memory is used for similarity compar-
ison (Grather, 1994).

2. Distance measures (RABBIT): The cases are indexed
as above but similarity is identified by distance mea-
sures (Linowski, 1994).

3. Raster displays (ODE): This method compares raster
displays on different levels of grain size (i.e., ab-
stracted bitmaps of design pictures). It is a method pri-
marily based on the graphical appearance of cases
(Coulon & Steffens, 1994).

4. TOPO: uses a topological representation of objects in
a design. It uses the topological relationships to com-
pute an edge-graph representation of the layout and
searches for the largest common subgraph (Coulon,
1995).

5. Gestalts: uses recurring patterns (e.g., herring-bones)
to classify layouts. Ten different categories have been
identified (Schaaff, 1994; Schaaff & Voss, 1995).

A retrieval strategy that uses these retrieval algorithms has
been created called ASpecT (Schaaff & Voss, 1995). Of these
methods, the first three have been tested and others are in
various stages of development and testing. The FABEL pro-
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totype uses a two staged retrieval methodology (Genter &
Forbus, 1991), which makes an initial retrieval of candidate
designs and subsequently selection is narrowed with the use
of computationally more expensive methods, such as num-
bers 3 and 5 above.

FABEL supports adaptation in many ways with the in-
corporation of specific adaptation tools. These task-specific
and domain-specific tools use their own knowledge-based
systems to support adaptation. Most of these adaptation tools
are in the stages of development and testing. A degree of
adaptation has been achieved through TOPO, which topo-
logically transforms a selected case to the present situation.
Other tools are used for specific adaptation purposes such
as modifying the arrangement of columns in a steel framed
structure (AAAO) and adaptation of return air-duct connec-
tions (SYN*). These adaptation tools use domain specific
knowledge in the form of rules used to satisfy constraints
generated from the case transformation process. Some of
these tools are incorporated with verification knowledge
while other separate verification knowledge-based tools are
being formulated (e.g., ANOPLA for the verification of pipes
on a grid layout and CHECK for the verification of topo-
logical relations of adapted objects).

FABEL's main contribution is in the formulation of dif-
ferent retrieval strategies that allow cases to be retrieved for
a particular view or design perspective. In addition, it pro-
vides a method to directly and graphically match CAD lay-
out drawings (stored as cases) for assessment of similarity
and subsequent retrieval. Additional information and a full
list of publications related to FABEL can be found at the
FABEL web site (FABEL, 1996).

6.9. SEED

SEED supports the early design of buildings (Flemming,
1994; Flemming et al., 1993, 1994). It integrates many de-
sign generative and representation systems with CBD. It is
implemented for the architectural design of buildings and
was developed at Carnegie-Mellon University. It is a major
project funded by several U.S., Australian, and Danish or-
ganizations. SEED contains 3 modules:

• Module 1: Architectural programming for conceptual
design development and briefing.

• Module 2: Schematic layout design.

• Module 3: Schematic configuration design.

It uses generic systems for design generation and represen-
tation and each module is supported with a CBD compo-
nent, thus allowing the rapid development of design
alternative. Its aim is to use system-generated designs as
cases for reuse. Its case memory accumulates as a side-
effect of a design firm's normal design activities.

SEED'S modules support the creation of the problem spec-
ification, generation of solutions, and evaluation of the so-

lution, which forms the key contents of a case. Cases are
instances in a structured object hierarchy primarily based
on a part-of relationships. These relations are transformed
into spatial containment relations in a solution. Constraints
on the relations are expressed as separate objects, which trig-
ger tests to check the transformation.

SEED'S problem specification is divided into two central
constructs:

• Design units are the basic spatial and physical entities
that describe shape, location, and nongeometric
attributes.

• Functional units prescribe the design units needed to
satisfy a given context. These may contain a hierarchy
of constituent functional units.

A problem specification is a structured object described in
terms of attribute-value pairs. Case retrieval is carried out
mainly on the structural similarity of cases. Matching is per-
formed on classes and if required on subclasses. The total
match score for a case is achieved through a weighted sum
of matching attributes. The designer is allowed to set the
weights.

SEED allows the development of the problem specifica-
tion through an index refinement process. They consider that
the design problem evolves with its solution. Cases re-
trieved are ranked accordingly and presented to the user for
evaluation and selection. Index refinement is then used to
adopt a selected case (i.e., to refine the problem specifica-
tion). The evaluation objects would then test the partially
adopted problem specification. The evaluation can be car-
ried out before, during, and after adaptation. Adaptation is
carried out on a graphic (CAD-like) window and primarily
deals with functional space allocation. Adaptation is sup-
ported by a range of automated commands (e.g., add, re-
move, edit, and generate). Interactive adaptation by the user
is also supported.

SEED is under development and they are examining nu-
merous methods for case indexing and retrieval. They are
also investigating ways of incorporating or attaching de-
sign notes, hints, and the like to cases. They plan to store
cases in an object-oriented database with a separate case-
base representation that would provide a platform for ex-
perimenting on different indexing methods. They claim
"bringing research design methods and technology closer
to practice" as one of the primary goals of the research.

6.10. CASECAD

CASECAD is a design aiding CBD system for structural
design of medium rise buildings at the University of Syd-
ney and the University of Wollongong, Australia (Maher et
al., 1995; Maher & Balachandran, 1994a,b). It is imple-
mented on SUN SPARC workstations. It uses the X view
tool kit as its interface builder, along with C and common
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LISP plus FRAMEKIT. In addition, AutoCAD and XFIG
are used to display graphic files.

CASECAD contains several modules: case memory
(CMM), containing model-based and case-based knowl-
edge; a case-base manager (CBM), supporting the creation,
browsing, modifying, displaying, and saving of cases; a case-
base designer (CBDr) that retrieves and ranks cases; plus
CAD packages that support the graphical presentation and
editing of cases and a graphical user interface to interact
with all the modules.

Case memory organization in CASECAD primarily con-
sists of design models that encapsulate generalized domain
knowledge and provide an organizational schema for the case
memory. This object-oriented classification hierarchy con-
tains different levels of abstraction. The structural design
problem is divided into subproblems (e.g., grid systems,
training systems, core-structure, floor systems, etc.) in a func-
tional decomposition structure. Flexibility in indexing and
retrieval is achieved through the categorization of attributes
at each level of abstraction (i.e., a class) into function, be-
havior, structure conforming to the schema proposed in the
design prototypes (Gero, 1990). In addition, relation
attributes define the relationship of class to its superclass.
Cases are represented as instances of classes encapsulating
specific design knowledge.

A case in CASECAD is a single building and a subcase is
a structural component of the building. Both cases and sub-
cases are instances of their respective classes and sub-
classes in the design model. A case contains attributes that
describe the case along with attributes that attach CAD files
(2D and 3D) to the case. CASECAD has the ability to index
cases separately on function, behavior, and structure or all
these together.

CASECAD incorporates an iterative process for case re-
trieval. Retrieval is carried out in two stages. First, a set of
attributes is retrieved, and second, attribute-value matching
is carried out. Thus, cases are ranked according to the num-
ber of attributes that match. The similarity of attribute val-
ues is not considered.

CASECAD has created design models to represent do-
main knowledge and cases to imply specific instances. It
has successfully integrated CAD images with cases and its
indexing and iterative problem specification development
provide very useful features.

6.11. ADA

ADA is an interactive design system for architectural de-
sign developed at the University of Wales and the Univer-
sity of the West of England (Hunt & Miles, 1995). It provides
a repository of architectural designs with annotations that
help to elucidate the intent of the designer along with meth-
ods for evaluation of the design. The ADA initial prototype
was developed in ReMind and a second prototype was im-
plemented in POP-11 within the POPLOG environment.

ADA implements a design as a hierarchy of subcases based
on functional spaces in a design. Thus, design can be con-
sidered as a complete solution or a partial solution (i.e.,
solution to a design subproblem). The hierarchy is an object-
oriented representation of the design. Cases are stored as
plain ASCII files and are read into ADA, which constructs
the object-oriented representation of the case.

CASES in ADA contain not only geometric and func-
tional information on the design, but also the rationale for
the design, including its history, justifications, goals influ-
encing the design, and other annotations. These are imple-
mented as links from the object representation. These
multimedia features are provided to give a broader under-
standing of the design.

ADA performs two types of matches. The first is direct
matches that consider all attributes associated with a design
and their links. This search records all terms that match the
initial request. The second type of match is a nearest neigh-
bor match, which uses the hierarchy to classify cases. The
weighting system gives these matches half the weight of
those that have been directly matched. An algorithm ranks
cases according to the highest match score.

Retrieved cases can be viewed as text documents, CAD
layouts, and additional annotations. The user is allowed to
select a case for adaptation. However, ADA does not pro-
vide automatic adaptation. They argue the implications of
modifications to a design are complex, numerous and more-
over not preferred by the designers themselves. A modifi-
cation may have affects or consequences on aesthetic, artistic
issues as well as on cost or even corporate image. They be-
lieve that managing these interrelations is an impossible or
prohibitively expensive task.

However, ADA does provide a design repair and evalua-
tion module. Evaluation is carried out on the modified de-
sign using heuristic rules extracted from a design manual
and by the use of existing algorithms such as space alloca-
tion algorithms. The evaluation knowledge base can check
the user-modified design for any violation of rules or pa-
rameters. They also envisage the use of design concepts to
assist in the modification and evaluation process. The re-
pair module fires a rule if its parameters are violated and
prompts the user with suggestions on how to alter it.

ADA supports an iterative design development process.
Cases can be retrieved, modified, or combined at any time
during design development. The evaluation module can be
evoked to check the validity of adaptation. Thus the process
is user centered and user assisted.

A potential problem in retrieval of cases in ADA is its
halving of match weight for all partial matches. If the par-
tial match is on an important feature a case may still get a
lower score than one where less important features have an
exact match. The prioritization of features on match alone
may result in some structurally less similar cases gaining a
higher match score.

Conceptually, ADA is a usable system for architects that
frees them from mundane tasks such as finding a suitable
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previous solution and assists them in creative and knowl-
edge intensive tasks such as constraint checking.

6.12. NIRMANI

NIRMANI is an interactive CBD system developed by AI-
CBR at the University of Salford (Perera et al., 1995; Wat-
son & Perera, 1995; Perera & Watson, 1995, 1996). The
system is for the conceptual architectural design and estimat-
ing of warehouse buildings. The prototype is implemented
in ART*Enterprise, which provides an object-oriented
knowledge-based development environment with methods,
rules, and case-based reasoning. It also uses AutoCAD,
Netscape, and other applications for the presentation of as-
sociated multimedia.

NIRMANI integrates estimating and design within a case-
base environment. It provides a case memory organiza-
tional structure and four dynamic case indexing methods
for case retrieval. Adaptation is supported by a modifica-
tion knowledge base and verification rule base. It also con-
tains a module for case-base maintenance.

A building design in NIRMANI is a meta-case consisting
of a hierarchy of cases and subcases. At the top of the hier-
archy is the Project Context case. The second level contains
Architectural Context and Estimating Context cases repre-
senting the perspectives (or views) of architects and cost
estimators. A third level decomposes the architectural de-
sign into functional spaces and aesthetic requirements hier-
archies and the estimating problem into an elemental
classification hierarchy. Cases are stored as records in a re-
lational database external to the system. A unique case name
is used as the key for identifying subcases of the same de-
sign. An object hierarchy within the system maps to records
in the database and cases are presented (when required) as
instances. Cases contain attribute-value pairs as case fea-
tures describing the respective design problems.

Each case feature can have multimedia documents at-
tached to it. These are text documents (cost reports, design
annotations, user evaluations, etc.), photographs, 2D and 3D
CAD, video clips, pointers to spreadsheets, and even WWW
pages. All multimedia feature details are stored in a sepa-
rate database.

A Project Context case describes the environment within
which the project was carried out (features such as the site
condition, details, type of building, and other features com-
mon to both perspectives). The second level cases (archi-
tectural and estimating) describe the context of the
subproblems. The system prefers subcases to be retrieved
with the same context to reduce problems of case adapta-
tion due to contextual dissimilarity.

NIRMANI provides four indexing methods using nearest-
neighbor matching for case retrieval. Its default index con-
tains all cases in the case base. This default method will not
necessarily retrieve cases with similar project contexts. The
other indexing methods of narrowing dynamic indexing, par-
tial dynamic indexing, and hierarchical dynamic indexing

restrict case retrieval to similar project contexts and archi-
tectural or estimating contexts, respectively. A case-base
weighting system and case-attribute weighting system is used
to derive a match score. The weighted and normalized scores
of cases are used to rank cases for each case base and to
rank case retrieval from all case bases.

The interface of NIRMANI allows cases to be viewed as
attribute-value pairs, CAD drawings and other multimedia
elements. It supports parallel case comparison using a tab-
ulated form. Users are allowed to select cases for adapta-
tion.

Adaptation in NIRMANI is carried out in two phases. Pri-
mary adaptation adapts and refines the problem specifica-
tion. An index elaboration and index revision mechanism is
used for this purpose. Secondary adaptation converts the
problem specification into a solution through a case modi-
fication and combination process. A modification knowl-
edge base, containing a set of functions, supports case
modification. A heuristic rule base is used to verify modi-
fications and combination effects in the solution.

New solutions developed contain a list of cases that con-
tributed to them letting a case-base administrator assess the
usage of cases and thereby decide if pruning of the case base
is required. Case-base maintenance mode allows editing, ad-
dition of new cases, and removal of cases from the case base.

One of the main features of NIRMANI is its ability to
acquire cases from existing databases. This has been suc-
cessfully demonstrated using estimating data. However, the
absence of similar data for architectural design required de-
sign data to be extracted manually from drawings and doc-
uments. The present implementation provides secondary
adaptation only for the estimating perspective. However, fu-
ture research on NIRMANI would involve it being inte-
grated with a knowledge-based design system called SPACE
(Alshawi, 1995) that uses AutoCAD and an underlying ob-
ject model to represent design knowledge. This would let
NIRMANI achieve detailed architectural design adapta-
tion.

NIRMANI identifies knowledge elicitation as one of the
key phases in the development of a CBD system. This is
required not only to formulate adaptation knowledge, but
also to create the case memory structure. Identifying what
features are important to be presented in a case and their
relative importance is a difficult task. We found that the
determination of plausible weights for case features is a
black art. This is because these weights are highly context
and perspective dependent. Hence, in NIRMANI setting
feature weights can be left to the user. Another related is-
sue arising from this is the number of case attributes to use
for case retrieval and the number of case features (attributes)
to present to the user. Again, NIRMANI lets the user se-
lect which features should be included in the index for re-
trieval but it presents all features of a case to the user.
However, there are arguments against this approach be-
cause it can overload the designer with detail (Lehane &
Moore, 1996).
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7. COMPARISON OF THE REVIEWED
SYSTEMS

CYCLOPS and STRUPLE pioneered the use of CBR as a
technique in design problem solving. CYCLOPS evolved
as a tool for innovative design, and explained the use of
experience across domains to generate new design solu-
tions. It showed the way to solve problems with cross do-
main analogies where direct previous solutions cannot be
found. STRUPLE opened up another avenue in CBD by in-
tegrating CBR with an expert system. It showed how domain-
specific knowledge can be used to evaluate and transform
knowledge gained from previous design solutions to simi-
lar design problems.

These systems raised many issues that need to be ad-
dressed by CBD systems. CYCLOPS identified the need to
go beyond case-based verification of solutions and the need
to identify interactions between design components. STRU-
PLE points out to the need to have more flexible strategies
for retrieval and the need to make use of spatial configura-
tion of previous design solutions in deriving new design so-
lutions.

ARCHIE aimed to aid the designer by reminding how
design problems were solved in similar situations. It used
multimedia features to enhance the understanding of design
problems and their solutions. It confirmed issues raised by
CYCLOPS and STRUPLE by highlighting the need to sup-
plement case-based knowledge with other types of design
knowledge. It showed that designs should be decomposed
into manageable chunks and that not surprisingly users need
usable interfaces.

CADSYN is a hybrid system that combines rule-based,
model-based, and case-based reasoning. It finds design so-
lutions for a given problem specification using decomposi-
tion knowledge and constraint satisfaction with minimal user
interaction. It provides explanations of its reasoning steps
as does a classic rule-based system. As with ARCHIE, it
also emphasised the complexity of real design cases. It in-
dicated that drawings alone are inadequate for developing a
case base and that these need to be augmented and com-
mented by the designers. It also identified the need to ex-
pand the domain knowledge base to provide different
retrieval and adaptation mechanisms.

CADRE, contrary to most CBD systems, emphasizes case
adaptation and lets the user retrieve and select cases. It
takes the opposite approach to CADSYN in terms of de-
sign adaptation. It avoids decomposition and recomposi-
tion of design solutions. Instead, it uses a domain-
independent dimensionality reduction process and domain-
dependent topological adaptation process. In line with many
other systems, it provides a CAD interface for design ad-
aptation in which a graphical representation of the design
is supported by an underlying object structure. They argue
against expensive adaptation which would destroy implicit
features of a design. CADRE also considers context sensi-
tivity of design cases when using them in new situations.

It also raised the importance of the integration of different
perspectives of the design (i.e., architectural, structural, ser-
vices, etc.).

ARCHIE-II addressed some of the issues raised by its
predecessor. It addressed the issue of complexity and in-
formation richness in building designs by segmenting cases
into chunks or subcases according to the lessons they teach.
By incorporating two indexing methods and two retrieval
strategies, they have achieved a greater degree of flexi-
bility in the retrieval of cases. Hard coded relationship
indexes capture the domain-specific knowledge that de-
fines the relationship of one case to another. With the help
of constant consultations with prospective users, ARCHIE-II
has achieved greater usability than its predecessor. It raised
new issues of collecting cases for incorporation into the
case base. They have devised some methods for data
collection (style sheets) and are experimenting with these
methods. However, it is not clear in what way they are
going to handle case maintenance issues in the expanding
case base.

MEMORABILIA is similar to the ARCHIE systems in
that it aims to provide an intelligent case-browsing system
for the conceptual design of buildings. However, its main
aim is to provide cross-contextual reminding. Conceptu-
ally, this is similar to CYCLOPS, which achieves it through
analogical reasoning across domains. But MEMORABILIA
attempts to achieve it across different design contexts by
looking for similar solutions in different building types. Al-
ternative indexing methods let cases be retrieved on con-
flicts in design concepts. This allows users to identify how
competing concepts in designs were solved in previous sit-
uations. This is an important issue that other systems deal
with mainly in terms of design constraints. PRECEDENT,
the successor to MEMORABILIA, decomposes design prec-
edent cases into chunks of knowledge represented as stories.
Thus, PRECEDENT'S main difference to MEMORABILIA
is in the way in which the case memory is organized. This is
similar to ARCHIE-II's design story organization. How-
ever, PRECEDENT classifies a story as design issues, con-
cepts, and forms organized as a semantic net with links to
similar issues. Its other main feature lies in the addition of
goal-directed search and broad issue-, concept-, or form-
browsing facilities along with cross-contextual reminding
in search and browse modes. MEMORABILIA'S main con-
tribution lies in indexes for cross-contextual reminding while
PRECEDENT is the organization of cases as stories con-
nected to design precedents.

FABEL creates cases in a similar way to CADRE, that is,
its CAD layout drawings have an underlying symbolic rep-
resentation in terms of objects. This has enabled them to
create cases as instances of prototypical object structures.
FABEL's major contribution lies in the development of mul-
tiple case retrieval strategies, facilitating multiple views of
the same data space. In our view, the most import and unique
of these is the strategy to retrieve CAD layouts based on
their structural similarity. Retrieval strategy using gestalts,
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layout fragments containing recurring patterns, is another
unique approach. The method that represents topological re-
lations to graphs is a somewhat similar approach to CY-
CLOPS's influence graphs. The case retrieval shell, which
encompasses the different retrieval strategies of FABEL, not
only provides a common case base but supports different
views of the same cases.

SEED provides case-based design support throughout the
design life-cycle, although schematic design remains their
immediate concern. SEED'S case representation is similar
to that of CADRE and FABEL; that is, a graphical repre-
sentation with an underlying object structure. At the same
time, they endorse ARCHIE's (I & II) ability to annotate
design. SEED raises a new issue in building design; namely,
the need to develop the problem specification and its solu-
tion in an iterative process (i.e., index refinement). This is
important in building design, as the development of the de-
sign brief is an evolving process. SEED identifies the need
to identify relative weights for case features. However, they
point out that predetermination of such weights may lead to
the problem of mutual preferential dependence of features
(Keeney & Raiffa, 1976). Therefore, they let the user set
weights for features according to the needs of the retrieval.
Like FABEL, SEED is limited to the adaptation of rectan-
gular spaces and stresses the need for adaptation to be
interactive.

CASECAD's main contribution is the integration of CAD
with CBR for case presentation. This allows the designer to
view a selected case or subcase in a familiar way. In this
respect, it is similar to ARCHIE-II and PRECEDENTS, but
CASECAD goes a step further by allowing the user to use a
case in the CAD environment to directly evolve a new so-
lution. CASECAD does not provide an adaptation knowl-
edge base. However, it does augment the need for case
combination by functionally decomposing the structural de-
sign. Subsequent adaptation by combination or otherwise is
left to the user. A danger in this approach could be the com-
bination of subcases out of context.

CASECAD provides a means of indexing and retrieving
CAD drawings, but at the expense of an introduction of ad-
ditional features to a case. CASECAD's use of design mod-
els and its integration with the case memory provides a useful
paradigm for case memory organization. This can be com-
pared with FABEL and SEED'S proposed approach. These
use a domain model to hierarchically classify design ele-
ments into classes where instances of classes denote cases.
Similar to SEED, it identifies the need to develop the prob-
lem specification in an iterative process and goes one step
beyond with the incorporation of index elaboration in addi-
tion to index revision. Similar to ARCHIE, FABEL, and
MEMORABILIA, CASECAD also identifies the difficul-
ties related with case acquisition—namely, that drawings and
design documents alone do not provide adequate informa-
tion for the formulation of a design case.

ADA is an interactive CBD system with a case content
similar to ARCHIE-II. But, ADA rallies all subcases around

a design case as opposed to design stories in the case of
ARCHIE-II or PRECEDENTS. It is similar to CASECAD
in terms of organization in that designs consists of a net-
work of subdesign solutions and are implemented as an ob-
ject hierarchy. Subcases can be assessed independently or
collectively. Like ARCHIE-II it provides annotations to sub-
problems of design. ADA provides a verification knowl-
edge base to check user modifications and guides the user
in the direction of a plausible solution. In terms of design
verification knowledge, ADA uses heuristic rules and space
allocation algorithms similar to SEED and CADSYN. But
the verification knowledge is used to verify user adaptation
and not system adaptation as in the case of CADSYN and
CADRE. ADA's uniqueness is with its conceptual approach
to interactive design, assisting the designer in mundane but
highly computational tasks. They attempt to achieve a bal-
ance between usability and the degree of automation. In terms
of case content they highlight the need to provide informa-
tion as to the development of the design in terms of design
annotations conforming to the views expressed in AskJef
(Barber et al., 1992).

NIRMANI primarily addresses two issues: the need to
provide different perspectives or views of the design and
the need to retrieve cases sharing a similar context to ease
case adaptation. It uses a case hierarchy to integrate two
design views: those of the architect and the cost planner.
FABEL uses the ASpecT multiview retrieval strategy to
achieve the same end. However, NIRMANI's approach does
create some data redundancy in the case bases. In a similar
way to NIRMANI, FABEL's ASpecT retrieval strategy has
the user set weights for features (aspects) to define context.
However, FABEL uses a neural network assisted mecha-
nism to set weights (Schaaff & Voss, 1995) while in NIR-
MANI the user sets the weights.

NIRMANI is similar to CASECAD in terms of case
memory organization; both use domain models as class
hierarchies and instances of classes representing specific
cases. NIRMANI allows designers and estimators to rea-
son with confidence using the same reasoning paradigm.
NIRMANI uses multimedia to present cases to the user in
a similar manner to CASECAD. However, they avoid bur-
dening the case content by providing pointers to media
documents and it uses SQL-like queries to retrieve media
documents. Using a similar approach to SEED and
CASECAD, NIRMANI develops the problem specifica-
tion using index elaboration and revision techniques. For
the formulation of adaptation knowledge, it takes a similar
approach to CADSYN, using a modification knowledge base
and a verification rule base. NIRMANI raised the issue of
providing multiple perspectives of a design case along with
the importance of design context in case retrieval and ad-
aptation. It identifies the difficulties of identifying case fea-
tures for design problems and the problems of setting
weights for the features. It claims that the retrieval of cases
from a similar context eases adaptation by reducing con-
straint violations.
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Table 3. Summary of the comparison of CBD systems

Name Domain Brief Description Representation

CYCLOPS

STRUPLE

Landscape design

Structural system
design of multistorey
buildings

First case-based system in design. Cases stored as problems
solutions for new problems achieved within a given set o. w
strains. It is used to debug and repair landscape layout designs.
It uses cross domain analogies to provide new solutions to its

s and
f con-

problems.problems.
Developed as a rule-based estimating system with an intelligent data-

base interface for reasoning from previous experience. Previous
design cases are stored in a relational database. Retrieval criteria
are weighted to indicate relative importance of features based on
domain-specific knowledge. A synthesis process is used to evaluate
all subsets of a chosen design.

Uses ad-hoc models to represent cases as problems
(explained and unexplained observations) and their
explained solutions in a flat case memory structure.
These provide indexing features.

Design cases are represented as attribute-value pairs
mapped to a relational database. It uses a flat orga-
nization of the case memory.

ARCHIE

CADSYN

Architectural design An interactive CBD aiding system implemented using ReMind. Users
of office buildings specify their problem description and the system retrieves and dis-

plays past designs and provides suggestions and warnings. In support
of evaluation, the system computes potential outcomes and retrieves
and displays past designs with similar outcomes. Its indexing vocab-
ulary is based on design goals, outcomes, and situation descriptors.
It uses nearest neighbor and an inductive retrieval algorithm.

Preliminary structural A hybrid CBD system developed on SUN stations in common Lisp
design of multistorey and FRAMEKIT. Hierarchical case memory with attribute-value
buildings. pairs. Uses a decomposition knowledge base and design constraint

representation for retrieval of subcases. Case combination uses a
constraint satisfaction approach for solution recomposition.

Cases are represented as flat frames describing case
features as attribute-value pairs. Design cases con-
tain design goals (problems) outcomes (description
of what were the solutions) plans (drawings,
sketches, graphics etc.), and lessons (how solutions
were achieved).

A design solution is decomposed into a set of hier-
archically organized global cases and subcases. The
hierarchy consists of three layers: global context,
grid representation, and a hierarchy of subcases
describing the design solution for each grid system.

CADRE Architectural and
structural design of
buildings.

A CBD system emphasizing case adaptation. Cases stored as design
drawings. User selects an appropriate design for adaptation. CADF
contains knowledge in two forms. Case-based knowledge and logic
based knowledge that is used for adaptation of cases, contextually,
dimensionally, and topologically. Implemented in Lisp and C to
represent CAD models of buildings as objects. AutoCAD provides
the GUI.

Cases are design plans, containing more geometric
information that structural information (i.e., cases
stored as 3D CAD models).

ARCHIE-II Architectural design An extension of ARCHIE. Provides a multimedia case base for
of court buildings. browsing of similar design problems and their solutions held as

design stories. It uses a flexible descriptive index for user directed
searches and a relationship index to link similar cases. Cases can be
retrieved interactively and sequentially leading from one problem to
another or diversifying to different issues.

Building design contributes to many design subcase
segments that are created around a design lesson.
Uses a flat case memory partitioned as: stories,
problems, and solutions.

MEMORABILIA & Space layout design of
PRECEDENTS buildings.

FABEL Architectural design of
buildings.

A prototype system developed using HyperCard stores design stories
that have the status of precedents. The user is presented with an
appropriate design story and a corresponding design precedent that
matches the design problem. The system in addition, allows cross
contextual browsing. Presently contains museum design precedents.

A major CBD project for complex industrialized buildings with a high
degree of technical installations. Uses the ARMILLA & MIDI design
methodology and the DANCER design tool to generate cases for the
system. Aims to integrate CBR and model-based reasoning in the
design tool.

Design cases represent design stories consisting of
design issues, concept, and form cases. Represented
as frames with slots (representing features that
describe design issues, concept and form). Fillers
provide values identifying each story.

Cases are primarily represented as CAD layouts with
an underlying object structure.

SEED

CASECAD

Schematic architectural
design of buildings.

Conceptual structural
design of medium rise
buildings.

A design generation system consisting of three modules:
Module 1: Architectural Programming
Module 2: Schematic Layout Design
Module 3: Schematic Configuration Design.

The concept of design units and functional units are used for defin-
ing the problem and the case features.

A case retrieval system incorporating a multimedia approach. Cases are
represented in an object hierarchy and as 2D and 3D CAD images.

Cases are instances of a class hierarchy. Cases contain
problem specification, solution (design), and out-
comes (evaluation).

Design cases and subcases form instances of an object
hierarchy based on a functional element decomposi-
tion of structural design (design models). Case hier-
archies contain attributes to describe associated
media files (CAD drawings).

ADA

NIRMANI

Architectural design or
buildings.

Conceptual architectural
design and estimation
of light industrial
buildings.

Interactive CBD systems for storage, retrieval, and evaluation of archi-
tectural designs. Cases contain drawings and annotations expressing
intent of the architect. Implemented in POP II.

An interactive CBD and estimating system uses a multimedia case
base stored as a relational database mapped to an object hierarchy in
ART *Enterprise. Provides case-base storage, dynamic indexing,
retrieval, and adaptation of cases. Adaptation is user centered but
guided by adaptation knowledge.

Design of a building is contained in a meta-case as a
collection of subcases. Cases are represented as an
object hierarchy based on a decomposition of design
on functional spaces.

Uses a multiple-perspective hierarchical case-base
structure with 3 layers: project context, design per-
spective, and problem decomposition. Cases are
instances with attribute-value pairs to describe
features.
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Retrieval Presentation Adaptation Other/Comments

Cases are retrieved as direct matches, relaxed
matches (abstract match), and system-
atically-based match (using cross-domain
analogies). Uses a serial search to retrieve
cases that match indexed features.

Retrieval is based on a fixed similarity metric
that compares significant common aspects
of (he matched case to the current case.
Matching is on weighted features.

Two retrieval strategies:
1. Nearest neighbor based on primitive

concepts.
2. Qualitative retrieval based on inductive

knowledge-based clustering using simple
domain models.

A feature-based index of cases (and sub-
cases) is created as a frame (the system
list). Cases and subcases of each structural
subsystem are recorded in the index. Cases
are retrieved and ranked according to the
number of features matching.

User selects an appropriate case.

Cases can be retrieved as a whole design (a
building) or a design story dealing with a
subproblem of a design. Users are allowed
to browse through the case base by focus-
ing on a problem or by broadening the
search. Uses nearest neighbor for matching
and retrieval.

Provide goal directed searching and broad-
based browsing. Cross-contextual remind-
ing is used within search and browse
modes.

Provides five main case-retrieval strategies
based on: Associative memory (key words),
attribute vectors (attribute value pairs),
topological similarity (graph based), ge-
stalts (similar patterns), and object density
maps (graphical similarity using bitmaps).
ASpecT encompasses all these retrieval
methods in one environment.

Cases are retrieved by traversal of the class
hierarchy. Problem specification is devel-
oped through an index refinement process.

Cases are presented as
precedents in solving a
previous problem.

A list of ranked cases is
presented to the user.

Cases are associated with
text, drawings, annotated
sketches, images, anima-
tion, etc. Case browsing
can be done as index-
based browsing and hyper-
text-based browsing.

Envisage minimal user inter-
action. However, provides
a trace of the reasoning
process in the form of how
cases were adapted.

Cases are presented as
design plans. Users are
allowed to modify the
design in order to satisfy
constraints.

Cases are presented to the
users as text, drawings,
annotated sketches, and
photographs.

Cases or stories are pre-
sented as story cards in
a Hypermedia System.
Precedent cases are
graphically illustrated.

Presented mainly as CAD
layout drawings and
bitmaps.

CAD/graphical user interface
used for case presentation
and adaptation.

Provides case-based solutions for new problems.
It can combine cases to generate innovative
solutions.

Uses the design vocabulary of selected previous
designs to generate a new solution. Instead of
directly taking the previous solution it com-
pares the selected cases design vocabulary for
each element with its knowledge base and iden-
tifies the most promising for use during the
synthesis process.

None.

Cases and subcases are first structurally adapted
(feature based substitution), constraint viola-
tions are checked, and a modification process
assisted by heuristic rules and decomposition
knowledge then modifies violated constraints.

Adaptation uses a dimensionality reduction
process to overcome conflicts. Adaptation is
carried out to satisfy structural and space layout
problems. Cases are combined where appropri-
ate to generate new solutions.

None.

Topological adaptation allows the transformation
of topological features from a selected case.
Other methods being developed use adaptation
knowledge stored as rules and a constraint
satisfaction approach.

An interactive user centered adaptation approach
is envisaged. Uses many adaptation primitives
(add, edit, copy, etc.). A constraint-checking
mechanism provided.

New solutions are verified using the cases in
the case base. Emphasis on retrieval and
adaptation.

It combines the use of case-based knowledge
with domain-specific knowledge in an esti-
mating system. The fixed similarity metric
limits the capabilities of the system. It only
considers the structural system and not the
spatial solution. Emphasis is on retrieval and
adaptation.

Highlights the complexity of building design
cases. Need for user friendly GUI. Need to
incorporate domain-specific knowledge for
reasoning.

Highlights the complexity of design cases.
Provides flexible indexing. Lack of domain
knowledge for ill-conceived problem specifi-
cations may lead to infinite loops or no solu-
tions. Needs to expand domain specification
knowledge for constraint satisfaction as well
as case retrieval.

Takes a case adaptation approach that avoids
decomposition and recomposition of a design
solution. Identifies the need for integration
of design perspectives. Dimensionality re-
duction needs to be carried out for each
adaptation and combination. Limited to rect-
angular spaces. Requires more maturity in
topological adaptation knowledge.

Emphasis is on (he development of a design
aiding system. Thus, priority is on case pre-
sentation and the definition of reusable
chunks of a design.

Main contributions of MEMORABILIA is the
indexing methods that allow cross-contextual
reminding. PRECEDENT'S contribution is in
the use of a semantic net of stories connected
to precedents.

Main contribution lies in providing a multi-
tude of case-retrieval methods. Recognizes
the need to allow multiple perspectives of
the same data.

Cases are a byproduct of design generation.
Adaptation is limited to rectangular spaces.
Raises issues of problem specification devel-
opment.

Indexed in two levels.
1. Category Indexes that have Relations.

Functions, Behavior, and Structures as
four main categories.

2. Attribute Indexes—many attributes per
category. Flexible indexing and case
retrieval. Provides index elaboration and
index-revision techniques for problem
specification development.

Cases can be retrieved individually or
collectively. Retrieval based on exact match
and partial match.

Cases are retrieved interactively using one of
four nearest-neighbor based indexing meth-
ods. These retrieve cases with identical or
similar contexts. Index elaboration and
revision are used to develop the problem
specification.

Cases are presented as
attribute-value pairs and/or
as 2D & 3D CAD images.

Cases can be viewed as
drawings, design concepts,
histories, justifications, and
annotations to design cases.

Cases are presented as attrib-
ute-value pairs, individu-
ally or in a table. 2D and
3D CAD drawings, photo-
graphs, video, documents,
and WWW pages can be
associated with case fea-
tures.

Allows manual adaptation of cases and the
addition of new cases to memory.

The user adapts a selected case and a verification
knowledge base checks the validity of the mod-
ifications and prompts the user for appropriate
action.

Adaptation knowledge is stored in a modification
knowledge base as functions and as rules in
verification knowledgebase. Adaptation is car-
ried out in 2 stages. Primary adaptation refines
the problem specification using index elabora-
tion and revision. Secondary adaptation modi-
fies case contents and combines cases to derive
new solutions.

Enables flexible retrieval of cases where adap-
tation is left to the user. Useful integration of
CAD with CBR and design models with
CBR.

Tries to achieve a balance between the degree
of automation and usability.

A case-base maintenance module can add, edit,
or prune cases according to case usage. Inte-
grates two design perspectives and supports
the retrieval of contextually similar cases.
This eases adaptation. Has identified diffi-
culties in formulating case content and the
determination of weights for case features.
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The comparison of CBD systems has shown how the field
originated with the development of CYCLOPS and STRU-
PLE as precedent-based and experience-based systems, re-
spectively. We have analyzed how each of the systems has
addressed the issues of case representation, retrieval, pre-
sentation, adaptation, and maintenance. It is evident that case
representation and retrieval have been the issues dealt with
by most systems. Case presentation and adaptation issues
were considered by a considerable number of systems. Case-
base maintenance can be seen as the issue least dealt with.
Ethical and legal issues of case ownership and reuse have
not been dealt with at all, although these issues will be of
importance if CBD systems are to be used commercially.

Table 3 provides a summary of the case-based design sys-
tems discussed in Section 6.

8. CONCLUSION

Case-based reasoning, as defined by Riesbeck and Schank
(1989), is "the process of solving new problems by adapting
solutions that were used to solve old problems." Case-based
reasoning encourages the reuse of solutions instead of solv-
ing problems from scratch. The usefulness of this technique
is enhanced when the problem to be solved is of a complex
nature and where problem-solving methods are not well un-
derstood. Design is often complex and ill-structured with
no generally accepted theory. Moreover, there is rarely one
correct design solution, but often many possible solutions.
This makes model-based solutions dependent on a strong
domain theory inadequate for design problem solving. Con-
sequently, CBR, which supports problem solving in unstruc-
tured domains, is well suited to design.

An analysis of the design process showed that the
Propose-Critique-Modify design methodology matches the
CBR cycle of retrieve-reuse-revise. This again supports
the conclusion that CBR is an ideal technique for solving
design problems. This further is supported by the fact that
architects reuse parts of previous designs in developing new
designs.

Building designs are highly contextual and components
or elements of solutions are interdependent and constrained.
In such situations adaptation of design solutions requires
extensive domain knowledge. Therefore, CBD systems for
building design are usually hybrid systems with case-based
and knowledge-based components.

This paper identified social issues such as creativity and
the ownership of designs as important. The CBD systems
reviewed, however, concentrate on technical issues of case
representation, retrieval, presentation, and adaptation. Sev-
eral systems reviewed do, however, illustrate the impor-
tance of usability and CBD systems developed in the future
will need to address social issues in greater detail.

The success of many academic CBD systems proves the
validity of the concept of CBD, but a true measure of suc-
cess will only be available when CBD systems are used com-

mercially. Perhaps the most valuable contribution of CBD
is its ability to divide complex problems into reusable frag-
ments that can then be synthesized into a coherent solution.
This is of generic importance to other complex problems
such as scheduling and planning.

Future research in CBD needs to address many issues be-
fore it could be accepted commercially. These issues in-
clude the following:

1. Human Computer Interaction (HCI) needs further ex-
amination. This mainly relates to case presentation. The
use of multimedia as a technique for improving HCI
is a useful avenue to pursue.

2. The management of case bases needs further research.
The design worthiness of cases must be evaluated prior
to their retention as a new case. Design cases may be
analyzed using feedback from implemented designs.
Research in this direction could improve the quality
of design cases and thereby the quality of design so-
lutions.

3. In areas where design knowledge is owned by differ-
ent people, as in building, different views of a design
case need to be supported. This can provide a plat-
form for a more collaborative design process.

4. Further research is required on hybrid architectures that
integrate other AI techniques. This will be vital to sup-
port case adaptation.

5. CBD systems need effective validation and verifica-
tion methods.

In conclusion, case-based design is a challenging problem.
There have been many worthwhile implementations, each
using different methods. It is perhaps possible now to iden-
tify a common approach for the future. Design cases are
decomposed using domain knowledge and are represented
hierarchically, probably using object-oriented techniques.
Cases include design data and can be presented as plans,
along with other pertinent information. Retrieval of past de-
signs uses contextual information, and new designs can be
adapted and composed from parts of previous designs. Ad-
aptation and case combination are not fully automated—
designers are included in the loop and any adaptations they
make can be checked using verification knowledge and pre-
vious design cases.

The next step is to leave the laboratory and face a whole
new set of problems in applying these techniques commer-
cially.
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