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Abstract—Urinary tract infection (UTI) is a type of health 

disorder, an infection in the urinary glands mainly caused by 

bacteria. Currently, conventional early detection methods that 

have been established involve rapid dipstick strip test and urine 

culture analysis, which have suboptimal accuracy and 

effectiveness. Several retrospective studies regarding UTI 

bacteria classification have shown promising results, but still 

have limitations regarding prediction accuracy and technical 

simplicity. This study aims to implement a method based on 

artificial intelligence (AI) in classifying images of bacteria that 

causes UTIs. Eight artificial intelligence methods based on deep 

neural networks were used in the study; the models were 

evaluated and compared based on the prediction's effectiveness 

and accuracy. This study also seeks to create the easiest method 

of classifying bacteria causing UTIs using a computer-based 

application with the best obtained AI-based model. The best 

training results using an intelligent approach placed 

DenseNet201 as the method with the highest accuracy (83.99%). 

Then, the output model was used as a knowledge reference for 

the designed computer-based application. Real-time prediction 

results will appear in the application window. 

Keywords—Artificial Intelligence; Computer-based 

Application; Prediction; Rinary Tract Infection. 

I. INTRODUCTION 

Urinary tract infection (UTI) is one of the infections 

caused by these two bacteria, including Gram-negative and 

Gram-positive bacteria, and certain fungi, colonizing in 

excess and the most common to be found in medical practices 

[1]. UTIs affect 150 million people worldwide each year [2]. 

This illness is classified as either uncomplicated or severe 

UTI. 

Uncomplicated UTIs typically occur in healthy 

individuals with no structural or neurological abnormalities 

of the urinary system. Uncomplicated urinary tract infections 

(UTIs) are classified as lower UTIs (cystitis) and higher UTIs 

(pyelonephritis). This category frequently contains 

Staphylococcus saprophyticus, Enterococcus faecalis, and 

Streptococcus agalactiae (group B Streptococcus, GBS) [3].  

Meanwhile, a complicated urinary tract infection (UTI) is 

defined as one that is associated with factors that impair the 

urinary tract or host defines, such as urinary obstruction, 

urinary retention caused by neurologic disease, 

immunosuppression, renal failure, kidney transplantation, 

pregnancy, or the presence of foreign bodies such as stones, 

catheters, or bladders, and additional drainage devices [4]. 

Urinary tract infections caused by catheters are the most 

frequent, accounting for 70% - 80% of cases [5], which have 

been linked to worse patient outcomes. While complicated 

UTIs are frequently discovered due to E. coli infection, these 

Enterococcus faecium, Proteus spp., and Staphylococcus 

saprophyticus bacteria are also detected, albeit infrequently.  

Enterococcus faecium and Staphylococcus saprophyticus 

are salt-positive bacteria typically found in the human flora 

but can cause various health concerns when present in 

excessive amounts [6]–[8]. Both are critical for human health 

since they are the primary cause of healthcare-associated 

infections. 

Enterococcus faecium also may cause urinary tract 

infections (UTIs) [9]–[11], endocarditis, and bacteremia. 

Enterococci can exist either as single cocci or pairs, in chains 

or clusters [12]. They are facultative anaerobes with chemo-

organotrophic metabolism and homofermentative 

metabolism, with lactic acid as the primary end product of 

carbohydrate fermentation. Thus, they can survive in adverse 

circumstances, making them well-suited to healthcare 

settings. 

S. saprophyticus, on the other hand, colonizes the 

perineum, rectum, urethra, cervix, and human digestive tract. 

These bacteria are often responsible for urinary tract 

infections. S. saprophyticus colonies are frequently yellow in 

color [6], [13], [14]. The tolerance of S. saprophyticus to 

Novobiocin distinguishes it from other coagulase-negative 

staphylococci. S. saprophyticus, like other pathogenic 

organisms, produces ammonia via urease. However, unlike 

many of these organisms, it cannot reduce nitrate, making the 

nitrate culture test unsuitable for detecting these bacteria. 

In other words, several bacteria that are the leading cause 

of urinary infections include E. faecium, Proteus spp., and S. 

saprophyticus. These bacteria can be recognized as 

biomarkers for UTIs. Currently, conventional early detection 

methods that have been established involve rapid dipstick 

strip tests and urine culture analysis, which have suboptimal 

accuracy and effectiveness. The process of early detection to 

identify urinary infections has been using the laboratory test 

method. This conventional method tends to take a relatively 

long time. 
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In recent years, medical-based applications using 

artificial intelligence approaches have been developed to 

support preventive measures and disease detection in the 

health sector. The implementation of artificial intelligence 

(AI) in supporting the medical world can be in the form of 

early detection of diseases based on images of organs [15]–

[17] and wave patterns of vital organs found in the human 

body [18]–[21]. More precisely, AI's use in the medical 

profession has advanced significantly in recent years. AI has 

been developed to identify a variety of medical problems, 

including low ejection fraction (EF) in ECG signals [22]–

[24], dental restoration detection [25], suggestions on dental 

caries [26], feedback on facial orthognathic assistance to 

dentists [27], providing medical aid program suggestion [28], 

and identification of polyps [29], [30]. Additionally, medical 

professionals can use artificial intelligence to identify proper 

squat form for physical therapists [31], improve the accuracy 

of skeletal age assessments, speed up radiologists' 

interpretation times [32], pre-assess priority care digitally 

[33], and provide recommendations in physician diagnosis 

[34], [35]. 

Applications of artificial intelligence in disease detection 

include pneumonia fast testing [36], breast cancer detection 

[37]–[41], gastric cancer identification [42], tumor detection 

[43]–[45], epilepsy detection [20], [46]–[48], malaria 

detection [49], and blood cancer detection [50]. The artificial 

intelligence approach is carried out using either a window-

based application [51]–[53], a mobile phone [54]–[56], or a 

centralized computer application [57], [58]. 

Applying artificial intelligence in practical topics has 

experienced rapid development [59]–[61]. Artificial 

intelligence, apart from being used in the medical world, can 

also be used to support field problems such as waste 

processing [62]–[64], vehicle number plate detection [65]–

[67], and human emotion detection [68]–[70]. 

The research contribution of this work is to find the best 

method by comparing some image classifier methods for 

bacteria causing urinary infections using an artificial 

intelligence approach. The best model with the highest 

accuracy results was then used as a reference model for 

making computer-based software applications. This software 

is representative of urinary bacterial infection detection using 

bacterial images captured by a microscope camera. This 

computer-based software will display a complete and detailed 

urinary infection prediction. 

II. MATERIALS AND METHODS 

A. Materials 

This study used a dataset from the Digital Images of 

Bacterial Species (DIBaS) [71]. It consists of images of 

bacteria with several data classes. Then, the dataset was 

divided into two classes: urinary and non-urinary infections.  

Table I shows the bacterial species distribution in the two 

classes. Species of bacteria included in the data class of non-

urinary infection were Actinomyces israeli, Candida 

albicans, Clostridium perfringens, Escherichia coli, 

Lactobacillus, Listeria monocytogenes, Porfyromonas 

gingivalis, Pseudomonas aeruginosa, and Veionella. 

Meanwhile, E. faecium, Proteus, and S. saprophyticus were 

categorized in the data class of urinary infection. 

The dataset contained 394 images of non-urinary bacterial 

infections and 360 images of urinary bacterial infections. 

Ideally, image data for each class is divided by 80% for 

training and 20% for testing. The total epoch of training data 

was set to 40. 

Image augmentation was applied to the images of the 

urinary infection data subset by modifying the images with 

horizontal flip, vertical flip, and random rotation. Fig. 1 

shows the augmentation example from the original and 

augmented images. 

  

(a) (b) 

  

(c) (d) 

Fig. 1. (a) Original image; (b) Random rotation; (c) Flipped horizontal; (d) 

Flipped vertical 

TABLE I.  DISTRIBUTION OF BACTERIA DATABASE 

Bacteria Name Class Total Images 

E. faecium Urinary Infection 120 

Proteus spp. Urinary Infection 120 

S. saprophyticus Urinary Infection 120 

Actinomyces israeli Non-urinary Infection 23 

Candida albicans Non-urinary Infection 20 

Clostridium 
perfringens 

Non-urinary Infection 23 

Escherichia coli Non-urinary Infection 20 

Lactobacillus Non-urinary Infection 220 

Listeria 

monocytogenes 
Non-urinary Infection 23 

Porfyromonas 

gingivalis 
Non-urinary Infection 23 

Pseudomonas 

aeruginosa 
Non-urinary Infection 20 

Veionella Non-urinary Infection 22 

 

B. Intelligence Methods 

Identification consists of bacteria classes that infect in this 

study using an intelligence approach. The intelligence 

approach is often referred to as the artificial intelligence 

approach. In this approach, the dataset that has been given 

image interference is trained to recognize and classify images 

into two classes. The first class is a urinary infection class and 

the second class is not a urine infection. The artificial 

intelligence approach is trained using eight artificial 

intelligence methods to train image data. These methods 
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include VGG16 [72], VGG19 [72], Inception V3 [73], 

Mobile-Net V1 [74], Mobile-Net V2 [74], DenseNet121 [75], 

DenseNet169 [75], and DenseNet201 [75][76]. Therefore, 

this intelligence approach requires a lot of training time 

because the method used is relatively high. Each of these 

methods has a different number of layers and a different 

network structure. So, with these variations, it is hoped that 

there will be an ideal comparison to find out the best 

intelligence approach method. The step work of the 

intelligence approach can be seen in Fig. 2. This figure 

explains that the beginning step after getting image data from 

an augmented dataset is training the image into eight 

methods. 

Dataset 

Training

Selection of Artificial 

Inteligence Classifier

VGG16

VGG19

Inception 

V3
MobileNet 

V1

MobileNet 

V2

DenseNet 

121

DenseNet 

169

DenseNet 

201

Data 

Knowledge

Preprocessing
(flipped vertical, 

flipped 
horizontal, 

random rotation)

 

Fig. 2. Intelligence approaches 

C. Software Development 

The software design uses a visual programming method 

based on visual studio GUI. Software development is 

initiated by referencing the artificial intelligence method's 

final model with the best accuracy. The design of this 

software has the function of easy and fast detection of 

bacteria that cause urinary infections. Bacteria detection 

using the Python platform is integrated with visual studio 

programming using the C# language. Flow steps for using 

this software can be seen in Fig. 6. According to Fig. 6, the 

flow of software usage begins with retrieving bacterial image 

data stored in the user directory. Users can use various image 

extensions for bacteria detection. The selected image can 

immediately detect the content of bacteria that cause urinary 

tract infections by pressing a button to start detection. 

III. RESULTS AND DISCUSSIONS 

This study used an artificial intelligence approach to train 

the image dataset. Image data that several methods have 

augmented are adjusted based on each class. The parameters 

used in this image training are conditioned the same for each 

artificial intelligence method. According to previous 

research, the equated parameters for each method are learning 

rate, epoch, batch size, and image resizing [77]. The 

difference for each technique lies in the number of layers and 

the convulsion algorithm used. Fig. 3. describes the level of 

accuracy for each method of artificial intelligence approach. 

In Fig. 3, it can be seen that each process reaches its optimal 

accuracy when entering the last epoch. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 3. Accuracy and Loss Results of (a) VGG16; (b) VGG19; (c) Inception 

V3; (d) MobileNetV1; (e) MobieNetV2; (f) DenseNet121; (g) DenseNet169; 

(h) DenseNet201 

Based on the training results, it can be concluded that the 

highest accuracy value was obtained using the DenseNet201 

method. Other DenseNet methods also have increased 

accuracy values compared to other approach methods. The 

graph of accuracy values below indicates that the DenseNet 

approach's classification level exceeds other methods in 

terms of accuracy, loss, and layer depth. This result aligns 

with the CNN method's comparative study [78], [79], which 

has the highest accuracy output value found in the 

DenseNet201 method. 

The confusion matrix is used to determine the distribution 

of data when evaluating the algorithm technique. As 

indicated in Table II, the confusion matrix in the 

DenseNet201 model incorporates testing data from 150 

images. The confusion matrix data yielded 24 images that 
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were incorrectly recognized. The test pictures are generated 

by identifying the detection mistake, as illustrated in Fig. 5. 

TABLE II.  CONFUSION MATRIX DENSENET201 

Actual Urinary Non-urinary 

Urinary 54 24 

Non-urinary 0 72 

 

Based on the comparative graph from Fig. 4 (a)-(b), the 

approach with the lowest accuracy value is InceptionV3, with 

75.9%. Furthermore, with the VGG16 model, data retention 

increased by 2% to 77.9%. The subsequent development of 

this model, namely VGG19, has increased yield by 1.43% 

from the previous model to 79.33%. MobileNetV2 and 

MobileNetV1 using depthwise architecture and pointwise 

convolution, have a relatively high level of accuracy, with 

78.66% and 82.6%, respectively. DenseNet family with a 

deep layer depth tends to increase the accuracy value based 

on network depth. DenseNet121, a dense model with the 

lowest layer, has a classification accuracy value of 80%. 

However, DenseNet169, which has a layer depth above the 

previous model, decreased by 1.34% to 78.66%. The last 

model from Dense Network is DenseNet201, with a deeper 

layer depth to get the highest accuracy value from all 

methods. DenseNet201 achieves a final accuracy rate of 

83.99% and outperforms all intelligent approach 

architectures. This study's results align with Albahli's 

research [78]; the DenseNet network exceeds InceptionV3 in 

the level of image selection accuracy. The accuracy level of 

DenseNet201 is the highest according to the comparison of 

the three DenseNet methods in a recent study [80]. 

 
(a) 

 
(b) 

Fig. 4.  (a) Accuracy Comparison of Each Intelligence Method; (b) Loss 

As seen in Fig. 4 (a), different types of artificial 

intelligence algorithms with the same properties have varying 

degrees of accuracy. VGG16's accuracy is lower than 

VGG19's. This accuracy is consistent with Simonyan's 

research [72], in which the convolution layer in VGG19 has 

a more significant number, implying an increase in accuracy. 

The use of the DenseNet technique yields the same results as 

the algorithm. DenseNet201, which includes more dense 

blocks, seems to have a greater accuracy rate, according to 

DenseNet architecture [75]. 

 

Fig. 5. Misclassification of DenseNet201 

In contrast, MobileNet V1 in this study outperforms the 

MobilenetV2, in terms of accuracy. This result is feasible 

since mobileNetV2's depthwise separable convolution does 

not yet have the appropriate support for GPU-based training 

data. The accuracy of the MobileNet backbone in this 

investigation is consistent with Howard's research [81]. 

Each of these artificial intelligence methods has the final 

output in the form of the highest accuracy model. The model 

with the highest accuracy is used as a knowledge reference 

for computer-based applications. Computer-based 

applications are made using the C# programming language 

and Visual Studio. Programming with the C# language can 

bridge the python console interface, which is used as the basis 

for image classification in computer applications.  

Fig. 6 shows that computer-based applications have 

simple interfaces and prioritize aspects of functionality. In 

this computer-based application, a computer vision approach 

is also used to read images from computer directories and 

resize the original images into images that artificial 

intelligence models can process. 

This image classification process uses the basic idea of 

classifying images using Tensorflow in Python 

programming. Python libraries are invoked using the open-

source bridge found in basic visual studio programming. This 

method allows the program to use the base TensorFlow and 

Keras for the .Net framework platform. This framework 

supports the integration of various programming languages 

so that they can be run on computer operating systems. 

Based on Fig. 7(a), it can be seen that the GUI display in 

computer-based applications has a simple, minimalist, and 

detailed appearance. In the following picture, Fig. 7(b) shows 

the process of retrieving bacterial image files in the computer 

storage directory. There are two types of classification: the 

classification of bacteria that cause urinary infections, as 
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shown in Fig. 7(c), and the classification of other bacteria that 

do not cause urinary infections, as in Fig. 7(d). 

Start

GUI Standby 

Mode

Read image?
Display image 

on GUI

Select data 

knowledge 

model?

Artificial 

Intelligence 

Classifier 

Model

Result 

(urinary infection/ 

non-urinary 

infection)

End

PreprocessingYes

No

Yes

No

 

Fig. 6. Computer-based application flowchart 

  

(a) (b) 

  

(c) (d) 

Fig. 7. Graphical User Interface (GUI) urinary infection computer-based 

software. (a) standby display; (b) importing image form directory; (c) urinary 

infection prediction; (d) non-urinary infection prediction 

IV. CONCLUSION 

Eight intelligence approaches have been implemented in 

this study to find the best method for classifying urinary 

bacterial infections. Each approach has a different level of 

accuracy and is influenced by the depth of the network layer. 

DenseNet201 managed to outperform other approaches with 

an accuracy rate of 83.99%. The output model from 

DenseNet201 is used as a reference model in the preparation 

of computer-based applications. Therefore, at the end of this 

study, we created a computer software-based method for 

detecting bacteria that cause urinary infections. Further 

research into real-time detection utilizing computerized lab 

samples can be conducted. This computer-based tool is the 

first step in the early diagnosis of urinary tract infections, 

providing quick and reliable findings. 
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