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Abstract: This study provides novel and accurate symbolic regression-based solutions for the cal-
culation of pipe diameter when flow rate and pressure drop (head loss) are known, together with
the length of the pipe, absolute inner roughness of the pipe, and kinematic viscosity of the fluid.
PySR and Eureqa, free and open-source symbolic regression tools, are used for discovering simple
and accurate approximate formulas. Three approaches are used: (1) brute force of computing power,
which provides results based on raw input data; (2) an improved method where input parameters
are transformed through the Lambert W-function; (3) a method where the results are based on
inputs and the Colebrook equation transformed through new suitable dimensionless groups. The
discovered models were simplified by the WolframAlpha simplify tool and/or the equivalent Matlab
Symbolic toolbox. Novel models make iterative calculus redundant; they are simple for computer
coding while the relative error remains lower compared with the solution through nomograms. The
symbolic-regression solutions discovered by brute force computing power discard the kinematic
viscosity of the fluid as an input parameter, implying that it has the least influence.

Keywords: diameter; symbolic regression; pipe sizing; colebrook equation; moody diagram; pipeline
hydraulics; Darcy–Weisbach equation; dimensionless numbers

1. Introduction

This study provides novel approximate, but relatively simple and accurate, solu-
tions for the unknown pipe diameter D when other quantities from the Darcy–Weisbach
Equation (1) [1] are known directly or indirectly. Symbolic regression is used in this study
to achieve this goal.

The Darcy-Weisbach Equation (1) is typically used in hydraulic engineering to relate
pressure drop ∆p (or head loss ∆h, where ∆p = ρ·g·∆h), flow rate Q, diameter of pipe
D, the Darcy flow friction factor λ, density of the fluid ρ, and length of the pipe L (and
two constants: π is the Ludolph’s number; π ≈ 3.1415 and g is acceleration due gravity;
g = 9.81 m/s2):

D5 =
8·λ·ρ·Q2·L
π2·∆p

=
8·λ·Q2·L
π2·∆h·g (1)

The Darcy–Weisbach equation contains the Darcy flow friction factor λwhich is not
a constant and, among others, is a function of the unknown diameter of pipe D. For the
turbulent flow regime, the Darcy flow friction factor λ is typically calculated through the
empirical Colebrook equation, which is indirectly also a function of the unknown pipe
diameter D through the relative roughness of the inner pipe surface ε/D and the Reynolds
number Re = 4·Q·ρ

η·D·π = 4·Q
ν·D·π ; where η and ν are dynamic and kinematic viscosity of the

fluid. For the problem of the unknown diameter D, this makes the Colebrook equation
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practically useless in its classical form, as given in (2) [2,3] (a suitable form for solving for
the unknown diameter D is given in Section 4.3):

1√
λ
= −2·log10

(
ε/D

3.7
+

2.51
Re·
√
λ

)
(2)

Well-known nomograms, Moody’s [4] and Rouse’s [5], are based on the Colebrook
equation and both are unsuitable for the calculation of the unknown diameter D due to the
same reasons as explained for the Colebrook equation.

In summary, three main problems should usually be solved in hydraulic engineering
practice: (1) unknown pressure drop ∆p (head loss ∆h), (2) unknown flow discharge Q,
and (3) unknown pipe diameter D, while all of which equally occur in the practice of
hydraulic engineering:

1. Unknown pressure drop ∆p (head loss ∆h)

The Colebrook equation in its classical form, as given above, and its graphical inter-
pretations in the form of Moody’s [4] (Rouse’s [5]) nomogram in combination with the
Darcy-Weisbach equation, is suitable for the calculation of pressure drop ∆p (head loss ∆h)
for the pipes when their diameter D is known. In such cases, the Darcy flow friction factor
λ should be calculated using the Colebrook equation [6–11] where all other quantities from
the Darcy–Weisbach equation should be known, with the exception of the unknown ∆p
(head loss ∆h);

2. Unknown flow discharge Q

Combining the Colebrook’s and the Darcy–Weisbach equation together with the
Reynolds number Re, the problem of the unknown flow discharge Q can be solved easily
in a closed-form solution [12] (this closed-form solution is available together with related
numerical example in [13]);

3. Unknown pipe diameter D

The solution to this problem is the main topic of this study.
A short overview of previous works for solving all three types of the described

problems, together with numerical examples, is given in [13].
The flow-discharge problem Q can be easily solved because a closed-form solution

exists [12] and, also, the unknown ∆p (head loss ∆h) can be solved relatively easily due
to the suitable structure of the input parameters of the Colebrook equation. On the other
hand, due to the unfavorable structure of the Colebrook equation, the problem of the
unknown pipe diameter D, although very important, was not the main focus of researchers,
but, nevertheless, many efforts have been made, such as Powell in 1950 [14], Rajaratnam
in 1960 [15], Ranga Raju and Garde in 1966 [16], Lai and Lee in 1975 [17], Swamee and
Jain in 1976 [12], Debler in 1977 [18], Swamee and Rathie in 2007 [19], Sakkas in 2014 [20],
LaViolette in 2017 [21], Medina et al. in 2017 [22], Yetilmezsoy et al. in 2021 [23], Lamri and
Easa in 2022 [24], Brkić and Praks in 2023 [25], etc. Many of them from the early years solve
the problem through today’s obsolete nomograms [14–18].

This study uses symbolic regression either to improve already existing models for
solving the unknown pipe diameter D where nomograms are replaced by formulas or to
develop completely new methods. Three approaches are used: (1) brute force of computing
power, which provides results based on raw input data; (2) an improved method where
input parameters are transformed through the Lambert W-function; (3) a method where
the results are based on a transformed Colebrook equation and its inputs through new
suitable dimensionless groups. Consequently, the novel approximations are useful for
the acceleration of everyday work of pipeline-system designers and also for novel piping
grid simulation tools, such as Pandapipes [26], making the use of iterative calculus and
nomograms redundant.

For this study, the symbolic regression tools Eureqa [27] and PySR [28,29] were
forced to minimize the relative error of approximations, which were consequently sim-
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plified by WolfphramAlpha [30] and/or the equivalent Matlab Symbolic toolbox. Fi-
nally, numerical experiments were used for the simplification of constants in the newly
discovered approximations.

The content of this article is as follows: Section 1 of this study gives this introduction,
Section 2 provides a brief explanation of symbolic regression with a short overview of
software tools used in this study, Section 3 gives input parameters and explains uncertainty
and the possible nature and source of error, Section 4 gives the developed formulas for
solving for the unknown diameter D, including sensitivity analysis, while Section 5 provides
conclusions. A list of the used symbols, with remarks about their units, is also provided
after the conclusion. This article is accompanied by the data as Supplementary Materials,
which allows repetition of the entire process used to develop methods presented in this
study. Two numerical examples are also given in the Supplementary Materials.

2. Background of Symbolic Regression

This section provides a brief theoretical background of regression and symbolic regres-
sion followed by a short overview of the used software.

A brief history of the mathematical background is given in this paragraph. Gerqonne’s
1815 paper [31] gives an overview of the history of regression analysis and mentions the
experimental work of Galen and Avicenna and the 1805 paper of Legendre, who introduced
the least squares method. Gauss discussed this method in 1809 and first linked the least
squares method with the theory of probability. The role of Galton and Pearson is discussed
in [32]. In 1877, Galton introduced the concept of regression, while Pearson developed the
correlation coefficient during 1893–1904. In 1906, Arthur Bowley stressed the importance
of random sampling, especially for the estimation of population parameters [33]. Box
and Jenkins popularized time series analysis based on autoregressive integrated moving
average (ARIMA) in 1970 [34]. Symbolic regression was first defined by Koza in 1994 [35]
as a method to automatically find a functional relationship that describes the given data set
by synthesizing computer programs using genetic programming [36].

This paper uses symbolic regression, Lambert-W function, and new suitable dimen-
sionless groups to find simple but still accurate approximations. The other approaches
were successfully tested as well, such as iterative methods [7,8], explicit solutions based
on special functions [24,25], and neural networks [37]. Although the goodness of fit is a
subject of intensive research [38–41], the goodness of fit methods are not widely used for
flow friction modeling. Anyway, the goodness of fit methods were used to analyze the
properties of non-Newtonian fluid samples [42].

2.1. Theory behind Symbolic Regression

Symbolic regression is a technique to find a mathematical formula or expression that
fits a given data set [37,43,44]. The idea behind symbolic regression is to search through a
space of mathematical expressions, looking for the one that best fits the data. This search is
typically done using a genetic algorithm [35], which is a type of optimization algorithm
inspired by the natural selection process where the best candidate for solutions is chosen
using a fitness function [45], selecting the best solutions for reproduction and using genetic
operators to generate new solutions for the next generation, and repeating this process until
a satisfactory solution is found or a stopping criterion is met. The symbolic models that most
fit the data are used to produce the next generation in a process of mutation and crossover.
This is usually processed in expression trees, as shown in Figure 1. Mutations take existing
parts of the tree and replace them with equivalent elements, while crossover takes random
subtrees and creates new trees by swiping subtrees among existing trees [46,47].
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The space of mathematical expressions is the set of all possible mathematical formulas
that can be used to represent the relationship between the input variables and the output
variable. This space can be represented as grammar, which defines the rules for building
valid expressions [48]. Grammar is typically based on a subset of mathematical functions
and operators, such as addition, subtraction, multiplication, division, and trigonometric
functions. On the other hand, the fitness function is used to evaluate how well a given
mathematical expression fits the dataset. It measures the difference between the predicted
values of the expression and the actual values in the dataset. There are different ways to
define the fitness function but the most common approach is to use a measure of the error,
while, here, maximal relative error is used [49].

Symbolic regression can give very accurate results but it often contains a certain level
of error.

2.2. Software Tools for Symbolic Regression

A variety of open-source tools for symbolic regression exist [50], such as Eureqa [27,51],
PySR [28,52], AI Feynman [53], symbolic regression by uniform random search imple-
mented in the pySRURGS package, gene expression programming, and sequential thresh-
old ridge regression algorithms implemented in the Data-Driven Symbolic Regression
package [54], etc. Although these software tools are free and open; some of them lack
maintenance, which is essential, especially for high-performance algorithms. Consequently,
in this article, High-Performance Symbolic Regression in Python and Julia implemented in
the PySR package is tested together with the Eureqa software, which can be viewed, due to
its popularity, as a golden standard for symbolic regression.

The quality of discovered solutions can be evaluated in Eureqa using various error
metrics, for example, absolute error, correlation, and worst case (maximum error). The rela-
tive error, often described by a percentage, is widely used by the pipeline design research
community [8–11] for evaluation of the quality of approximations and is of interest to this
study. Unfortunately, the relative error metric is not implemented in Eureqa. Although
Eureqa does not allow users to add or modify the given error metrics, happily there exists
a general way to use software tools that handle only absolute error metrics to solve relative
error metrics tasks [50].

For a symbolic regression task with two input parameters, which are represented by
parameters A and B, and if the aim is to find a model of parameter C, which minimizes
the relative error of a function f (A, B), the search of formula f() in Eureqa must satisfy the
equation abs(f(A,B)−C)/C = 0, where the function abs() denotes the absolute value. As
approximations should be robust for a variety of input parameters, such as Table 1 in this
study, the worst case (maximum error), was used to evaluate the quality of the symbolic
regression process in Eureqa. After the symbolic regression in Eureqa, the discovered
function f() was extracted manually.
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Table 1. Minimal and maximal values for the parameters used for hydraulic calculation and
pipe sizing.

Flow Diameter Hydraulic
Slope

Kinematic Viscosity
of Water

Absolute
Roughness

Relative
Roughness

Q (m3/s) D (m) ∆h/L (-) ν (m2/s) ε (m) ε
D (-)

Min 0.001 0.01 0.0001 3.1 × 10−7 1.5 × 10−6 3 × 10−7

Max 100 5 0.1 1.5 × 10−6 9.1 × 10−3 5 × 10−2

In contrast to Eureqa, the open-source PySR can be easily modified by the user to
provide the required error metric. Thus, a big advantage of PySR is also that the symbolic
regression process in PySR is fully automated and suitable for high-performance computing
clusters, as PySR leverages high-performance properties of Julia language and uses all
available computing cores of the given computer node naturally. This accelerates the
symbolic regression process on high-performance computing architectures, as PySR works
perfectly parallel.

After symbolic regression, the discovered models were analyzed in Matlab Symbolic
Toolbox or the equivalent WolframAlpha online tool (by command “simplify”) [30,55] to
provide simplified forms. Consequently, numerical experiments were used to simplify the
constants of the regression models while maintaining the same relative error.

3. Input Parameters and Analysis of the Error

This section gives an explanation of a possible source of the error, which can be caused
by the approximate nature of regression and by uncertainty caused by measurement,
reading of diagrams, and the empirical nature of certain equations.

The nature and sources of the error related to the pipe-sizing problems can be
as follows:

1. Uncertainty of measurement: Some parameters, such as the roughness of the inner
surface of pipes ε cannot be easily measured [56–59]. The values of physical roughness
measured in dry pipes cannot always be used directly in hydraulic calculations under
certain flow conditions due to the existence of a viscose sublayer near the inner wall
of the pipe wall (e.g., all types of pipes, new or used, are treated as smooth during
laminar flow [60]). Specific values for the absolute roughness ε of the inner pipe
surface for different materials are given together with Moody’s [4] (Rouse’s [5]) and
diagrams for flow friction factor λ; the minimal and maximal values for the parameters
used in this article are given in Table 1;

2. Empirical nature of used equations: The Colebrook equation is empirical, based
on an experiment conducted by Colebrook and White with the flow of air through
a set of pipes with different roughnesses of their inner surfaces [2]. It can be dis-
puted whether this equation fits well the physical reality of the turbulent flow fric-
tion sufficiently [61–64]. Anyway, the Colebrook equation is treated as accurate for
this study (i.e., the Colebrook equation is considered as an informal standard in
hydraulic engineering);

3. Computation or reading error for the unknown diameter D problem, as reported
in [65], can go even up to 24% for the Ranga Raju and Garde method [16] and up to
23% for Swamee and Jain [19];

4. Error caused by the specific logarithmic structure of the Colebrook equation from
which the unknown variable, which is given implicitly, can be evaluated only ap-
proximately. In addition, the Colebrook equation in its native form is not suitable for
solving the problem of unknown diameter D. For this reason, Section 4.3 of this article
proposes a novel, more suitable, relation based on the Colebrook equation.
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The following iterative methods are considered in [6–8] as sufficiently accurate to be
used as a standard for the evaluation of simplified approaches from engineering practice,
such as nomograms and explicit approximations:

• Nomograms

The Moody diagram [4] is based on the Rouse diagram [5], while the turbulent part
of both is drawn following the Colebrook equation. The Moody diagram introduces the
relative error from 4% to 15% due to imprecise reading [66] (Rangu Raja and Garde [16]
reported the error of reading of the Moody diagram as “very small” at ±3%, resulting in
the final error from the unknown diameter D at ±5% and for ∆h/L up to ±15%) causing
relatively often consequent misleading interpretations [67,68]. Here, it is most important
that both Rouse’s and Moody’s diagrams are suitable only for solving for the unknown ∆p
(or head loss ∆h) and not for the problem of unknown diameter D (some diagrams suitable
for solving the unknown diameter D are given in [14–18,20]);

• Explicit approximations

The variety of approximate formulas offered as an alternative to the implicitly given
original Colebrook equation suitable for solving the unknown ∆p (head loss ∆h) can be ex-
pressed mathematically in a wide range of accuracy and complexity of their structure [9–11].
Explicit approximations for direct solutions of the unknown diameter D also exist [12,16,22–25].
The error caused by the symbolic regression approach also belongs to this type.

4. Solutions for the Unknown Diameter D

This section gives the developed formulas for solving for the unknown diameter D.
Three different approaches were tried in this article to solve the problem of the un-

known diameter D while symbolic regression is used here in a threefold way: (1) brute
force of computing power (a similar approach for flow friction factor λ is used in [69]),
(2) one method based on the Lambert W-function is simplified [24,25] (details about the
Lambert W-function can be seen in [70]), and (3) some old approaches associated with
nomograph solutions based on suitable dimensionless groups were further developed and
improved in a form suitable for the contemporary pipe-design community [14,16,20,21].

Pipe diameter D in real engineering projects should be selected from the list of nominal
diameters [71] and, therefore, the relative error in the calculation of theoretical diameter D
of a few percentages is acceptable (especially in pipe systems with pumps [72]).

4.1. Brute Force of Computing Power

The brute force of computing power, that is, the use of symbolic regression with-
out any knowledge about the patterns of how to connect input and output variables;{

∆h
L , ε,ν, Q

}
→ {D} gives relatively acceptable results with a relative error from 5.9% to

6.7% (with respect to Sobol’s quasi-random sampling which was used to handle a large
variety of Reynolds numbers Re in the development phase [73]).

Formulas developed using this approach rejected viscosity ν as an input parameter
of influence.

4.1.1. Sensitivity Analysis—Rejection of Viscosity ν

A very interesting fact is that both symbolic regression tools, Eureqa and PySR, discov-
ered relations without using viscosity ν (or temperature t through Equation (3) showing
that the reason for rejection is not only numerical but rather with real physical meaning).
Thus, artificial intelligence revealed that this parameter is of the least influence for all
here discovered symbolic regression models (artificial intelligence, AI, can automatically
reject less important variables or those that do not have a significant influence on the
final result [74]). They can provide relatively accurate results for rough estimations even
without using viscosity ν. Therefore, this behavior can be considered as a sensitivity analy-
sis [75,76], as important parameters of the models are identified. Consequently, these novel
approximations can be used not only for water but also for other fluids.
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Both symbolic regression tools, Eureqa (in Equations (4) and (5)) and PySR (in
Equation (6)), rejected viscosity ν as a factor of influence. Therefore, to prove this finding,
viscosity ν is correlated with temperature t [23] using Equation (3) (valid for the viscosity
of water) and, then, instead of

{
∆h
L , ε,ν, Q

}
→ {D} ; (Eureqa in Equation (4), and PySR in

Equation (6)), a new relation
{

∆h
L , ε, t, Q

}
→ {D} was tested; (Eureqa in Equation (5)). Us-

ing
{

∆h
L , ε, t, Q

}
→ {D} , both symbolic regression tools, Eureqa [9] and PySR [10], rejected

temperature t in the same way as they did before for viscosity ν.
Viscosity ν is correlated with temperature t through Equation (3):

ν =
10−6

8.914
100,000 ·t2 + 2.04

100 ·t + 0.555
(3)

Equation (3) has two solutions for temperature t, so the solution with real physical
meaning should be kept.

It is important that viscosity ν (or related temperature t) has been rejected by both
software tools, Eureqa and PySR.

4.1.2. Symbolic Regression Approximations Discovered by Brute Computing Power

Data used for Equations (4) and (6),
{

∆h
L , ε,ν, Q

}
→ {D} and for Equation (5){

∆h
L , ε, t, Q

}
→ {D} are given in Table S1 of the Supplementary Materials.

The obtained novel relations discovered with the software Eureqa are given in
Equation (4) with a relative error of up to 5.9% and in Equation (5) with a relative er-
ror of up to 6.6% (both values of the error are estimated on data from Table S1 of the
Supplementary Materials of this article).

D =

√√√√0.0248·Q + sin (0.405·Q + 0.534·ε) + Q·A +
0.00736·Q + sin (0.247·Q·A)+0.00615·A + 0.0000874√

∆h
L

(4)

where:
A =

√
0.247·ε

D =

(
∆h
L
·Q + 16.063·ε·Q + ε·Q·B2 − 0.336·Q− 0.0569·ε·B− 0.142·Q·B

)0.388
(5)

where:
B = ln(∆h/L-0.0001),
The obtained relation discovered with the software PySR is given in Equation (6) with

a relative error of up to 6.7% (the value of the error is estimated on data from Table S1 of
the Supplementary Materials of this Article).

D =


Q

( ∆h
L )

0.48744607 + ε

ln (Q)− ln(ε)
0.39880937


0.39849746+ε· (

∆h
L )

0.28922623

0.31922475

=

−2.50746·ln (ε) + ln(Q)

ε + Q
(∆h/L)0.487446

−0.398497−3.13259·ε·( ∆h
L )

0.289226

(6)

WolframAlpha [30] simplified the second part of Equation (6) by the “simplify” com-
mand while the relative error remains the same.
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4.2. Method through the Lambert W-Function

Equation (7) was developed by Lamri and Easa [24] for solving the problem of the
unknown diameter D and is based on the Lambert W-function, whereas, in the presented
version, D*

s and D*
r was modified by Brkić and Praks [25] by symbolic regression.

ε* = ε·
(

g·∆h
L·Q2

)0.2

ν* = ν·
(

g·∆h·Q3

L

)−0.2

D*
r = 0.255 +

ln(ε*)
425.025 −

2.223
ln(ε*)−3.421

D*
s = 0.3 +

ln(ν*)
311.526 −

1.7
ln(ν*)

− 5.06·ν*

D* = 1.019·
(

D*20
r + 1.9·D*20.9

s

)0.051

D = ε·D*

ε*



(7)

Symbolic regression failed further to simplify this model and was not enabled directly
to connect

{
−ln

(
ε*),−ln

(
ν*)}→ {D} , where natural logarithm is used for normaliza-

tion [37], see Table S2 of the Supplementary Materials. The maximum of the relative error
is up to 60%, which is not expected because the approach with normalization usually
reduces the error (normalization, in this case, means that the variables should be scalable
to transform relatively small numbers to larger; e.g.,

{
∆h
L , ε,ν, Q

}
= {0.0001, 0.0000015,

0.00000031, 50.0005}→{ε*, ν*} = {0.0000000785, 0.000000118} where normalization gives{
−ln

(
ε*),−ln

(
ν*)} = {7.105164678, 15.94852572} and further {D} = {6.70350591}, avoiding

direct connection {ε*, ν*}→{D}.
However, simplication is tried using the Symbolic Matlab Toolbox where the new equiv-

alent model given in Equation (8) should be more computationally efficient. Equation (7)
contains four noninteger powers, three integer powers, and two natural logarithmic func-
tions, while the new model given in Equation (8) contains one noninteger power, one
integer power, two exponential functions, and five natural logarithms, while the rest are
only simple arithmetic operations. For coding, different functions demand the engagement
of different hardware resources, explained as computational cost in [77], where ln

(
ε*) is

approximated with Z and ln
(
ν*) with M.

N = ln
(

∆h
L

)
Y = ln(ν)

P = ln(Q)
K = ln(ε)

U = 0.2·N− 0.4·P + 0.4567
M = Y− 0.2·N− 0.6·P− 0.4567

Z = K + U
D*

r = 0.255 + Z
425.025 −

2.223
Z−3.421

D*
s = 0.3 + M

311.526 −
1.7
M − 5.06·eM

V = 0.051·ln
(

D*
r
20
+ 1.9·D*

s
20.9
)
+ 0.0188

D = eV−U



(8)

4.3. Method Based on New Suitable Dimensionless Groups

The problem of unknown ∆p (head loss ∆h) is based on two dimensionless parame-
ters [78]: Reynolds number Re, and relative roughness ε/D, where both contain diameter
D, which makes them useless for solving the problem of unknown pipe diameter D. Based



Axioms 2023, 12, 850 9 of 13

on the Buckingham-Π theorem [79,80], two new dimensionless parameters Π1 and Π2 are
introduced in Equation (9):

Π1 = λ·Re5 =
π2·∆p·D5

8·ρ·Q2·L ·
(

4·ρ·Q
π·η·D

)5
= 128
π3 ·

∆p·ρ4·Q3

L·η5 = 128
π3 ·

∆p·Q3

ρ·L·ν5

Π2 =
ε
D

Re = π·η·ε
4·ρ·Q = π·ν·ε

4·Q

 (9)

The purpose of Π1 and Π2 is to eliminate the unknown diameter D from their structure,
remaining in the rearranged Colebrook equation only in the Reynolds number Re, as given
in Equation (10):

1√
Π1

= − 2√
Re5
·log10

(
Re·
[

Π2

3.7
+ 2.51·

√
Re
Π1

])
(10)

However, it is not easy to extract the Reynolds number Re from Equation (10). Due
to the use of Sobol’s quasi-random sampling [73], a sufficient number of points for the
Reynolds number Re and the relative roughness of the inner pipe surface ε/D were
generated to cover the turbulent zone of flow (to cover the validity range of the Cole-
brook Equation (2) [2] and related Moody’s (Rouse’s diagram)). Then, knowing that
Π2 = ε/D

Re , relation {Re, Π2} →
{

1/
√

Π1
}

, where the values for Π1 can be calculated from
Equation (10) using available iterative methods from [6–8]. Data are listed in Table S3 of
the Supplementary Materials (used iterative method for Π1 is from [6] using 2048 quasi-
random Sobol’s points [73]). Equation (11) is generated using the Eureqa symbolic regres-
sion tool and is further simplified in the Matlab Symbolic Toolbox. The maximal relative
error of the Reynolds number calculated through Equation (11) is up to 2.68%.

Re =
1.4446(

1√
Π1

)0.37972
·
(

Π2 +
(

1√
Π1

)0.7
)0.051 (11)

Finally, the required unknown diameter D can be calculated from Equation (12):

D =
4·Q·ρ
η·Re·π =

4·Q
ν·Re·π (12)

Figure 2 shows the absolute relative error of Equation (11) in percentage as a function
of the Reynolds number (x-axis) and the relative roughness (y-axis). To clearly present a
wide interval of the Reynolds number (2320-108), values of the x-axis are transformed by
the decadic logarithm; For example, x = 8 at the x-axis corresponds to the Reynolds number
108. The largest relative error, 3.86%, corresponds to the “corner” values Re = 2320 and
ε/D = 0.05, see the red peak in Figure 2.
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5. Conclusions

This article gives novel accurate symbolic regression-based approximations for the
calculation of pipe diameter when flow rate, pressure drop, pipe length, absolute inner
roughness, and fluid kinematic viscosity are known inputs, using three approaches:

1. Brute force, in which symbolic regression is applied directly to the input data set;
2. A method based on the special functions, in which the problem is transformed by the

approximation of the Lambert W-function;
3. A method based on new suitable dimensionless groups, which eliminates the un-

known pipeline diameter from the input.

The PySR software works perfectly parallel to our high-performance computing
architecture. The discovered models were simplified by Wolfram Alpha. The discovered
models provide simple but still accurate approximations suitable for engineering practice.
Thus, the time-consuming iterative calculation of the pipe diameter is not necessary.

It is necessary to emphasize regarding the findings:

1. A very interesting fact is that both symbolic regression tools, Eureqa and PySR, using
raw data and brute force of computing discovered relations without using the viscosity
ν (or temperature t) of the conveying fluid—Equations (4)–(6) are with the relative
error relative from 5.9% to 6.7%;

2. Equations (7) and (8) leverage also the explicit solution provided by the Lambert
W-function function by simplification and keeping the error, as reported by Lamri
and Easa [24];

3. Equation (10) gives the Colebrook Equation in a form suitable for solving the problem
of the unknown diameter of pipe D where the novel approximation is based on the
Buckingham-Π theorem through suitable nondimensional numbers Π1 and Π2 in
Equation (9). Sobol’s quasi-random sampling [73] is used to provide data to feed the
symbolic regression tool. Consequently, symbolic regression was used to construct
the novel approximation of the Reynolds number Re in Equation (11). Although the
novel approximation is very simple, it is accurate, as the relative error is bounded
by 2.68%. On the contrary, references [16,65] report approximations bounded by a
relative error larger than 20% when a similar method is used through nomograms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/axioms12090850/s1, Tables S1–S3: Datasets used to feed symbolic
regression tools, and Table S4: Numerical examples.
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Abbreviations

∆p the pressure drop in Pa
D the inner diameter of the pipe in m
Q the flow rate in m3/s
λ a dimensionless Darcy flow friction factor
ρ the density of the fluid in kg/m3

L the length of the pipe in m
π the Ludolph’s number; π ≈ 3.1415
∆h the head loss in m
g acceleration due to gravity in m/s2 (or N/kg); g = 9.81 m/s2

ε the absolute roughness of the inner pipe surface in m
Re a dimensionless Reynolds number
V the velocity of the fluid in m/s
ν the kinematic viscosity of the fluid in m2/s
η the dynamic viscosity of the fluid in Pa·s
ρ the density of the fluid in kg/m3

t the temperature in ◦C
A and B auxiliary parameters
* related nondimensional versions of the related parameters
s the index for smooth flow
r index for rough hydraulic flow
N, Y, P, K, U, M, Z, and V auxiliary
Π1 a new-defined dimensionless number
Π2 a new-defined dimensionless number
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