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In order to be competitive in modern industry, processes are highly optimized and need
to be operated as cost-effectively as possible. In order to enable this, a deep knowledge
of the process and its sensitivity towards perturbations is required. One important tool
to acquire this knowledge is numerical modeling and analysis. Although, the numerical
analysis results in good predictions about the actual process, often it is computationally
intensive in terms of resources and time. Since optimization and in process evaluation,
however, demands computational cheap and fast models,the demand for reduced order
models (ROM) increased over the last decades [1, 3].

In course of this work, we examine the process of plastic profile extrusion, where a polymer
melt is shaped inside the so-called extrusion die and fixed in its shape by solidification in
the downstream calibration unit. In this context we will present a data-driven ROM ap-
proach that considers the characteristic flow behavior of polymers and their temperature
sensitivity[2].
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