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In order to understand when it is useful to add physics constraints into neural networks,
we investigate different neural network topologies to solve the N-body problem. Solving
the chaotic N-body problem with high accuracy is a challenging task, requiring special nu-
merical integrators that are able to approximate the trajectories with extreme precision.
In [1] it was shown that a neural network can be a viable alternative offering solutions
many orders of magnitudes faster. Specialized neural network topologies for applications
in scientific computing are still rare compared to more classical machine learning appli-
cations. However, the number of specialized neural networks for Hamiltonian systems
has been growing during the last years [2, 3]. We analyze the performance of SympNets
introduced in [3], preserving the symplectic structure of the phase space flow map, for
the prediction of trajectories in N-body systems. In particular we compare the long-term
stability of predictions of stable two-body orbits by SympNets, against predictions by
standard multilayer perceptrons. While the benefits of symplectic integrators for Hamil-
tonian systems are well understood, this is not the case for SympNets. Possible benefits
include: better extrapolation outside of the training data, more regularized predictions
also inside the range of training data and improved optimization behavior due to the
reduced search space.
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