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Executive summary
In this work we focus on reducing the wall clock time required to compute statistical
estimators of highly chaotic incompressible flows on high performance computing sys-
tems. Our approach consists of replacing a single long-term simulation by an ensemble
of multiple independent realizations, which are run in parallel with different initial con-
ditions. A failure probability convergence criteria must be satisfied by the statistical
estimator of interest to assess convergence. Its error analysis leads to the identification of
two error contributions: the initialization bias and the statistical error. We propose an
approach to systematically detect the burn-in time in order to minimize the initialization
bias, accompanied by strategies to reduce simulation cost. The framework is validated on
two very high Reynolds number obstacle problems of wind engineering interest in a high
performance computing environment.
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Acronym Meaning
BDF backward differentiation
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1 Introduction
The simulation of highly turbulent flows represents a well-established challenge in computational
fluid dynamics (CFD), with predictions becoming more difficult as the Reynolds num-
ber (Re) increases. This situation is explained by Kolmogorov’s theory which establishes
that turbulent flows are characterized by multiple temporal and spatial scales, with an
energy transfer cascade from larger eddies to smaller ones [50]. According to the theory,
the ratio between the largest and smallest length scales is proportional to Re3/4, while
the ratio between the timescales is proportional to Re1/2. This phenomenon has practical
implications on flow around large objects, for example at the building scale in wind engi-
neering. Such simulations require dealing with Re ≈ 108, thus implying that the smallest
eddies in the flow will be around 106 times smaller than the largest ones with dynamics
occurring at time scales around 105 times shorter. Such estimates effectively rule out
the possibility of performing direct numerical simulations and show how even large eddy
simulation (LES) approaches (either based on filtering or on numerics, see e.g. implicit
large eddy simulations (ILESs) [23]) are challenging.

From a practical point of view, one has to estimate statistics of the flow, e.g. mean
or variance quantities. Such estimations typically require very long simulations which
include the initial transient dynamics, required for the flow to develop, followed by the
effective dynamics, required for the estimator to converge. Unfortunately, despite decades
of hardware improvements, such simulations require prohibitive runtimes. While the use
of high performance computing (HPC) systems may reduce these runtimes, practical
limits exist on the achievable speedup for a given problem size. The most important
feature controlling the runtime is that time evolution in a single simulation is intrinsically
sequential [40].1

Acknowledging such limitations, we aim at exploring an alternative strategy based on
estimating statistics by averaging over numerous independent simulations, i.e. statistical
ensembles. The upshot of this strategy is that each of the simulations within the ensemble
can be launched independently and run in parallel, thus providing an obvious opportunity
for acceleration when abundant computational resources are available. This technique has
been investigated in the literature in two different settings. In one setting [37], the focus
is on reducing the wall clock time on constant hardware resources. Approaches to this
problem typically consist of solving linear systems with multiple right-hand sides [32, 33].
In the other setting, which our work considers, the focus is on exploiting the concurrency
capabilities of HPC systems [40]. Such approaches can be seen to target the direction of
next generation exascale computers, which will reach hundreds of millions of cores [1] and
will follow a mega-node, kilo-core, giga-hertz rule [35].

Even though ensemble averaging has been investigated previously, the application we
target (wind engineering) as well as the numerical method we employ (ILES) is signif-
icantly different from previous investigations, thus leaving the applicability of ensemble
averaging unclear. The goal of our work is therefore to develop a technique to assess the
efficacy of ensemble averaging when applied to any given turbulent flow problem. To this
end, one of our main contributions is a statistical analysis of the approach. Complemen-
tarily, the practical question we address in this work is: How efficient is the ensemble

1A potential solution could be parallel-in-time methods [22], which received much attention in the last
years exactly due to their potential in providing a solution for the latter problem. Unfortunately, their
application does not seem to be viable in chaotic problems [56].
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approach in the context of under-resolved LES methods, in particular, in wind engineer-
ing applications? Although we have targeted a specific class of engineering problems, our
strategies are general and can be applied to assess the ensemble average approach for
other, unrelated, problems.

In order to control bias associated to the initial conditions, the estimation of statistics
of a turbulent flow entails collecting data starting only at some point in time after the
flow has developed [36, 38], i.e. once the solution has been drawn to the attractor [52].
We refer to the discarded initial time interval as the burn-in time and the remainder
as the effective time. When a single long simulation is performed, the burn-in time is
small compared to the remaining simulation time, which contains the effective dynamics.
Unfortunately, this is not the case when the same amount of simulation time is distributed
across an ensemble. Indeed, the same burn-in time will be paid by all realizations in the
ensemble and, as a consequence, the total effective time will be reduced. The reduction of
the burn-in time is therefore key to making ensemble averaging feasible. Our statistical
model provides the tools to analyse the bias associated with the initial conditions, thus
allowing us to faithfully select a practical burn-in time.

One of the additional research questions we address is what to assign as a distribution
for the initial conditions. The aim here is again to control the burn-in time. To this end,
two different types of Gaussian random vector fields are considered; white noise perturba-
tions and spatially-correlated solenoidal fields. Another approach to cost reduction which
we explore is to use a less accurate and less expensive time integration procedure during
the burn-in phase, e.g. by increasing the time step size.

The final question we seek to address is how long each realization should be. Increasing
the number of realizations improves concurrency but also increases the aggregated burn-
in time, so there is a trade-off that needs to be considered. The present study evaluates
this trade-off in the case of flows around bodies. In this work, we demonstrate that very
short simulations are sufficient, thus making the approach highly efficient for the class of
problems we have targeted.

Our approach is validated with two numerical examples. The first example consists
of wind flowing past a rectangular obstacle. The second example consists of wind flowing
around a high-rise building. To conduct this study, we used the uncertainty quantification
library XMC [2], the finite element software library Kratos Multiphysics (Kratos) [16, 17,
42], and the distributed environment framework PyCOMPSs [3, 39, 53].

The remainder of the article is structured as follows. In section 2 we describe the
ILES method we use and, in section 3, we describe our statistical approach. A set of
numerical experiments evaluating the performance of ensemble averaging is presented in
section 4. A software release containing the methods presented in this report is presented
in section 5. Concluding remarks close the work in section 6.

2 Implicit Large eddy simulation
In this section we briefly describe the ILES model we use for the simulation of turbulent
flows around obstacles. We restrict ourselves to incompressible flows which cover a wide
range of applications in wind engineering. In strong form, the Navier-Stokes (NS) problem
for an incompressible fluid consists of finding a velocity u and a pressure p defined in a
bounded domainD⊆Rd, where d = 2, 3 is the number of space dimensions, as the solution
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of

∂tu + u · ∇u− ν∆u +∇p = f in [0, T ]×D, (1a)
∇ · u = 0 in [0, T ]×D, (1b)

where f is the force vector and ν the kinematic viscosity (as usual, we denote vectors and
tensors using bold characters). These equations must be complemented with appropriate
boundary conditions, which can be of Dirichlet type, i.e. u = ug applied on ΓD, or of
Neumann type, i.e. (−pI+ ν∇u) ·n = tN applied on ΓN, for all t ∈ [0, T ]. In this section
we consider ∂D = ΓD and ug = 0 to simplify the notation but in general ΓD∪ΓN = ∂D and
ΓD ∩ ΓN = ∅, which is the case in the numerical experiments of section 4. Equations (1a)
and (1b) must be supplemented with appropriate initial conditions.

As usual, we denote by Lp(D), 1 ≤ p < ∞, the spaces of functions whose p-th
power is Lebesgue integrable in D. The space of functions whose first-order distributional
derivatives are in L2(D) and have zero trace on ∂D is denoted byH1

0 (D) and its topological
dual by H−1(D). We write (·, ·) to denote the integral over D of the product of any two
functions f and g, whenever it makes sense. Given a Banach space X, Lp(0, T ;X) denotes
the space of functions whose X-norm is in Lp(0, T ) whereas D′(0, T ;X) denotes the space
of distributions in time with values in X.

The weak form of the NS problem consists of finding u ∈ L2(0, T ;V ) and p ∈
D′(0, T ;Q) such that

(∂tu,v) + (u · ∇u,v) + ν(∇u,∇v)− (p,∇ · v) = (f ,v), for all v ∈ V, (2a)
(q,∇ · u) = 0, for all q ∈ Q, (2b)

where V = H1
0 (D)d and Q = L2

0(D) := L2(D)/R (L2 functions with zero mean).
The discrete form of equations (2a) and (2b) is obtained in the framework of the

variational multiscale (VMS) method, which incorporates LES concepts in the numer-
ics, giving an ILES method for the simulation of turbulent incompressible flows. The
VMS method was originally introduced in [26, 27] as a framework for the development
of stabilization methods, which are designed to overcome the two main problems of the
numerical approximation of equations (2a) and (2b). The first one is the compatibility
required between the velocity and pressure spaces which need to satisfy an inf-sup con-
dition to guarantee the stability of the approximation. The second one is the lack of
robustness of the Galerkin method in the advection dominated regime. There are many
VMS methods and a complete review of them is out of the scope of this article, see e.g.
[12]; we briefly describe our choice in what follows.

The starting point of VMS formulations is a splitting of the solution space as V =
Vh⊕ Ṽ , into a finite element (FE) space Vh and a space of subgrid scales Ṽ . The FE space
Vh is built on top of a partition Th of the domain D and is used to represent resolvable
scales. In this way, a function u ∈ V is decomposed as u = uh + ũ. The same splitting
can be considered for the pressure space although this is not necessary to develop stable
methods and the simplest approach is to consider p̃ = 0. Alternatively, a model for the
pressure subscale depending on the velocity divergence is commonly used, see e.g. [15, 31].

The VMS decomposition of the test function v in equations (2a) and (2b) gives rise
to an equation for the resolved scales (tested by vh) and an equation for the fine scales
(tested by ṽ). However, these two equations are coupled and, because the space Ṽ is
infinite-dimensional, some modelling assumptions for the fine scale equation are required
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to close the system. This modeling step is the algebraic approximation of the differential
operator acting on the fine scales,

((uh + ũ) · ∇ũ, ṽ)− ν(∇ũ,∇ṽ) ≈ (τ−1ũ, ṽ), (3)

where τ is a piecewise constant function, computed within each element K ∈ Th as

τ−1
K =

c1ν

h2
K

+
c2‖uh + ũ‖K

hK
. (4)

Here, hK is a characteristic length of K, c1 and c2 are algorithmic constants that depend
only on the degree of the finite element approximation being used, and ‖ · ‖K is some
norm defined on each element, e.g. the L2(K)-norm. Equation (4) can be motivated
also by a heuristic Fourier analysis argument [11], although the important point is its
asymptotic behavior in terms of hK , ν and ‖uh + ũ‖K . Some further modelling choices
lead to different VMS models. These choices include:

• Static/Dynamic subscales: from the VMS decomposition it follows that ∂tu =
∂tuh + ∂tũ. Considering dynamic subscales, introduced in [11, 13], has some ad-
vantages like a correct behavior of time integration schemes and better accuracy.
In particular, stability and convergence for the Stokes problem can be proved with-
out any restriction on the time step size and the stabilization parameters on which
the formulation depends. The typical approach, however, is the use of quasistatic
subscales to neglect ∂tũ.

• Linear/Nonlinear subscales: applying the VMS decomposition to the nonlinear con-
vective term, four different contributions are obtained on each equation (fine and
coarse), that is, u · ∇u = (uh + ũ) · ∇(uh + ũ). After the approximation in equa-
tion (3) it is possible to keep all the contributions, as proposed in [11, 13]. A simpler
alternative is to perform the approximation u · ∇u ≈ uh · ∇u + ũ (thus neglecting
ũ in equation (4) and the quadratic term in ũ in equation (3)) which is enough to
have numerical stability.

• The space of subscales: the choice of a space for the approximation of the subscales
defines a projector P to be used in the fine scale equation. One option is to choose
Ṽ as the space of the residual, that is to simply take P = I (the identity). We
refer to this space of subscales as the algebraic subscales. Another possibility is
to consider the space of the subscales orthogonal to the FE space, that is, to take
P := Π⊥h = I− Πh, where Πh is the projection onto the FE space [11].

A complete assessment of these modelling choices can be found in [14]. In this work
we use static, linear, orthogonal subscales. Using nonlinear and/or dynamic subscales
requires tracking them along the iterative and time integration loops, with the consequent
increase in memory demands and computational cost (the simplest option is to store
the subscales at the integration points). Although using dynamic, nonlinear orthogonal
subscales provides a better accuracy, these subscales also imply a higher computational
cost. The evaluation of this problem-dependent trade-off is outside the scope of this
article.

However, even if it is simpler to consider algebraic subscales, orthogonjal subgrid
scales (OSS) enjoy a number of important properties that are worth having, such as
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stability without restrictions on the time step size [13], a clear scale separation in the
energy transfers and the possibility of predicting backscatter with a stable numerical
method [51] and convergence towards weak solutions [4]. It is worth mentioning that,
after the introduction of OSS a number of projection-based method appeared in which
only some terms involving fine scales are kept in the resolved scale equation, see [12,
section 4.1]. The method we use in this article belongs to this class. It retains only the
advective and pressure terms and projects them separately, so it is usually referred to as
term-by-term OSS.

With all these modelling choices the final semi-discrete problem to be solved consists
of finding uh ∈ Vh and ph ∈ Qh such that

(∂tuh,vh) + (uh · ∇uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)
+ (uh · ∇vh, τP(uh · ∇uh)) + (∇qh, τP(∇ph)) = (f ,vh), (5)

for any vh ∈ Vh and qh ∈ Qh.
Equation (5) is integrated in time using a second-order backward differentiation (BDF)

scheme. The projections onto the FE space are handled explicitly, that is, given unh we first
obtain the projection of the convective term ηh (which satisfies (qh, ηh) = (qh,u

n
h ·∇unh) for

any qh ∈ L2) and the projection of the pressure ξh (which satisfies (qh, ξh) = (∇qh,∇pnh)
for any qh ∈ L2). We use linear finite elements for the velocity, the pressure and the
projections.

The final system is solved iteratively by a predictor-corrector scheme with a block
preconditioner which permits us to separate the computation of the velocity and the
pressure variable. It is a variant of the classical fractional step method [9, 10] obtained
algebraically [20]. This algebraic view opens the door to other options, like performing
an iterative correction, eventually converging to the monolithic solution.

3 Statistical analysis
In this section, we introduce our statistical framework. In section 3.1 we define the
statistical operators and the probability criteria. Different sources of error are identified
and analyzed in section 3.2. We discuss the generation of initial velocity fields, which
provides independent ensemble realizations in section 3.3. Finally, considerations on how
to determine the length of the burn-in time are provided in section 3.4.

3.1 Problem outline

Let u(t,x, w) denote the solution to equations (1a) and (1b), where the initial condition
u0(x) = u0(x;w), w ∈ Ω, is a random field over D. In this setting, u(t,x, w) is a
random field over (0, T )×D. From u, we can compute the quantity of interest Q(t, w) :=
Q(u(t,x, w)), which is a stochastic process. For ease of notation, we omit the dependency
on w in what follows, except when it is needed to clarify the presentation. The expected
value of a processX is denoted E[X], its variance is denoted V[X] and its covariance with a
process Y is denoted coV[X, Y ]. These quantities can be estimated by sample averaging.
For instance, for any N independent samples, X1, . . . , XN , we define the sample mean
EN [X] = 1

N

∑N
n=1 Xn and the sample variance VN [X] = 1

N−1

∑N
n=1(Xn − EN [X])2.
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Our goal is to compute the long-term expected value of E[Q], that is,

Q = lim
t→∞

E[Q(t)]. (6)

Assuming ergodicity, Q can also be computed as the time average, defined as

〈Q〉 = lim
T→∞

1

T

∫ T

0

Q(t) dt. (7)

Time averages performed over the effective time [T0, T ] are defined as

〈Q〉T0,T =
1

T − T0

∫ T

T0

Q(t) dt, (8)

and the notation in equation (8) simplifies to 〈Q〉T when T0 = 0, that is 〈Q〉T := 〈Q〉0,T .
Given N realizations of the process Q, Qn := Q(t, w(n)), for n = 1, ..., N , we aim to

approximate Q by

Q ≈ EN [〈Q〉T0,T ] =
1

N

N∑
n=1

〈Qn〉T0,T . (9)

Using this notation, the statistical problem we face is to find the optimal values of
N, T0, T (those that minimize the computational cost and/or the time to solution) while
satisfying the probability convergence criteria

P
[∣∣EN [〈Q〉T0,T ]−Q

∣∣ > ε
]
≤ φ, ε > 0, φ� 1, (10)

where ε is the desired tolerance and 1 − φ the confidence on the sampled statistical
estimator. Such a condition requires that the probability of the error exceeding ε should
not be greater than φ.

3.2 Error analysis

There are two sources of error in equation (9). First, the choice of the random initial con-
dition may not be compatible with the long-term statistically stationary, thus triggering
a transient perturbation with a nonvanishing contribution to the mean, sometimes called
initialization bias [5]. The use of a finite number of samples of finite duration is a second
source of error. Increasing the number of samples, as well as the length of their effective
time intervals, will also reduce the influence of the initialization bias.

3.2.1 Initialization bias

To analyze the error in approximation (9) we decompose each realization Qn into two
components,

Qn = An + Sn, (11)

where Sn is the realization of an ergodic and stationary process S, and An is a transient
perturbation. This means to assume limt→∞ E[An(t)] = 0 or, equivalently,

lim
t→∞

E[Qn(t)] = Q = E[S]. (12)
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In this setting,

E[EN [〈Q〉T0,T ]] =
1

N

N∑
n=1

E[〈Qn〉T0,T ] =
1

N

N∑
n=1

(E[〈Sn〉T0,T ] + E[〈An〉T0,T ]) . (13)

Since S is statistically stationary,

E[〈Sn〉T0,T ] = E

[∫ T
T0
Sn(t) dt

T − T0

]
=

1

T − T0

∫ T

T0

E[Sn] dt = E[Sn] = E[S] = Q. (14)

Therefore,
E[EN [〈Q〉T0,T ]] = Q + B, (15)

where

B =
1

N

N∑
n=1

E[〈An〉T0,T ] (16)

is the bias of the initial condition, which can be mitigated if E[〈An〉T0,T ] decays sufficiently
fast. If ∫ ∞

0

|E[An](t)| dt <∞, (17)

then we have that

|E[〈An〉T0,T ]| = 1

T − T0

∣∣∣∣∫ T

T0

E[An](t) dt

∣∣∣∣ ≤ 1

T − T0

∫ T

T0

|E[An](t)| dt (18)

≤ 1

T − T0

∫ ∞
0

|E[An](t)| dt −−−−−−→
T−T0→∞

0. (19)

In other words, if equation (17) holds, then increasing T − T0 eventually decreases |B|.
An estimation of the decay rate can be made under stronger assumptions on the

transient perturbation. For illustration purposes we consider a fast decay of the form

Afn(t) = Af0,ne−
t
τ , (20)

which is an example of exponentially ergodic processes. For a wide class of stochastic pro-
cesses satisfying a dissipativity condition, it can be proved that the transient perturbation
decays exponentially [45, theorem 6.1], i.e. it satisfies

|E[Af ]| = |E[Af0 ]|e−
t
τ , (21)

as in [21, equation (3)].
If we now consider its time average we get

E[〈Afn〉T0,T ] = E[Af0,n]〈e−
t
τ 〉T0,T = τ E[Af0,n]

(
e−T0/τ − e−T/τ

T − T0

)
, (22)

from where we see a decay of the form

E[〈Afn〉T0,T ] = O((T − T0)−1). (23)

Therefore, E[〈Afn〉T0,T ] is a decreasing function of T − T0. However, as it can be seen in
equation (22), it is also decreasing when T −T0 is kept constant while T and T0 separately
increase. In practice, T is fixed so increasing T0 decreases T − T0; this is the trade-off we
analyse in the examples of section 4.
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3.2.2 Statistical error

The previous analysis makes it clear that bias can be reduced by increasing T − T0 and,
for specific transient perturbations, increasing T0. However, to assess statistical accuracy,
equation (10) needs to be evaluated. Given a bound

∣∣EN [〈Q〉T0,T ]− E[EN [〈Q〉T0,T ]]
∣∣ ≤ ε,

the asymptotic normality of the estimator EN [〈Q〉T0,T ], in the limit N → ∞, implies
that [19, chapter 3]∣∣EN [〈Q〉T0,T ]− E[EN [〈Q〉T0,T ]]

∣∣ ≤ Cφ√V[EN [〈Q〉T0,T ]] ≤ ε, (24)

with probability 1− φ as the tolerance ε → 0. Cφ is the confidence coefficient defined as
Cφ = Φ−1(1 − φ

2
), there Φ is the cumulative distribution function of a standard normal

distribution. The total error in equation (10) can then be bounded with confidence 1−φ,
as follows,∣∣EN [〈Q〉T0,T ]−Q

∣∣ ≤ ∣∣Q− E[EN [〈Q〉T0,T ]]
∣∣+
∣∣EN [〈Q〉T0,T ]− E[EN [〈Q〉T0,T ]]

∣∣
≤
∣∣Q− E[EN [〈Q〉T0,T ]]

∣∣+ Cφ
√

V[EN [〈Q〉T0,T ]].
(25)

We define the statistical error (SE) to be SE =
√

V[EN [〈Q〉T0,T ]]. Thus, using equa-
tion (15), we get ∣∣EN [〈Q〉T0,T ]−Q

∣∣ ≤ |B|+ CφSE, (26)

where B is the initialization bias defined in equation (16). For a given confidence 1 − φ,
the probability convergence criteria then reads

|B|+ CφSE ≤ ε. (27)

The bias error |B| was analyzed above, let us now focus on the SE term. Assuming
each An and Sn are independent, we have

V[EN [〈Q〉T0,T ]] =
1

N2

N∑
n=1

V[〈Sn〉T0,T ]+
1

N2

N∑
n=1

V[〈An〉T0,T ]+
1

N2

N∑
n,m=1
n6=m

coV[〈Qn〉T0,T , 〈Qm〉T0,T ].

(28)
The first term on the right-hand side of equation (28) can be written as

V[〈Sn〉T0,T ] = 2
V[S]

T − T0

∫ T

T0

(
1− t

T − T0

)
ρ(t) dt, (29)

where ρ is the autocorrelation function, see [50, problem 3.37]. The long-time limit of the
integral in equation (29) is the integral time scale of the process [50, section 3.6], which is
a correlation constant associated to the quantity of interest. Therefore, V[〈Sn〉T0,T ] decays
like (T − T0)−1.

The second term on the right-hand side of equation (28) cannot be estimated without
making assumptions on the behavior of the transient perturbation A. If we consider the
same fast decay of the previous subsection, equation (20), a straightforward computation
shows that V[〈Afn〉T0,T ] = O((T − T0)−2).

The last term in equation (28) depends on the correlation between realizations. An
example of the effects of the correlation between realizations of turbulent flow in a channel
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is presented in [40]. If these realizations are independent, the final term in equation (28)
is negligible and the dominant term in equation (27) depends on the decay rate of the
transient perturbations An. To this end, we discuss two initial condition strategies which
help to provide independent realizations in section 3.3.

If the decay of the transient perturbation is slower than equation (20), the decay of
the statistical error will be dominated by the second term in equation (28). Therefore,
both the bias and statistical error will decay at the same rate, and the left-hand side of
equation (27) will decay like (T − T0)−q for some q < 1. If the decay of the transient
perturbation is fast (equation (20) holds), the overall error will be dominated by the first
term in equation (28), and the left-hand side of equation (27) will decay like N−0.5 and
(T − T0)−0.5. In the numerical experiments presented in section 4, we verify the decay
rates to assess if the initialization bias can be neglected in computing the error.

The left hand side of equation (26) is estimated by approximating the variance by the
sample variance. Because we aim at computing the variance of an average, we perform
K repetitions of each experiment, totalling K · N independent simulations. In this way,
the right hand side of equation (26) can be approximated as follows,

Cφ
√
V[EN [〈Q〉T0,T ]] ≈ Cφ

√
VK [EN [〈Q〉T0,T ]], (30)

with K sufficiently large.

3.3 On the generation of initial fields

Ensemble averaging benefits from independent initial conditions to generate uncorrelated
flow evolutions. It is known that different turbulent flows will diverge with a rate deter-
mined by the Lyapunov exponent [46, 48], and that this is the case of our target problems.
We decide then to generate perturbed initial conditions, and to let the system evolve for
a defined burn-in time T0 to arrive at uncorrelated solutions. We consider two strategies
to generate these initial conditions.

The first approach simply consists of adding Gaussian white noise to a precomputed
average velocity field ū. In this work, this strategy of generating spatially-uncorrelated
fluctuations is referred to as the spatially uncorrelated (SU) approach. We note that it is
similar to the approach used in [40].

The second approach consists of adding nonlocal spatially-correlated and divergence-
free solenoidal noise to the averaged velocity field ū; we refer to this as the spatially
correlated (SC) approach. Exploiting solenoidal fluctuations in the initial conditions is
not new; we refer for example to [37], where the author used uncorrelated divergence-
free initial conditions to ensure independence of different realizations. Our novelty is
that we propose to generate spatially-correlated fluctuations w(x), which arise from a
well-established synthetic turbulence model.

Our approach is inspired by the work of Hunt in [28] (see also [29, 34, 47]). The un-
derlying assumption is that the inhomogenous contributions to fully developed turbulence
fluctuations in the inviscid source layer above a solid body have negligible vorticity. From
this assumption, one arrives at the following inhomogeneous turbulent fluctuation model:
w(x) = w(H)(x) −∇φ(x), where w(H)(x) is a homogeneous turbulent velocity field and
φ(x) satisfies

∆φ = ∇ ·w(H) in D, (∇φ−w(H)) · n = 0 on ∂D. (31)
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In this work, we adopt the classical von Kárman model [55] for the homogeneous random
field w(H)(x). Realizations of this type of nonlocal spatially-correlated field can be gen-
erated using a Fourier transform on a Cartesian grid containing D; see, e.g., [41]. Once a
realization w(H)(x) is generated, we may interpolate the boundary conditions so that the
solution to equation (31) can be solved with the same finite element spaces used in equa-
tion (5). After interpolating the sum w(H)(x) −∇φ, we arrive at the nonlocal spatially-
correlated perturbation w(x) and, in turn, the SC initial condition u0(x) = ū(x)+w(x).

3.4 On the optimal choice of the burn-in time

Given the full time interval [0, T ], we split it into a burn-in time interval [0, T0] and an
effective time interval [T0, T ]. In this subsection, we focus on how to optimally choose T0.

First, a single simulation is executed for a time long enough to reach a statistically
stationary turbulent state, which is saved. Thereafter, N realizations are run with SU or
SC initial conditions to ensure independent flow evolution. Once the required transient
time T0 is passed, statistical data are collected and updated on the fly, until the end of
the effective time window.

We propose a systematic manner to minimize T0, which makes use of the SE defined
above. Given N realizations and a quantity of interest Q, our idea is to analyze how
the statistical estimates of the quantity of interest (QoI) change for different burn-in
times. We can observe this plotting the mean EN [〈Q〉T0,T ] as function of T0, together
with its confidence intervals. The time interval T − T0 is kept constant, while varying
T0. The confidence intervals are computed as CφSE, with confidence 1 − φ. By looking
at the plot, we can detect a starting point after which the statistical result is effectively
insensitive to T0 variations. In addition to the statistical checks, we decide to apply a
physical constraint, which in our case is the time the flow needs to go from the inlet to the
obstacle. Therefore, T0 will be the maximum of these two time values. In order to further
reduce the computational cost of the transient phase, we also explore the possibility of
using larger time steps in [0, T0].

Another way to estimate T0 is analyzed in [6], where the authors choose a burn-in
time which minimizes the estimated variance of the sample average estimator of the time
average for a given signal. To do so, we average at each time step over all realizations, for
different numbers of realizations N , and apply the procedure to the resultant time signal.
As we will see in section 4, both procedures give similar results.

4 Numerical experiments
The first problem we consider (section 4.1) is the incompressible flow around a two-
dimensional rectangle. We first check that statistical results are independent from the
initial condition strategies, and we compare ensemble average against standard time aver-
aging. Then, we check if it is possible to exploit a larger Courant-Friedrichs-Lewy (CFL)
during the burn-in time phase, and how much the burn-in time window can be reduced.
Finally, a comparison study between different strategies is made.

The second problem is presented in section 4.2 and describes wind flowing around a
three-dimensional building. A comparison between ensemble averaging and standard time
averaging is presented, together with the burn-in time study.
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In both cases, a comparison against literature is made, to verify the implementation.
We remark that international units are used to measure physical quantities. The com-
putational efficiency of the joint use of XMC, Kratos and PyCOMPSs has already been
demonstrated, where optimal strong scalabilty was ensured up to 128 nodes (6144 central
processing units (CPUs)) [54]. The analyses were run on MareNostrum 4. This super-
computer has 11.15 Petaflops of peak performance, which consists of 3456 compute nodes
equipped with two Intel R Xeon Platinum 8160 (24 cores at 2.1 GHz each) processors.

4.1 Rectangle body

4.1.1 Problem description

We focus on the flow around a 5× 1 m rectangular body [8], characterized by a Reynolds
number of 132719. The problem domain is shown in figure 4.1.

B = 5D

D

Lx

Λx

Ly

Figure 4.1: Scheme of the computational domain used for the rectangle problem, where D = 1 m,
B = 5D, Lx = 55B, Ly = 30B and Λx = 15B. Thus, the dimensions of the outer domain are
275× 150 m, and the inner rectangle has size 5× 1 m.

The governing equations of the problem are defined in section 2. Slip boundary con-
ditions are enforced on the external boundaries, and no-slip boundary conditions on the
rectangle body. The inlet velocity is uniformly distributed on the y-axis, and it has a
value of 2 m s−1.

The mesh considered to solve the problem has around 25000 nodes, and a minimal
size, close to the rectangle body, of 0.002 m. The chosen time step is 0.02 s, which gives a
CFL of 20. Such mesh is adaptive with respect to a solution-oriented metric, namely the
average velocity field 〈u(t, x)〉T0,T . The metric is computed exploiting Kratos [43], and
the original mesh is refined using the Mmg software [18].

The quantities of interest are the drag force Fd on the body, the pitching moment Mp

on the body and the pressure field p(x) on all nodes of the body surface. The international
system of units is used for all the results. However, even though we compute all these
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quantities of interest, we assess statistical convergence only for the drag force. For the
sake of simplicity, we may use 〈Q〉 instead of 〈Q〉T0,T .

4.1.2 Perturbation of initial conditions

We can observe in figure 4.2 the time evolution of the time averaged drag force 〈Fd〉40 s,t for
128 contributions, when using the correlated and divergence-free initial condition strategy.
The burn-in time we select is 40 s, which is the optimal T0 we find in section 4.1.4. Similar
plots are obtained for SU initial conditions and for others T0.

Each of these samples runs for 600 s, which, as we can observe by looking at the
oscillations we have, is a time horizon not long enough to reach convergence for the
time averaged drag value. In case of infinitely large time windows, one would expect
each realization to converge to the same value. Since this is not feasible, figure 4.2
gives us an estimate of the error that is being committed by considering truncated time
windows. The estimations of expected value, standard deviation and statistical error for
both perturbations are reported in table 1.
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Figure 4.2: Time averaged drag force 〈Fd〉40 s,t evolution as function of time. Initial conditions
are perturbed following the SC initial conditions.

From the drag force of table 1, one can estimate the drag coefficient as

Cd =
Fd

1
2
ρu2A

, (32)

where ρ is the fluid density, u the speed of the rectangle body relative to the fluid and A
the cross sectional area. The drag coefficient we obtain is Cd = 1.321, which is consistent
with literature results [8].
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EN [Q] σN [Q] CφSE

SU 3.238648 0.052823 0.010819
SC 3.246658 0.055877 0.011444

Table 1: Estimations of expected value, standard deviation and statistical error with 99% confi-
dence for SU and SC initial conditions. The QoI Q is the time averaged drag force 〈Fd〉40 s,600 s.
128 realizations are considered.

4.1.3 Comparison ensemble average and time average

In order to compare ensemble averaging and standard time averaging approaches, we
compute and compare the total error, given by the left hand side of equation (27), for
different computational costs.

First, we analyze which are the dominant terms of equation (27). We plot
(
VK [EN [〈Q〉T0,T ]]

)−1

for Q = Fd and different K and N in figure 4.3. In the plot, black dots are estima-
tions of the reciprocal of the variance, while the red line is the linear interpolation of
such estimations. We observe that the variance estimation decays linearly as N and
(T − T0) grow. Therefore, the fast decay of section 3.2 is happening and the dominant
term of the total error is Cφ

√
VK [EN [〈Q〉T0,T ]]. We can then simplify equation (27) to

CφSE ≈ Cφ
√

VK [EN [〈Q〉T0,T ]] ≤ ε.
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Figure 4.3: Computation of VK [EN [〈Q〉T0,T ]] as function of T − T0 for Q = Fd. The left plot
presents (K,N, T0) = (128, 1, 40 s) and the right plot (K,N, T0) = (32, 4, 40 s).

Tables 2 and 3 show the SE for both ensemble average and standard time average
approaches. First, we observe SE decreases as expected (proportional to N−0.5 and
(T − T0)−0.5) as more realizations or larger time windows are considered. For exam-
ple, let’s focus on the second line of table 2 and the sixth of table 3. SE values are
approximately similar, but ensemble average employs 10 samples that can be run concur-
rently. Consequently, the total computational cost corresponds to running 10 simulations,
each with an effective time window of 160 s. Moreover, we point out that the expected
value estimations of the two average strategies are in agreement within each other. As ex-
pected, ensemble average approach drastically reduces the time to solution, for the same
statistical error, provided of course that more computing resources are used to enable the
concurrent solution of the ensemble. This means that more working nodes are used as
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EN [〈Fd〉] SE N T − T0 C
time to
solution

3.2779 0.0403 5 160 136 3.40
3.2684 0.0285 10 160 272 3.40
3.2583 0.0201 20 160 544 3.40
3.2527 0.0142 40 160 1088 3.40
3.2584 0.0100 80 160 2176 3.40
3.2456 0.0071 160 160 4352 3.40

Table 2: The table reports the mean estimation and its associated SE computed for ensemble
averaging for the drag force mean estimation. N and T − T0 refer to the number of realizations
and the effective time window of the simulation, respectively. C is the computational cost and is
expressed in CPU hours. Time to solution is the human time we need to wait for getting results,
and is expressed in hours.

EN [〈Fd〉] SE N T − T0 C
time to
solution

3.3056 0.1595 1 50 17.2 2.15
3.2171 0.1127 1 100 21.76 2.72
3.2752 0.0797 1 200 30.8 3.85
3.2605 0.0563 1 400 48.96 6.12
3.2472 0.0398 1 800 85.28 10.66
3.2552 0.0281 1 1600 158.02 19.75

Table 3: The table reports the mean estimation and its associated SE computed for standard time
averaging for the drag force mean estimation. N and T − T0 refer to the number of realizations
and the effective time window of the simulation, respectively. C is the computational cost and is
expressed in CPU hours. Time to solution is the human time we need to wait for getting results,
and is expressed in hours.

more realizations are run. If enough resources are allocated, the runtime is shorter, and
this is our case.

The results suggest that the ensemble average approach is more appropriate than
standard time averaging for running in supercomputers, since it allows to fully exploit
supercomputer capabilities in order to reduce the time to solution. This comes at the
price of a larger combined computational cost, due to the need of going multiple times
through the initial burn-in time.

4.1.4 On the reduction of burn-in time computational cost

We analyze how the statistical results of the time-averaged drag force change when varying
the burn-in time. For each case we consider 128 realizations, and we keep constant T−T0.
We plot in figure 4.4 the expected value estimation as function of T0, together with its
99% confidence intervals. We observe that the statistical result is relatively insensitive to
T0 for T0 > 20 s.

As mentioned in section 3, another way to estimate T0 is following the approach
presented in [6], in which the authors choose a burn-in time which minimizes the estimated
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variance of the sample average estimator of the time average for a given signal. Figure 4.5
reports the estimated variance of the sample average estimator of the time average as
function of the burn-in time, for different number of realizations and fixed T − T0. As we
can see, we reach the minimum after few seconds.

Even though both way of estimating the burn-in time suggest that only a very short
time span is needed, we consider as "physical constraint" the time required by the infor-
mation to travel from the inlet to past the object. This means that we wait at least the
physical constraint time before we can start trusting the solver results. The time needed
for this to happen, for an average speed of 2 m/s, is 40 s. Our conclusion is that we can
safely assume T0 = 40 s without changing statistical results. We remark as well that the
same conclusion follow for other effective time windows T − T0.

0 100 200 300 400

Tbt

3.16

3.18

3.20

3.22

3.24

3.26

3.28

<
F
d
>

T0

E
N

[〈F
d
〉 T

0
,T

]±
C φ

SE

Figure 4.4: Expected value estimation and as-
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Another approach we consider to reduce the time to solution is to exploit larger time
steps during the burn-in time. To do so, we must first verify that a larger time step
does not change the statistical results. Moreover, to improve the consistency of such an
approach, we should ensure that the chosen larger time step, if used during the whole
time window, would give different results.

We report in table 4 the expected value estimation and the associated SE for a con-
fidence of 99%. We can see that in the case of time time step ∆t = 0.02 used in the
averaging window [T0, T ], we obtain consistent statistical results, independently from ∆t0
values. On the other hand, for a different ∆t we obtain a different statistical result (see
third row in the table compared to the first two). Therefore, a larger time step can safely
be employed to reduce the time to solution of the burn-in phase.

4.1.5 Results

Combining all of the ideas presented above we obtain the results reported in table 5, which
shows the statistical analysis of the time averaged drag force. The analyses presented in
table 5 are driven by constant product between N = 128 and T = 300 s. Convergence
is checked via equation (27), which is simplified to CφSE ≤ ε. The absolute tolerance is
ε = 0.02 (the relative value is ≈ 0.6%) and the confidence is 1− φ = 0.99.
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EN [〈Fd〉T0,T ] CφSE T − T0 ∆t ∆t0

3.237284 0.009183 760 0.02 0.02
3.232869 0.008286 760 0.02 0.05
3.312648 0.008199 760 0.05 0.05

Table 4: Expected value estimation and associated SE with 99% confidence for different time
steps during both burn-in and effective phases.

Different T0, ∆t0 and perturbation of initial conditions are considered. On one hand,
we consider the optimal T0 = 40 s, on the other T0 = 140 s, which is directly related to
the time one particle needs to travel from the inlet to the outlet for an average speed of
2 m s−1. We observe all strategy gives the same statistical result, since all expected value
estimations fall within the range of confidence 1 − φ = 0.99. Moreover, both the time
to solution and the computational cost are smaller if larger time steps are exploited in
the burn-in time phase. Therefore, we conclude the most promising strategy consists in
exploiting ∆t0

∆t
> 1 and T0 small enough but still ensuring the error decays as N−0.5 and

(T − T0)−0.5.

EN [〈Fd〉T0,T ] CφSE
initial
conditions N T − T0 T0

∆t0
∆t

C
time to
solution

3.245649 0.018503 SU 128 160 140 1.0 3655 3.57
3.244356 0.013949 SU 128 260 40 1.0 3655 3.57
3.237846 0.014395 SU 128 260 40 2.5 3389 3.31
3.235604 0.019199 SC 128 160 140 1.0 3727 3.64
3.235677 0.014501 SC 128 260 40 1.0 3727 3.64
3.236612 0.014390 SC 128 260 40 2.5 3420 3.34

Table 5: Statistical analyses of time averaged drag force 〈Fd〉T0,T . The expected value estimation
and the associated statistical error, with a confidence 1 − φ = 0.99, are reported. Both uncor-
related and correlated initial condition perturbations are presented. N refers to the number
of ensembles realizations. Effective time window T − T0 and burn-in time T0 are expressed in
seconds, and ∆t0

∆t shows if a larger CFL is used in the transient phase. The computational cost C
and time to solution unit measures are CPU hours and hours, respectively. The product between
number of realizations and time window is constant among different analyses.

4.1.6 Other observables

In addition to the statistical analysis reported above for the drag force, we present here re-
sults for the expected value and standard deviation estimations of the drag force, pitching
moment and pressure field on the rectangle body. Specifically, we compute the standard
deviation of an observable Q and of its time average, which read σ[Q] and σ[〈Q〉T0,T ],
respectively. σ[Q] can be understood as an indicator of the distribution around the mean
value, while σ[〈Q〉T0,T ] as an error indicator of the expected value estimation.

Table 6 reports results for the drag force and the base moment, while figures 4.6 (a)
and 4.6 (b) for the pressure field.

Page 21 of 32



Deliverable 3.3

Q EN [〈Q〉T0,T ] σN [〈Q〉T0,T ] σN [Q]

Fd 3.238950 0.086650 0.575146
Mp -0.014169 0.123063 2.141448

Table 6: Statistical analysis of the drag force Fd and of the pitching moment Mp.
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Figure 4.6: Risk measures for the rectangle problem.

4.2 CAARC building

4.2.1 Problem description

The second problem is the wind flow around the Commonwealth Advisory Aeronautical
Council (CAARC) building [7, 24, 25, 49]. The CAARC is a parallelepiped building with
width 45 m, length 30 m and height 180 m. The domain is 1880 m long, 864 m large and
576 m high. A steady state logarithmic wind profile is considered. The wind mean profile
is described by [30]

ū(z) =
u∗

k
ln(z/z0), (33)

where k ≈ 0.4 is von Karman’s constant, u∗ the friction velocity and z0 the roughness
length. The reference mean wind velocity ū(z) is defined at reference height H.

In table 7 we present the physical properties of the problem, and we remark that
z0 = 2 m is typical of centers of large cities [30]. The Reynolds number is 119 millions,
where a characteristic length of 45 m is considered. Under such conditions, it is clear that
the problem is badly under-resolved.

ūH H z0 ρ µ Re

40 m s−1 180 m 2 m 1.225 kg/m3 1.846 · 10−5 kg m−1 s−1 119447453

Table 7: Physical parameters problem.
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The quantities of interest are the drag force Fd on the body, the base moment Mb on
the body and the pressure field p(x) on all nodes of the body surface. Units are in the
SI system. The quantity of interest we choose to analyze is the drag force. As above, we
omit the subscript T0, T if there is no risk of misunderstanding.

The mesh considered to solve the problem has approximately 312000 nodes, and a
minimal size, close to the body, of 0.2 m. The considered mesh is adaptive with respect
to a metric built on top of velocity and pressure fields.

4.2.2 Validation

We compute and compare the normalized formulas for forces and moments against [7].
The formulas read

CFX = FX
1/2ρW

∫H
0 ū2 dZ

, CFY = FY
1/2ρW

∫H
0 ū2 dZ

,

CMX
= MX

1/2ρū2HWH2 , CMY
= MY

1/2ρū2HWH2 ,

(34)

where ρ is the density of the fluid, ū the velocity mean profile described in equation 33,
ūH the velocity at height H = 180 m, and W the building width. CFX and CFY represent
the force coefficients in the direction X and Y, respectively. MFX and MFY denote the
moment coefficients in the same directions, where the moment is computed around the
centroid of the plan geometry of the building at ground location. Figure 4.7 shows a good
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Figure 4.7: Drag and moment coefficients comparison between our work and [7].

agreement of our solution with respect to literature.

4.2.3 Comparison ensemble average and time average

We have observed in section 4.1 that perturbing initial conditions with SU or SC noise is
equivalent, from both computational and statistical points of view. For this reason, we
prefer to use the latter, since more consistent from a physical point of view.

First, we analyze in figure 4.8 which are the dominant terms of equation (27) by
plotting

(
VK [EN [〈Q〉T0,T ]]

)−1 for different K and N and Q = Fd. The linear decay
of the variance estimation with respect to N and (T − T0) suggests that the dominant
term of the total error is Cφ

√
VK [EN [〈Q〉T0,T ]], which implies simplifying equation (27)

to CφSE ≈ Cφ
√

VK [EN [〈Q〉T0,T ]] ≤ ε.
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Figure 4.8: Computation of VK [EN [〈Q〉T0,T ]] as function of T − T0 for Q = Fd. The left plot
presents (K,N, T0) = (128, 1, 30 s) and the right plot (K,N, T0) = (32, 4, 30 s).

We compute the SE for ensemble averaging and standard time averaging in tables 8
and 9. The SE decreases as expected as long as more realizations or larger time windows
are considered. Moreover, the ensemble average approach drastically reduces the time to
solution, for the same statistical error. For example, the case N = 4, T −T0 = 210 s of the
ensemble average approach, compared to N = 1, T −T0 = 840 s of standard time average,
reduces the time to solution by almost a factor 4, to obtain a similar SE. We remark as
well that the expected value estimations for both ensemble averaging and standard time
averaging are consistent within each other.

EN [〈Fd〉] SE N ∆T C
time to
solution

8982493 84767 4 210 1666 17.36
8932223 59939 8 210 3333 17.36
8973444 42383 16 210 6666 17.36
8986913 29969 32 210 13332 17.36
8927955 21191 64 210 26664 17.36
8930547 14984 128 210 53329 17.36

Table 8: The table reports the mean estimation and its associated SE of ensemble averaging for
the estimation of the drag force mean. N and ∆T = T − T0 refer to the number of realizations
and the effective time window of the simulation, respectively. C is the computational cost and
is expressed in CPU hours, while time to solution is expressed in hours.

4.2.4 On the reduction of burn-in time computational cost

We analyze now if it is statistically consistent to reduce the burn-in time. As before, we
consider 128 realizations and we keep constant T − T0 = 110 s. By looking at figures 4.9
and 4.10, we conclude that the burn-in time can be reduced to any value larger than 30 s.
The same conclusion holds also for different effective time windows. To ensure robustness
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EN [〈Fd〉] SE N ∆T C
time to
solution

8658884 324256 1 52.5 215.58 8.98
8879404 229284 1 105 300.19 12.50
9109719 162128 1 210 468.56 19.52
9003445 114642 1 420 853.28 35.55
8950303 93604 1 630 1189.42 49.55
8956216 81064 1 840 1524.88 63.53

Table 9: The table reports the mean estimation and its associated SE of standard time averaging
for the estimation of the drag force mean. N and ∆T = T−T0 refer to the number of realizations
and the effective time window of the simulation, respectively. C is the computational cost and
is expressed in CPU hours, while time to solution is expressed in hours.
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Figure 4.9: Expected value estimation and as-
sociated SE for a confidence of 99% as a func-
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Figure 4.10: Ratio between drag force variance
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tions and T − T0 = 110 s.

of our strategy, we apply the physical constraint that T0 should be larger than the time
to travel from the inlet to the body. Since for an average velocity of 40 m s−1 such time is
11.625 s, it is statistically consistent to use T0 = 30 s.

We also check if it is possible to exploit larger time steps during the burn-in time,
in order to reduce its computational cost. Table 10 shows that running with a larger
time step during T0 is statistically equivalent to exploit a constant time step, where Cφ is
computed for a 99% confidence.

EN [〈Fd〉T0,T ] CφSE T − T0
∆t0
∆t

8922399 39013 170 1.0
8907406 39534 170 2.5

Table 10: Expected value and associated SE with 99% confidence for different time steps during
burn-in time.
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4.2.5 Results

Finally, we run the problem exploiting ensemble average, larger time step ∆t0 and smaller
burn-in time T0 = 30 s. Convergence is checked with equation (27), which is simplified to
CφSE ≤ ε. The chosen confidence is 99%, and the relative tolerance with respect to the
time averaged drag force mean estimator is around 0.5%. We run the problem for different
configurations, keeping the overall cost given by the product between time window and
number of realizations T ·N approximately constant. Results are shown in table 11.

EN [〈Fd〉T0,T ] CφSE N T − T0 T0
∆t0
∆t

C
time to
solution

8972727 48924 142 110 30 2.5 35749 10.34
8946768 45797 100 170 30 2.5 38041 15.54
8943515 40755 76 230 30 2.5 38566 20.60

Table 11: The table reports the expected value and the statistical error values of the time
averaged drag force 〈Fd〉T0,T , with a 99% confidence. N , T and T0 refer to the number of
ensemble realizations, the time window [0, T ] upper bound of the simulation and the burn-in
time, respectively. These last two are measured in seconds. ∆t0

∆t is the ratio between the time
steps of T0 and of the effective time window T − T0. C is the computational cost, expressed in
CPU hours, and time to solution is the real time we need to wait for the solution and is expressed
in hours.

4.2.6 Other observables

We select the case with minimal statistical error of table 11 to show the statistical results
for other quantities of interest. Table 12 shows the expected value and the standard
deviation estimators for the drag force and the base moment. Figures 4.11 and 4.12 show
the estimations of expected value and standard deviation for the pressure field.

Q EN [〈Q〉T0,T ] σN [〈Q〉T0T ] σN [Q]

Fd 8943515 152726 662129
Mb -14943 436540 7332992

Table 12: Statistical analysis of drag force and base moment.
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Figure 4.11: Statistical result of the pressure field 〈p(x)〉T0,T . From left to right, EN [〈p(x)〉T0,T ]−
σN [〈p(x)〉T0,T ], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] + σN [〈p(x)〉T0,T ].
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Figure 4.12: Statistical result of the pressure field p(x). From left to right, EN [〈p(x)〉T0,T ] −
σN [p(x)], EN [〈p(x)〉T0,T ] and EN [〈p(x)〉T0,T ] + σN [p(x)].

5 Software release
In addition to this report, deliverable 3.3 comprises a new version of the Kratos Multi-
physics library. This version 9.0 of the Kratos Multiphysics library has been publicly re-
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leased online [42]. Different examples showing how to apply the ensemble average method
to solve computational fluid dynamics problems can be found online [44].

6 Conclusions
In this work, we show that ensemble averaging can be successfully applied to highly
chaotic incompressible flows and we propose strategies to minimize the total error and
the computational cost of the simulation. Two numerical examples are considered to
demonstrate the advantage of using ensemble averaging over standard time averaging
when running in HPC systems and to validate our proposals.

The statistical analysis of ensemble averaging expected value estimator leads to the
identification of two error components: an initialization bias, related to the transient
perturbation of the flow, and a statistical error, related to finite sampling. Convergence
rates of both error contributions are analyzed by considering two scenarios: one with fast
decay of the transient perturbation and one with slow decay. This allows understanding
how the error contributions should decay in order to assume null initialization bias. For
both numerical examples, decay rates are estimated to assess if the initialization bias
is negligible. For both problems, the burn-in phase computational cost is minimized
by following a statistical-based approach and a less accurate and less expensive time
integration procedure during the burn-in phase.

Multiple observables (drag force, base and pitching moment and pressure field) are
computed within this work. By applying the proposed statistical ensemble averaging
framework, statistical estimators are efficiently and accurately estimated, and decisions
based on top of such statistics can therefore be taken faster.
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