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Aircraft design is a highly nonlinear problem and inherently multidisciplinary activity that involves a large number of 
design variables and different models and tools for various aspects of design. A spreadsheet based genetic algorithm (GA) 
approach is presented to optimize the preliminary design of an aircraft. A domain independent general purpose genetic 
algorithm is proposed to implement the optimization routine. Breguet range equation is used as the objective function for the 
design evaluation. A total of sixteen design variables are considered in the optimization process. It has also been 
demonstrated that the proposed approach can be adapted to any objective function without changing the optimization 
routine. The model is applicable to commercial airliner as well as a multirole jet fighter. The proposed model has been 
validated against known configurations of various aircraft.  
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Introduction 
Aircraft design is a tedious and prolonged exercise 

involving complex interdependence of a wide range 
of variables. The optimized values of these variables 
or their best possible combination only yield an 
effective, reliable and cost-effective aeroplane. The 
most efficient, reliable, fastest, lightest and cost 
effective aeroplane can be termed as an ideal aircraft, 
however, aircraft design is a compromise of different 
aspects because maximizing one capability would 
render another to an undesired degree. Therefore, a 
healthy compromise between all the desired qualities 
is the ultimate goal of a designer. The constraints 
dictate the values of the design variables so their 
ranges have to be kept in the realistic domain. 

Aircraft design is considered to be a separate 
discipline of aeronautical engineering which is 
different from the other analytical disciplines such as 
propulsion, aerodynamics, controls, and structures. 
An aircraft designer should be well versed in these 
and many other specialties. Design is not only the 
actual layout, but also analytical processes that are 
used to determine what is to be designed and how the 
design should be modified to meet the requirements. 

This paper attempts to use genetic algorithms (GA) 
to optimize preliminary aircraft design parameters to 
maximize the range of the aircraft. The proposed 

approach has been implemented in a spreadsheet 
environment using proprietary software as an add-in 
to the Microsoft Excel™ software. 
 

Design Process 
People involved in design never seem to agree 

where the design process begins. The designer thinks 
it starts with a new airplane concept. The sizing 
specialist knows that nothing can begin until an initial 
estimate of the weight is made. The customers, 
whether civilian or military, feel that the design 
begins with their requirements which are set by prior 
design trade studies. Thus, the concepts are developed 
to meet requirements. So is the case of other two 
parameters of design wheel. There are three major 
phases of aircraft design1 conceptual design followed 
by preliminary design then detailed design. The three 
major phases along with requirement of each phase 
are depicted in Figure 1. 

The conceptual design of the aircraft starts with the 
study of many feasible configurations in some detail, 
with the aim of achieving the mission requirements of 
the new aircraft; considering certain safety and 
operational criteria2-3. Conceptual design is subjected 
to an optimization process called the preliminary 
design. As a result one concept is finally chosen as the 
best compromise for all requirements and specifications. 
Preliminary design process, also called ‘frozen 
configuration’, goes through somewhat complete 
aerodynamic, flight mechanic and structural studies. 
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Fielding4 described that the most important stage of 
the aircraft design process is to define the correct set 
of requirements for future design; these requirements 
are called design specifications. These inputs require 
inputs from a variety of disciplines and are dependent 
upon various design / airworthiness standards. The 
design process evolves through various information 
which include; airframe dimensions and shapes, 
performance parameters, static and dynamic loads, 
quality standards, certification criteria, and cost 
constraints, etc.5. The various variable and constraints 
in the design process are interdependent thus for 
efficient design workflow the relations ship between 
various success of information must be known and the 
feedback loops are to be built into the design process6. 
Jayabalan et al. stated that aircraft design process 
includes finding an aerofoil shape by testing, do a 
sizing and performance optimization and integrating it 
together with the other parts of the aircraft, i.e. 
payloads, propulsion systems, controls etc. 

The aircraft design itself is an example of 
multidisciplinary design optimization (MDO) process 
with a strong interaction between aerodynamic design 
and structural design. Literature review reveals that 
the design methodology though may not be very 
much innovative or novel but are not discussed in 
detail to provide leakage of idea or technology. The 
only detailed methodology available pertains mostly 
to conceptual design studies. 
 

Problem Statement 
The problem statement for preliminary aircraft 

design would be: determine the values of restricted 
design variables such that the range of the aircraft R, 
as given by Breguet range equation is maximized. The 
Breguet range equation is given by7: 
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Where 
V  = Cruise velocity 
L  = Airplane lift 
SFC      = Specific fuel consumption at cruise 

speed and altitude 
D  = Airplane drag 
Wi  = Initial airplane weight 
Wf  = Final airplane weight 

The objective is to maximize the range of the 
aircraft corresponding to maximum value of L/D. The 
right-hand side terms in equation 1 can be estimated 

by combining several estimates described in Kroo7, 
using the design following design variables: take-off 
weight, wing span, horizontal tail span, vertical tail 
span, mach no, seating capacity, aspect ratio, sfc, 
altitude, fuselage length, fuselage diameter, wing 
sweep, angle of attack, ultimate load factor, thickness 
by chord ratio of wing, taper ratio wing, thickness by 
chord ratio of horizontal tail, thickness by chord ratio 
of vertical tail, taper ratio horizontal tail, taper ratio 
vertical tail. Upper and lower range of each variable is 
pre-defined according to the mission profile. 

Although aircraft design depends on a large 
number of variables and essentially falls under the 
domain of multi-disciplinary optimisation. The 
fundamental aircraft parameters that are determined 
during the preliminary design phase are: Aircraft 
maximum take-off weight and wing reference area. 
Based on Raymer1, it was determined that, in 
preliminary design, sixteen and fourteen design 
variables respectively can be chosen for commercial 
airliner and fighter aircraft to determine the wing 
reference area and resultantly the range. Based on 
these design variables and twenty three constants 
detailed spreadsheet model was built using drag 
(including skin friction drag, form factor and  
wetted areas), sizing and weight equations. 
Torenbeek8 defines independent and dependent  
design variables. 

Two different aircraft types i.e., a commercial 
airliner and a multirole jet fighter, are considered in the 
paper. Hence, two different models, one for each type 

 
 

Fig. 1—Aircraft design Phases 
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is built for optimization. The chosen design variables 
mentioned above make possible to compute all the 
necessary characteristics to evaluate equation 1. 
 

Genetic Algorithms 
Genetic Algorithms (GAs) belong to a class of 

search methods that are especially suited for solving 
complex optimization problems. GAs were first 
introduced by Holland9. They transpose the notions of 
natural evolution to the world of computers, and 
imitate natural evolution. A GA functions by 
generating a large number of possible solutions to a 
given problem. Each solution is then evaluated 
against a “fitness value” to determine the parents. 
These solutions after crossover and mutation breed 
new solutions. Fitter solutions are more likely to 
reproduce as compared to less "fit". In successive 
iterations, best solutions (parents) are allowed to 
produce new solutions (children). The worst members 
of the population die off to make way for the fitter 
individuals. A detailed introduction to GA’s is given 
in Goldberg10. GAs have successfully been used in the 
aircraft design11-20. 
 

GA Implementation 
In the present study GA is applied to the 

preliminary aircraft design in a spreadsheet 
environment. The model was made on the basis of the 
conceptual design by Raymer1. For genetic algorithm 
implementation, we employ a commercially available 
GA namely Evolver™21, that functions as an add-in to 
the spreadsheet environment i.e., Microsoft Excel™. 
The aircraft design optimization model is developed 
using spreadsheet’s built in functions. Figure 2 shows 
the spreadsheet-GA integration. 

The fitness/objective function value is passed on to 
the GA component as a single cell value for the 
evaluation of the design. Two models were made 
essentially for a transport airliner and a multirole jet 
fighter. The models were developed separately 
according to the respective equations of both types. 
The model follows a methodological approach where 
a segment of the flight path or the mission profile is 
taken i.e. the cruise segment. For this segment as 
stated earlier, the range was taken as the objective 
function to be the basic entity to be optimized. All the 
relationships were built to compute the equation for 
range, the Breguet Equation. Keeping in view the 
historical trends, a total of 16 and 14 design variables 
are used to develop the models for commercial 
airliner and a multirole jet fighter respectively.  

Chromosome Representation 
Direct representation is used for the representation 

of the chromosome where each gene represents a 
particular design variable. Thus for a commercial 
airliner the chromosome length would be of  
twenty genes, which is actually equal to the number 
of design variables. Similarly, for multi-role jet 
fighter the chromosome length would be of fourteen 
genes. Thus for each of the gene a number is 
generated between the defined range to find the  
best possible combination of values that gives the 
maximum value for the objective function given  
in equation 1. 
 

Reproduction / Selection 

In this research steady state reproduction as 
reported in GENITOR GA22 is used, thus in each 
iteration only one worst performing organism is 
replaced instead of replacing the whole generation. In 
case of a steady state reproduction, all the genes are 
not lost, as is the case in generational replacement 
where after replacement, many of the best individuals 
may not produce at all and their genes may be lost. 
Steady-state reproduction is a better model of what 
happens in longer lived species in nature. This allows 
parents to nurture and teach their offspring, but also 
gives rise to competition between them. The value of 
the objective function for a particular chromosome is 
a measure of its fitness. 
 
Crossover Operator 

Uniform crossover is performed by the GA routine. 
This means that instead of chopping the list  
of variables in a given scenario at some point  
and dealing with each of the two blocks  

 
 

Fig. 2—Spreadsheet-GA Integration 
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(called “single-point” or “double-point” crossover), 
two groups are formed by randomly selecting items to 
be in one group or another. Traditional x-point 
crossovers may bias the search with the irrelevant 
position of the variables, whereas the uniform 
crossover method is considered better at preserving 
schema, and can generate any schema from the  
two parents. In uniform crossover, instead of 
chopping the list of variables in a given scenario  
at some point and dealing with each of the two  
blocks, two groups are formed by randomly selecting 
items to be in one group or another23. Figure 3 shows 
uniform crossover. 

In uniform crossover operator, mixing ratio or 
crossover rate decides which parent will  
contribute each of the gene values in the offspring 
chromosome. This allows the parent chromosomes  
to be mixed at the gene level rather than the  
segment level. 

Consider the two parents in Fig. 3 which have 
been selected for crossover. Parent P1 has been 
coloured green while parent P2 yellow. A random 
mask is generated corresponding to the crossover 
rate. If the crossover rate is 0.5, approximately  
half of the genes in the offspring will come from  
P1 and the other half will come from P2. Below  
the second parent is the random mask generated 
corresponding to the crossover rate. The child is 
produced by taking bit from P1 if the corresponding 
mask bit is 1 or the bit from P2 if the corresponding 
bit is 0. The colour of the child chromosome 
represents the mixing of genes if the crossover  
rate is 0.5. 
 

Mutation operator 

The purpose of the mutation is to ensure that 
diversity is maintained in the population. It gives 
random movement about the search space, thus 
preventing the GA becoming trapped in “blind 
corners” or “local optima” during the search. The GA 
in this research performs mutation by looking at each 
variable individually. A random number between  
0 and 1 is generated for each of the variables in the 
organism, and if a variable gets a number that is less 
than or equal to the mutation rate (for example, 0.06), 
then that variable is mutated. The amount and  
nature of the mutation is automatically determined  
by a proprietary algorithm. Mutating a variable  
involves replacing it with a randomly generated  
value (within its valid min-max range). 

Computational Results 

The simulations have been run on a Dual Core  
2.1 GHz computer having 1 GB RAM. For each  
of the run, the following parameters have been used: 
population size = 65, crossover rate = 0.65, mutation 
rate = 0.01, and stopping criteria = 80,000 trials, 
which corresponds to approximately 1 min on a  
Dual Core 2.1 GHz computer having 1 GB RAM. 

The initial model was run with restricted variables. 
In the initial model, only eight variables namely:  
take-off Weight (Wo), wing Span (b), horizontal tail 
span (bht), vertical tail span (bvt), mach no (M), 
altitude (h), aspect ratio (AR) and seating capacity (n) 
were considered for optimization. The model  
was verified against known configurations of  
various existing commercial airliners. In the second 
phase the model was revised to include additional 
variables, thus increasing the number of variable  
to 16. The additional variables were: fuselage  
length, fuselage diameter, specific fuel consumption, 
wing sweep, angle of attack (AOA), ultimate load 
factor, wing thickness to chord ratio and wing  
taper ratio. 

The actual range value and that calculated from the 
proposed model are quite close. The accuracy would 
increase as the number of design variables is 
increased as some of the values in the model have 
been assumed to be constants for a particular type  
of an aircraft. Table 1 gives the range and %age error 
for different aircraft. After validation of the model, 
the simulations were run to find the optimized values 
of design variables. The corresponding value of range 
of the aircraft was 2876 nm. The model was then  
run for 30 runs and average value was calculated.  
The average value of range after 30 runs was 2878 
nm. Similar exercise was carried out for a multirole 
jet fighter. Optimized values for the range for the 
fighter aircraft calculated after one run was 817 nm, 
while the average range after 30 runs was 821.7 nm 
 

 

 
 

Fig. 3—Uniform crossover 
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Table 1—Results of verification – Initial model 

S. No Aircraft Actual Range (Nm) Model Calculated Range (Nm) %age Error 
1 Airbus A318-100 3250 3059 6% 
2 Boeing 747-100 5300 5170 4% 
3 DC 8-32 4116 3630 12% 
4 DC 8-63 CF 1913 1695 11% 
5 Boeing 737-700 1585 1681 8% 
6 Airbus A320-200 3000 2878 4% 

 

Table 2—Comparison with Airbus A320-200 and Mirage 2000 

  Airbus A320-200 Mirage 2000 

S No Variable Name Calculated Values Actual Value Calculated Values Actual Value 
1 Take-off Weight 164109 lb 170000 lb 29024 lb 30420 lb 
2 Wing Span 124.7 ft 111 ft 27.13 ft 29 ft 
3 HT Span 50.2 ft 57 ft - - 
4 VT Span 20.03 ft 22 ft 6.1 ft 7 ft 
5 Mach No 0.79 0.8 2.2 2.2 
6 Seating Capacity 195 180 - - 
7 Aspect Ratio 10 9.8 1.8 1.9 
8 SFC 0.00023 /hr 0.00024 /hr 0.00025 /hr 0.00025 /hr 
9 Altitude 36840 ft 37000 ft - - 
10 Fuselage Length 120 ft 123 ft 50 ft 47 ft 
11 Fuselage Diameter 15 ft 13 ft 7 ft 7.6 ft 
12 Wing Sweep 25º 25 º - - 

          Range 2878 nm 3000 nm 821.7 Nm 837 Nm 
 

Comparison of Results 

The optimized values found by the model were 
compared with different available configurations.  
The closest configuration of a functional aircrafts to 
the values obtained by the proposed was Airbus 
A320-200 for the commercial airliner and Mirage 
2000 for the multirole jet fighter. Table 2 gives  
the comparison of different variables with Airbus 
A320-200 and Mirage 2000 against the calculated and 
actual values respectively. 
 

Conclusion 

This paper has attempted to use GAs for optimizing 
the aircraft range for preliminary aircraft design for a 
commercial airliner and a multirole jet fighter. In 
preliminary aircraft design problem we define only 
the major aircraft characteristics. After this we move 
to the detailed aircraft design. Results in the current 
research indicate that by increasing the number of 
variables, we can increase the accuracy of the model. 
The approach has demonstrated that it is very easy to 
customize the solution for any objective function 
without disturbing the logic of the GA routine, thus 
making it a general purpose solution approach. 

Even with small number of design variables,  
the results produced in this research were very close 
to the already available configurations of aircraft. 
The spreadsheet-GA implementation has been found 
to be easy to implement and customizable to  
any condition without changing the GA routine, 
which makes it a domain-independent approach. 
Furthermore, spreadsheet environment also enables 
carrying out of what-if analysis. The approach is  
not a customization of the GA logic rather it only 
modifies the model in spreadsheet without changing 
the actual GA routine. 
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