Chapter 42

Identical Parallel-Machine Scheduling
and Worker Assignment Problem Using
Genetic Algorithms to Minimize
Makespan

Imran Ali Chaudhry and Sultan Mahmood

Abstract Identical parallel machine scheduling problem for minimizing the
makespan is a very important production scheduling problem which has been
proven to be NP-hard. The problem further compounds with additional constraints.
Genetic algorithms (GA) have shown great advantages in solving the combina-
torial optimization problem in view of its characteristic that has high efficiency and
that is fit for practical application. In this chapter we present a spreadsheet based
GA approach for minimizing the makespan for scheduling of a set of tasks for
identical parallel machines and worker assignment to machines. The results
obtained from the proposed approach are compared with two sets of benchmark
problems consisting of 100 problems each. It has been demonstrated that the
performance of proposed approach is superior to the results that have been
obtained earlier. The proposed approach produces optimal solution for almost 95%
of the problems demonstrating the effectiveness of the proposed approach. An
empirical analysis of GA parameters has also been carried out to see the effect on
the performance of the proposed algorithm.

42.1 Introduction

Scheduling is an important process widely used in manufacturing, production,
management, computer science, and among others. There are many kinds of
scheduling problems in the literature. One of them is the parallel machine

I. A. Chaudhry (D<) - S. Mahmood

College of Aeronautical Engineering, National University of Sciences and Technology,
Risalpur, Pakistan

e-mail: imran_chaudhry @yahoo.com

S. Mahmood
e-mail: sultanrandhawa@hotmail.com

S. I. Ao and L. Gelman (eds.), Electrical Engineering and Applied Computing, 529
Lecture Notes in Electrical Engineering, 90, DOI: 10.1007/978-94-007-1192-1_42,
© Springer Science+Business Media B.V. 2011



530 I. A. Chaudhry and S. Mahmood

scheduling (PMS) problem, in which scheduling jobs in parallel machines is
considered. Many real life problems can be modeled as PMS ones. On production
lines, it is common to find more than one machine of each kind carrying out the
production tasks. Other examples are docks—ships, teachers student groups,
hospital assistance—patients, etc.

Pinedo [1] pointed out that a bank of machines in parallel is a situation that is
important from both a theoretical and a practical point of view. From a theoretical
point of view, it is a generalization of the single machine and a special case of the
flexible flowshop. From a practical point of view, it is important because the
occurrence of resources in parallel is common in the real world. Also, techniques
for studying machines in parallel are often used in decomposition procedures for
multistage systems. PMS comes down to assigning each operation to one of the
machines and sequencing the operations assigned to the same machine.

In particular, the makespan becomes an objective of considerable interest when
dealing with machines in parallel. In practice, one often has to deal with the
problem of balancing the load on machines in parallel; by minimizing the
makespan, the scheduler ensures a good balance. Scheduling jobs in identical
machines for minimizing the makespan was proved as NP-hard [2, 3]. Thus, it is
unlikely to obtain the optimal schedule through polynomial-time-bounded
algorithms.

In this chapter we present a spreadsheet based GA approach to minimize the
makespan for scheduling a set of tasks on identical parallel machines and worker
assignment to the machines.

42.2 Literature Review

The first work on PMS problems started at the end of the 1950s with McNaughton
[4] and then with Hu [5]. These types of problems have received continuous
interest from researchers since then, due to their relevance to computer systems
and production systems and thus the literature continues to increase. Various
constraints have been taken into account and different criteria have been studied.
For a detailed review of new trends in PMS see Lam and Xing [6] while an
extensive survey has been given by Cheng & Sin [7] and Moktoff [8].

Makespan minimization is one of the most frequently studied criteria in the
scheduling literature and also in identical parallel machine scheduling. Some of
the recent papers reviewed in the subsequent paragraphs are restricted to this
criterion.

Min and Cheng [9] present a kind of GA based on machine code for minimizing
the makespan in identical parallel machine scheduling. Hey demonstrate that the
proposed GA is efficient ad fit for large scale problems and has advantage over
heuristic procedure and simulated annealing method.

Yalaoui and Chu [10] consider real-life identical PMS problem with sequence-
dependent setup times and job splitting to minimize makespan and propose a
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heuristic to solve this problem. Lee et al. [11] propose a simulated annealing
method to generate near optimal solutions for the minimization of makespan in
identical parallel machines. With the help of computational analysis they dem-
onstrate that the proposed method is very accurate and outperforms the existing
method. Akyol [12] also consider minimization of makespan in identical PMS and
propose a Hopfield-like network that uses time-varying penalty parameters starting
from zero and increases in a stepwise manner during iterations to overcome the
tradeoff problem of the penalty function method.

Iori and Martello [13] consider scatter search algorithms and provide insights in
the development of this heuristic technique and discuss the combinatorial diffi-
culties of the problems through the analysis of extensive computational results.
Akyol and Byhan [14] use neural networks for minimizing the maximum com-
pletion time (makespan) of jobs on identical parallel machines while Mokotoff
et al. [15] propose algorithms that are based on list scheduling procedures.

Few other authors have considered other objectives along with minimization of
makespan. Mohri et al. [16] consider minimizing two criteria, maximum com-
pletion time and maximum lateness for two and three identical PMS problems.
Gupta and Ho [17] consider minimizing flowtime subject to optimal makespan on
two identical parallel machines while Gupta and Ho [18] consider minimizing
makespan subject to minimum flowtime on two identical parallel machines. Sri-
charoentham [19] consider memtic algorithm based on genetic algorithms for
multiple objective scheduling in parallel machines.

Gupta et al. [20] consider makespan minimization on identical parallel
machines subject to minimum total flow-time. Hong et al. [21] consider mini-
mizing makespan of identical-machines scheduling problems with mold con-
straints. In this kind of problems, jobs are non-preemptive with mold constraints
and several identical machines are available. They propose a GA based approach
to solve this kind of problem. Ho et al. [22] present a two phase non-linear integer
programming formulation for minimizing total weighted flowtime subject to
minimum makespan on two identical parallel machines.

The papers reviewed above do not cater for the number of workers who are
performing a certain task. Worker assignment scheduling problem has also been
studied in the literature. In the classic PMS problem, no matter how many
machines are involved, the number of workers at each machine may be ignored or
assumed to be fixed and not taken into consideration. However, assigning more
workers to work on the same job will decrease job completion time. Therefore,
ignoring worker assignment decision may cause a managerial problem.

Hu [23, 24] considered the parallel machines models with decisions for job
scheduling and worker assignment to minimize total tardiness and total flow time,
respectively. A shortest processing time (SPT) heuristic and a largest marginal
contribution (LMC) procedure were used to solve the job scheduling and worker
assignment problems, respectively. The performance of these heuristics in Hu [23,
24] was further studied by Hu [25, 26], who concluded that these heuristics
generate the same results no matter what the value of W (number of workers).
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Chaudhry and Drake [27] also considered the minimization of total tardiness for
the machine scheduling and worker assignment problems in identical parallel
machines using GA. While Chaudhry [28] considered the minimization of total
flow time for the worker assignment problem in identical parallel machine models
using GA. Chaudhry et al. [29] proposed a GA to minimize makespan for machine
scheduling and worker assignment problem in identical parallel machine models.

42.3 Problem Definition and Assumptions

In classical PMS problem, there are two essential issues to be dealt:

1. Partition jobs to machines.
2. Sequence jobs for each machine.

However, in the present research, the worker assignment scheduling problem
needs to solve two sub-problems: how to assign jobs to machines and workers to
machines? The objective is to minimize the makespan, which is defined as the total
completion time of all the jobs. The performance of GA is compared with SPT/
L(east)PA and L(argest)PA heuristics heuristic approach by Hu [30].

We assume that all machines are identical such that the processing time of a job
is independent of machine. Deterministic processing times and due dates are
assumed. Machine setup times are included in the processing time. The only
difference between worker assignment scheduling problem and the classic
scheduling problem is that the former has an additional constraint of worker
assignment also. The processing times of the jobs are therefore dependent on the
number of workers assigned to work on a particular machine.

The following notation is used to define the problem.

A, B;, Integers, follow uniform distribution, such that

E; 0<A;<10,0 < B; <50,0 < E; <10 (Ist data set)
0<A;<10,0 <B; <800,0 < E; <10 (2nd data set)
n Number of jobs
The number of parallel machine in the shop
Di The process time of job i
w Number of workers in the shop
Wj Number of workers assigned to machine m;

We have to assign n jobs to m parallel machines taking into account the fol-
lowing characteristics:

1. Each job has only one operation.

2. The jobs have different processing times which depend on the number of
workers assigned to that machine.

No job pre-emption/splitting is allowed.

4. Each job has its own due date.

et
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. The selected objective is to minimize the total tardiness.

. Any machine can process any job.

. Machine setup times are negligible.

. No machine may process more than one job at a time.

. Transportation time between the machines is negligible.

. Number of jobs and machines are fixed.

. There is a group of W workers that have the same abilities to perform the

duties assigned to them.

12. All m machines, n jobs and W workers are available at time zero.

13. Assume processing time function has a simplified form of p(W),) = A; + B/
(E; x W)) where p(W),) is the processing time of job I that is processed on
machine j in which the number of W; workers are assigned on it, A; is a fixed
constant and not affected by the number of workers, B/(E; x W)) is the
variable part and affected by the number of workers.

14. The number of workers assigned to each machine needs to be decided before

any job can be processed and they will not be re-assigned until all the jobs

have been completed.

— O O 0 O\ W

[E—

The simulation experiments have been carried out for 12 jobs to be scheduled
on three parallel machines with 10 workers.

42.4 Genetic Algorithms

GAs is one of problem solving systems based on the principles of evolution and
hereditary, each system start with an initial set of random solutions and use a
process similar to biological evolution to improve upon them that encourage the
survival of the fittest. The best overall solution becomes the candidate solution to
the problem. A detailed introduction to Gas is given in Goldberg [31]. The earliest
application of GA has been reported by Davis [31]. For a recent review of GA
application in scheduling is given in Chaudhry and Drake [27] and Chaudhry [28].

In this study, the tool use for carrying out the GAs is a commercial software
package called EVOLVER™ [32], which functions as an add-into Microsoft
Excel™. Evolver has been used for the purpose of production scheduling recently
by number of researchers [27-29, 33-35].

The objective function, variables (adjustable cells), and the constraints are
readily specified by highlighting the corresponding spreadsheet cells. The sched-
uler/evaluator portion of the model is constructed by using the spreadsheet’s built
in function. The schematic in Fig. 42.1 illustrates the integration of the GA with
the spreadsheet.

The advantage of the proposed method is that the program runs in the back-
ground freeing the user to work in the foreground. When the program finds the best
result it notifies the user and places the values into the spreadsheet for analysis.
This is an excellent design strategy given the importance of interfacing with
spreadsheet in business.



534 I. A. Chaudhry and S. Mahmood

Fig. 42.1 Integration of GA
and spreadsheet GA Component as an Sequencing Spreadsheet model
“add-in” in | with scheduling rules
spreadsheet software of jobs and constraints
A
\
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Schedule evaluation
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S Machine associated with each job
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Fig. 42.2 Chromosome representation
42.4.1 Chromosome Representation

The chromosome representation for the machine scheduling and worker assign-
ment problem is shown in the Fig. 42.2.

For determining the ordering of the jobs i.e., for the first six genes we needed to
handle the permutation representation. The next three genes represent the number
of workers assigned to each machine stating that four workers are assigned to
machine 1, two workers to machine 2 and four workers to machine 3. While the
machine assignment block can be read as the assignment of jobs to each of the six
machines, whereby the assignment of the jobs to machines would be as follows:
Job A to be processed on machine 1; job B on machine 3, job C on machine 2, job
D on machine 2, job E on machine 3 and job F on machine 2, respectively.

Each of the block in Fig. 42.2 is calculated at a different location in the
spreadsheet which is in turn linked to the calculation of the objective function i.e.,
the makespan.

42.4.2 Reproduction/Selection

Evolver uses a steady state approach. This means that only one organism rather
than an entire population is replaced at a time. The number of generations can be
found by dividing the trials by the size of the population. As far as parent selection
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Fig. 42.3 Steady state

. R t
algorithm ped

Create n children through reproduction
Evaluate and insert the children into the population

Delete the n members of the population that are least fit

Until stopping criteria reached

is concerned, in Evolver, parents are chosen using a rank-based mechanism. This
procedure begins by rank ordering the population by fitness. Next an assignment
function gives each individual a probability of inclusion. The assignment function
can be linear or nonlinear. A Roulette wheel is then built with the slots determined
by the assignment function. The next generation of an n-sized population is built
by giving the wheel n spins. This procedure guides selection towards the better
performing members of the population but does not force any particular individual
into the next generation. Figure 42.3 describes the steady state algorithm.

42.4.3 Crossover Operator

As for the first six genes of the chromosome, we needed to handle permutation
representation; the “order solving method” of Evolver was used. This method
applies order crossover operator [36]. This selects items randomly from one par-
ent, finds their place in the other parent, and copies the remaining items into the
second parent in the same order as they appear in the first parent. This preserves
some of the sub-orderings in the original parents while creating some new sub-
orderings. Figure 42.4 shows the crossover operator as described above.

For the number of workers and machine assignment the “recipe solving
method” of Evolver was used. The “recipe solving method” implements uniform
crossover [36]. This means that instead of chopping the list of variables in a given
scenario at some point and dealing with each of the two blocks (called “single-
point” or “double-point” crossover), two groups are formed by randomly selecting
items to be in one group or another. Traditional x-point crossovers may bias the
search with the irrelevant position of the variables, whereas the uniform crossover
method is considered better at preserving schema, and can generate any schema
from the two parents. For worker assignment (genes 7-9 in Fig. 42.2) and machine
assignment (genes 10-15 in Fig. 42.2), we have a set of variables that are to be
adjusted and can be varied independently of one other. In the spreadsheet model
presented in this chapter, the constraint placed on the workers and machines is to
set the range that the variable must fall between. Similarly, as there are ten workers
available in the shop, another constraint that ensures that only valid solutions are
retained in the population is that the sum of values generated for genes 7-9 should
be equal to 10. This ensures that no invalid solution is retained in the population
pool. Figure 42.5 shows a typical uniform crossover operator.
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Fig. 42.4 Order crossover Position: |1 2 3 4 5 6 7 8 9
operator Parent 1 (P1): 1 2 3 4 5 6 7 8 9
Binary Template: | 0 1 1 0 1 1 0 0 I
Parent 2 (P2): 4 9 5 8 3 6 7 1 2
Offspring (0): 4 2 3 8 5 6 7 1 9

« I > [ - -

Fig. 42.5 Uniform crossover—a given % of the organism is randomly selected

42.4.4 Mutation Operator

To preserve all the original values, the “order solving method” performs mutation
by swapping the positions of some variables in the organism. The number of swaps
performed is increased or decreased proportionately to the increase and decrease of
the mutation rate setting (from O to 1).

The “recipe solving method” performs mutation by looking at each variable
individually. A random number between O and 1 is generated for each of the
variables in the organism, and if a variable gets a number that is less than or equal
to the mutation rate (for example, 0.06), then that variable is mutated. The amount
and nature of the mutation is automatically determined by a proprietary algorithm.
Mutating a variable involves replacing it with a randomly generated value (within
its valid min—max range).

42.5 Experimental Results
42.5.1 Implementation Details

The job order (first six genes) in Fig. 42.2 is a permutation of a list of jobs where
we are trying to find the best way to arrange a set of given jobs. This permutation
is independent of the number of workers on each machine and assignment of job to
a particular machine. However, the objective function is calculated keeping in
view all the constraints which are discussed in the next paragraph.

For number of workers on each machine and the machine corresponding to each
job, i.e., for genes 7-9 and 10-15 (Fig. 42.2), random integer numbers are gen-
erated by the GA subject to the constraints that have been defined in the initial
setup of the GA. Constraints are basically the conditions that must be met for a
solution to be valid. The constraint imposed on the number of workers on each
machine is that the sum of all workers assigned to the three machines should
always be 10, which is the total number of workers available in the shop. The
range for random integer is from 1 to 10. Therefore, only those solutions are kept
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in the population where the sum of all workers is 10. Hence, only integer values
between 1 and 10 (both limits inclusive) are generated, while the constraint for
machine corresponding to each job is that an integer number is selected from
among 1, 2, and 3 (which are machine numbers).

42.5.2 Computational Analysis

In order to check the effectiveness of the proposed spreadsheet based GA approach
two data set of 100 problems each [30] were used. The problems in both the data
sets have 12 jobs to be scheduled on three identical parallel machines where the
number of workers available is equal to 10. The only difference among the two data
sets in terms of the value of the variable B;, for first data setitis 0 < B; < 50 and for
second data set it is 0 < B; < 800. The problems have been simulated on a P1V
1.7 GHz computer having 512 MB RAM. By conducting repeated tests, we found
that the best values to be set for the number of population, the crossover rate, and
the mutation rate are 60, 0.65, and 0.09, respectively. Therefore, for each of the run,
same set of parameter setting as described previously have been used, which cor-
respond to 3 min 20 s on a PIV 1.7 GHz computer having 512 MB RAM.

Tables 42.1 and 42.2 give a summary of the results for the first and second data
sets, respectively. The summary shows the performance of proposed GA approach
with the SPT/L(east)PA and L(argest)PA heuristic proposed by Hu [30].

GA produced superior solution as compared to the SPT/L(east)PA and L(ar-
gest)PA heuristic. For the first data set GA found 95 optimal solutions as compared
to the heuristic which found optimal solution for 22 problems. While for second
data set these values were 96 and 27, respectively. The average time for the GA for
first and second data set was to find the best solution was 70 and 86 s, respectively.
As compared to the optimal solution, for the first data set the maximum percentage
error was 7.87 and 65.47% for the GA and SPT/L(east)PA and L(argest)PA
heuristic [30], respectively. While for the second data set these maximum per-
centage errors were 8.94 and 38.31%, respectively.

As compared to SPT/L(east)PA and L(argest)PA heuristic, for the first data set
GA produced same solution for 22 problems and better for 77 problems. For the

Table 42.1 Summary of results for the two approaches—1st data set

GA SPT/L(east)PA and
L(argest)PA heuristic [30]

# of problems simulated 100 100
# of optimal solution obtained 95 22
Max percentage error (%) 7.87 65.47
Avg Time to find best solution 70 s -
Comparison of GA with other methods Same - 22

Better - 77

Worse - 1
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Table 42.2 Summary of results for the two approaches—2nd data set

GA SPT/L(east)PA and
L(argest)PA heuristic [30]

# of problems simulated 100 100
# of optimal solution obtained 96 18
Max percentage error (%) 8.94 38.31
Avg Time to find best solution 86 s -
Comparison of GA with other methods Same - 27

Better - 71

Worse - 2
Table 42.3 Combinations of Population size 20, 40, 60, 80
GA parameter levels Mutation rate 0.01, 0.03, 0.05, 0.07, 0.09

Crossover rate 0.2,04, 0.6, 0.8

second data set these were 27 and 71, respectively. While for only one problem in
first data set and two problems in second data set GA produced worse results as
compared to SPT/L(east)PA and L(argest)PA heuristic.

42.6 Empirical Analysis of the Effect of GA Parameters

The performance of a GA depends upon population size, crossover, and mutation
rate. Detailed experiments have been carried out to study the effect of these three
parameters. The application of the GA to the schedule optimization is repeated
here for each of the combinations of the parameter levels given in Table 42.3 for
both the data sets mentioned in Sect. 42.5.2.

For each combination of the parameters, the GA is run for ten different random
initial populations. These ten populations are different for each combination. Thus,
in total, the GA is run 800 times. The values chosen for the population size are
representative of the range of values typically seen in the literature, with 0.09
being included to highlight the effect of a relatively large mutation rate. The
crossover rates chosen are representative of the entire range.

The results show that the performance of the GA is insensitive to the crossover
rate. There is also a degree of insensitivity to the mutation rate, which possessed a
‘range’ over which its value is suitable rather than a more precise value. Fur-
thermore, performance is fairly insensitive to population size, provided the
mutation rate is in the ‘good’ range. The various set of problems that have been
solved in this chapter demonstrate that GA-spreadsheet approach presented in this
chapter performs well on a wide range of shop models with a ‘general purpose’ set
of parameters.
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42.7 Conclusions

This chapter presented a spreadsheet based general purpose GA solution meth-
odology for the scheduling of set of job on parallel machines and worker
assignment to machines. The spreadsheet GA implementation has been found to be
easy to implement catering for the peculiarities of any environment. Moreover, the
spreadsheet environment makes it very suitable to carry out what if analysis. The
results in Tables 42.1 and 42.2 clearly show the superiority of proposed GA
approach as compared to an earlier study by Hu [29]. The spreadsheet model can
be easily customized to include additional jobs, machines or workers without
actually changing the logic of the GA routine thus making it a general purpose
scheduling approach.

The key advantage of GAs portrayed here is that they provide a general purpose
solution to the scheduling problem which is not problem-specific, with the pecu-
liarities of any particular scenario being accounted for in fitness function without
disturbing the logic of the standard optimization routine. The GA can be combined
with a rule set to eliminate undesirable schedules by capturing the expertise of the
human scheduler.

The empirical analysis of the GA parameters shows that crossover rate is often
an insignificant factor in the performance of the GA. There is a degree of insen-
sitivity to the mutation rate in so far as the ‘good’ values form a fairly broad range
rather than coming at a more precise point. However, outside of the ‘good’ range
performance soon deteriorates greatly. It is observed that a low mutation rate is
desirable when the population size is large and a higher mutation rate is desirable
when the population size is small. The sensitivity to population size is greatly
reduced when the mutation rate is in the ‘good’ range. As a consequence of these
findings, it has been argued that GAs have the potential to make a general-purpose
real-world scheduler.
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