
IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79)

68

DOI: http://dx.doi.org/10.15446/ing.investig.v38n3.75281

Attribution 4.0 International (CC BY 4.0) Share - Adapt

3 Affiliation: Associate Professor, Department of Electrical Engineering, Co-
llege of Engineering, University of Hail, Ha’il, Saudi Arabia.

 E-mail: m.usman@uoh.edu.sa.
4 Affiliation: Assistant Professor, Department of Electrical Engineering, Colle-

ge of Engineering, University of Hail, Ha’il, Saudi Arabia.
 E-mail: mt.chughtai@uoh.edu.sa.

Minimising Total Flowtime in a No-Wait Flow Shop (NWFS)
using Genetic Algorithms

Minimizar el tiempo de flujo total en un Flow shop sin escalas (NWFS)
utilizando algoritmos genéticos

Imran Ali Chaudhry1, Isam A-Q. Elbadawi2, Muhammad Usman3, Muhammad Tajammal Chugtai4

ABSTRACT

This paper considers a no-wait flow shop scheduling (NWFS) problem, where the objective is to minimise the total flowtime.
We propose a genetic algorithm (GA) that is implemented in a spreadsheet environment. The GA functions as an add-in in the
spreadsheet. It is demonstrated that with proposed approach any criteria can be optimised without modifying the GA routine or
spreadsheet model. Furthermore, the proposed method for solving this class of problem is general purpose, as it can be easily
customised by adding or removing jobs and machines. Several benchmark problems already published in the literature are used
to demonstrate the problem-solving capability of the proposed approach. Benchmark problems set ranges from small (7-jobs, 7
machines) to large (100-jobs, 10-machines). The performance of the GA is compared with different meta-heuristic techniques used
in earlier literature. Experimental analysis demonstrate that solutions obtained in this research offer equal quality as compared to
algorithms already developed for NWFS problems.

Keywords: Genetic algorithm (GA), Scheduling, No-wait, Flow shop.

RESUMEN

Este documento considera un problema de secuenciación de líneas de flujo sin espera (NWFS), donde el objetivo es minimizar el
tiempo de flujo total. Proponemos un algoritmo genético (GA) que se implementa en un entorno de hoja de cálculo. El GA funciona
como un complemento en la hoja de cálculo. Se demuestra que, con el enfoque propuesto, cualquier criterio puede optimizarse
sin modificar la rutina del GA o el modelo de hoja de cálculo. Además, el método propuesto para resolver este problema de clase
es de propósito general, ya que se puede personalizar fácilmente agregando o eliminando tareas y máquinas. Varios problemas de
referencia ya publicados en la literatura se usan para demostrar la capacidad de resolución de problemas del enfoque propuesto.
El conjunto de problemas de la evaluación tiene un rango que varía desde pequeños (7 trabajos, 7 máquinas) hasta grandes (100
trabajos, 10 máquinas). El rendimiento del GA se compara con diferentes técnicas meta-heurísticas utilizadas en la literatura anterior.
El análisis experimental demuestra que las soluciones obtenidas en esta nueva búsqueda ofrecen igual calidad que los algoritmos ya
desarrollados para el problema NWFS.

Palabras clave: Algoritmo genético (AG), Secuenciación, Líneas de flujo sin espera, Flow shop.

Received: June 8th 2018
Accepted: December 3rd 2018

1 Affiliation: Professor, Department of Industrial Engineering, College of Engi-
neering, University of Hail, Ha’il, Saudi Arabia.

 E-mail: imran_chaudhry@yahoo.com.
2 Affiliation: Associate Professor, Department of Industrial Engineering, College

of Engineering, University of Hail, Ha’il, Saudi Arabia.
 E-mail: isam149@gmail.com.

Introduction

Scheduling is an important aspect of any manufacturing
concern. The importance of efficient scheduling function
cannot be denied as it ensures timely dispatch of products
to the market before the competitors, thus yielding higher
profits. The primary objective in any scheduling problem is
to efficiently allocate jobs to the available machines and to
determine the start and ending time of each operation, such
that certain objective function is minimised or maximised.
The schedule developed should also satisfy various
production constraints. In order to achieve high-efficiency

production, efficient scheduling algorithms/schemes are
therefore considered to be a key factor.

Flow shop scheduling is one of the widely studied models
of the manufacturing environment. In a general flow shop

How to cite: Chaudhry, I. A., Elbadawi, I. A-Q., Usman, M., and Chu-
ghtai, M. T. (2018). Minimising Total Flowtime in a No-Wait Flow Shop
(NWFS) using Genetic Algorithms. Ingeniería e Investigación, 38(3), 68-79.
DOI: 10.15446/ing.investig.v38n3.75281

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79) 69

Chaudhry, Elbadawi, usman, and Chughtai

scheduling problem, there are n-jobs that are required to
be scheduled on m-machines to typically minimise total
completion time or makespan. All jobs follow the same
processing order. The flow shop scheduling problem has
received considerable attention since its introduction in
1954 (Johnson, 1954). Over the years, numerous efficient
techniques and meta-heuristics have been proposed
by various researchers. Gupta et al. (2006) has given a
detailed survey of flow shop scheduling research. Tyagi et
al. (2013) also present a survey of the evolution of flow
shop scheduling problems and possible approaches for
their solution.

No-wait flow shop (NWFS) is an extension of general
flow shop, where all the operations of a particular job are
required to be processed in a continuous manner, i.e. there
are no intermediate buffers between the machines and
all operations are to be processed without interruptions.
Pharmaceutical processing, concrete ware production, oil
refineries, etc., are some examples of no-wait flow shop
scheduling. A comprehensive analysis of research and
applications of NWFS has been made by Hall et al. (1996).
The problem is categorised to be NP-hard even for a simple
3-machine case (Hans, 1984).

In this paper, a NWFS scheduling problem is presented,
where the objective is to minimise total flowtime of all jobs.
A spreadsheet-based genetic algorithm (GA) is proposed
for the problem. Empirical analysis has been made for
flow shop benchmark problems proposed by Carlier
(1978), Reeves (1995), Heller (1960) and Taillard (1993).
The performance of the proposed GA is compared with
different meta-heuristics that have been reported earlier in
the published literature. The rest of this paper is organised
as follows: Section 2 gives an overview of past research
for minimisation of total flowtime in NWFS scheduling
environment. Section 3 gives problem definition and
assumptions. Brief overview of GA and its components
is given in section 4. Section 5 presents implementation
details of Reddi et al. (1972) equation for no-wait flow
shop model with a numerical example. Section 6 presents
empirical analysis for various benchmark problems
taken from already published literature. Finally, section 7
concludes the paper.

Past Research

The first reported instance to address no-wait scenario in
flow shop scheduling was presented by Reddi et al. (1972).
The authors converted the corresponding problem into a
travelling salesman problem and solved it in polynomial
time by using an algorithm proposed by Gilmore et
al. (1964). Due to the large number of research papers
available on no-wait flow shop scheduling, we will restrict
the literature review to the papers addressing only the
objective function of flowtime that were published from
year 2011 onwards.

Gao et al. (2011a) minimise total flowtime in NWFS
problem using a discrete harmony search algorithm
(DHS). In the first step, job permutation is represented by a
harmony. Harmony memory is then initialised by using a
new heuristic based on the NEH heuristic method (Nawaz
et al. (1983). In the second step, novel pitch adjustment
rule is employed in the improvisation to produce a new
harmony. The local exploitation ability of the algorithm is
enhanced by embedding a local search procedure. Laha
et al. (2011) also minimise total flowtime by a constructive
heuristic. The priority of a job in a sequence is determined
by the sum of its processing times on the bottleneck
machine(s). Computational experiments show that the
proposed heuristic performs significantly well compared to
Bertolissi heuristic (Bertolissi (2000)). Shafaei et al. (2011)
minimise mean flowtime in a two-stage flexible no-wait
flow shop problem. The authors develop six meta-heuristic
algorithms based on imperialist competitive algorithm
(ICA), ant colony optimisation (ACO) and particle swarm
optimisation (PSO) to solve the problem. Then, they use 36
different problems (18 small and 18 large-scale problems)
to test the performance of the algorithms. The results of the
numerical experiments show that the proposed algorithms
significantly outperform other algorithms in terms of
solution quality and CPU time.

Gao et al. (2012) also consider minimisation of total
flowtime in a NWFS scheduling problem using a hybrid
harmony search (HHS) algorithm. NEH heuristic (Nawaz et
al. (1983) is firstly used to form an initial harmony memory.
Secondly, this memory is divided into several small groups,
where each group independently executes its evolution
process. However, all groups share information reciprocally
by dynamic re-grouping mechanism. Thirdly, a variable
neighbourhood search algorithm (VNS) is embedded in the
HHS algorithm to stress the balance between global and
local exploration. A speed-up method is applied to reduce
the running time requirement. Computational simulations
are carried out on well-known benchmark problems. The
results show that the proposed HHS outperforms other
methods published in the literature.

Guang et al. (2012) consider multi-objective NWFS problem
using an evolved discrete harmony search algorithm to
minimise total makespan, maximum tardiness and total
flowtime. A job-permutation-based encoding scheme is
applied to enable the continuous harmony search algorithm
to be used for all sequencing problems. An archive set of
non-dominated solutions is dynamically updated during the
search process. The authors demonstrate that the proposed
algorithm produces superior quality solutions in terms of
searching diversity level, efficiency and quality. Tasgetiren
et al. (2013) also consider a multi-objective NWFS problem
to minimise the makespan and total flowtime. A variable
iterated greedy algorithm with differential evolution is
proposed to solve the problem. A differential evolution
algorithm is used to optimise the parameters of the iterated
greedy algorithm. Gao et al. (2013) present four composite
and two constructive heuristics to minimise the flowtime.

MiniMising total flowtiMe in a no-wait flow shop (nwfs) using genetic algorithMs

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79)70

The heuristics are based on constructive heuristic proposed
by Laha et al. (2008), Bertolliso heuristic (Bertolissi, 2000)
and standard deviation heuristic (Gao et al., 2011a).
The performance of the proposed heuristics is tested on
benchmark flow shop problems already published in the
literature. Experimental results show that the proposed
heuristics perform better than the existing ones.

Sapkal et al. (2013) propose a constructive heuristic to
minimise flowtime. In the initial sequence, the sum of
processing times of individual jobs on the bottleneck
machines are used to prioritise the jobs. Final job sequence
is obtained by a new job insertion technique based on
NEH heuristic (Nawaz et al., 1983)1983. The authors
demonstrate that the proposed heuristic outperforms
Rajendran et al. (1990) and Bertolissi (2000) heuristics
without effecting the average computational time. Akhshabi
et al. (2014) propose a hybrid algorithm based on particle
swarm optimisation (PSO) and a local search method to
minimise total flowtime. Laha et al. (2014a) minimise total
flowtime by a penalty-shift-insertion algorithm. A penalty-
based heuristic derived from Vogel’s approximation method
for classic transportation problem is used to generate the
initial sequence. In the second phase, a forward shift
heuristic is used to improve the solution. The solution is
further improved by a job-pair and a single-job insertion
heuristic. Laha et al. (2014b) also propose a constructive
heuristic to minimise flowtime in a NWFS scheduling
problem. Similarly, Chaudhry et al. (2014) also present a
GA approach to minimise total flowtime in no-wait flow
shop scheduling problem. The performance of the GA is
compared with well-known benchmark problems.

Zhu et al. (2015) also propose an iterative search method
to minimise flowtime. Huang et al. (2015) propose a new
heuristic algorithm named “Ant colony optimization (ACO)
with flexible update”. The proposed heuristic overcomes
the limitations of traditional ACO algorithm. Nagano et al.
(2015) consider minimisation of flowtime in a NWFS with
sequence dependent setup times. A constructive heuristic
is proposed to minimise flowtime by breaking the problem
into quarters. The performance of the proposed algorithm
is compared with previously reported heuristic algorithms.
Qi et al. (2016) also consider minimisation of flowtime by
a fast-local neighbourhood search algorithm. The algorithm
initially constructs an unscheduled job sequence according
to the total processing time and standard deviation of jobs
on the machines. In the first step, the job sequence is
optimised using a basic neighbourhood search algorithm.
Then, an innovative local neighbourhood search scheme
is designed to search for the partial neighbourhood in
each iterative processing and calculate its solution with
an objective increment method. The experimental results
show that the proposed approach performs better than
previous approaches in terms of quality and robustness of
the solution.

Ying et al. (2016) propose a self-adaptive ruin-and-recreate
algorithm to minimise flowtime in a no-wait flow shop

scenario. Bewoor et al. (2017a) present a hybrid PSO
algorithm to solve this class of problem. The proposed
algorithm initialises population efficiently with the NEH
heuristic technique (Nawaz et al., 1983)1983 and uses an
evolutionary search guided by PSO, as well as simulated
annealing based on a local neighbourhood search to avoid
getting stuck in local optima and to provide the appropriate
balance of global exploration and local exploitation.
Bewoor et al. (2017b) present a PSO algorithm to minimise
flowtime in a no-wait flow shop problem. The authors show
that the proposed PSO algorithm outperforms GA and Tabu
Search (TS) algorithms. Bewoor et al. (2018) also present
a hybrid PSO algorithm for minimisation of flowtime in a
foundry. Extensive computational experiments are carried
out based on various casting (job) characteristics viz. casting
type, mould size and type of alloy, where size of job (n) is
considered as 10, 12, 20, 50 and 100. Miyata et al. (2018)
study the impact of preventive maintenance policies in
the performance of constructive heuristics for the no-wait
flow shop problem with total flowtime minimisation. Díaz
Ramírez et al. (2018) apply a mixed integer programming
for production-scheduling in a chemical industry that
identifies lot size and product sequence to maximise profit.

The proposed GA presented here is an extension of earlier
work (Chaudhry et al., 2014; Chaudhry et al., 2012). In the
current research, we present a spreadsheet-based GA for a
NWFS scheduling environment, where the objective is to
minimise total flowtime. As compared to previous studies,
the proposed approach is general purpose and domain
independent whereby it can be used for the optimisation
of any objective function without changing the spreadsheet
model or the GA routine. Similarly, the spreadsheet model
can be extended to cater for more machines and jobs
without any change to the basic GA routine. Spreadsheets
have been used extensively for scheduling, as highlighted
by Astaiza A (2005) for examination scheduling.

Problem Description and Assumptions

The general no-wait flow shop scheduling can be described
as follows: there are n jobs from a set of jobs {j = 1, 2,
3, 4…, n} that are required to be processed through m
machines {k = 1, 2, 3, 4…, m}. Each job j has a sequence of
m operations (oj1, oj2…, ojk) that are required to be processed
through m machines in a continuous manner, such that the
completion time of ojk is equal to the earliest start time of oj,

k+1 for k = 1, 2, 3…, m-1. In other words, there has to be no
waiting time between successive operations of each of the
n jobs. The problem is then to find the sequence of jobs that
would minimise the total flowtime of all the jobs.

The flowtime criterion for a schedule provides the measure
of the time that a job spends in the system. The total flowtime
for a sequence of jobs is the sum of the completion times
of all the jobs. Minimisation of total flowtime criterion
leads to rapid turn-around of jobs, stable utilisation of
resources, and minimisation of work-in-process inventory

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79) 71

Chaudhry, Elbadawi, usman, and Chughtai

costs (Framinan et al., 2003)2003. The total flowtime is thus
given by:

F Cj

j

n

mjr
j

n

1 1
, (1)

where is the completion time of job jn on machine km, if it
is scheduled in r position.

Other assumptions in this study are as follows:

a. All jobs are available at t = 0.

b. Processing times of operations are known in advance
and deterministic.

c. An operation once started cannot be disrupted, i.e. no
pre-emption of operations and jobs.

d. A machine, at any time, can process at most one job
only.

e. At any given time, each job can be processed on only
one machine.

f. There are no setup times for preparing a machine to
process an operation.

g. Time for the movement of jobs between machines is
negligible.

Genetic Algorithms

Genetic Algorithms (GA) belong to population-based meta-
heuristics that are based on Darwin’s theory of natural
evolution. GAs were first proposed by Holland (1975) and
his colleagues at the University of Michigan. These are
general algorithms that work well in variety of situations.
They are quickly able to provide a reasonable solution to
the problem as they can traverse through large search spaces
fast. GAs are most effective in a search space for which
little is known. The first reported application of GAs for
scheduling was presented by Davis (1985). Delgado et al.
(2005) have also applied genetic algorithms for scheduling
manufacturing cell tasks. Similarly, Frutos et al. (2012)
apply genetic algorithms for multi-objective scheduling
procedures in non-standardised production processes.

GAs start with a population of solutions (prospective
solutions called chromosomes). Solutions from one
population are taken into the next population with a view
of getting better solutions in successive generations. In
the first step, based on the fitness, two parent solutions
are selected to form a child solution by employing the
crossover operator. Afterwards, crossover mutation is
applied to make random changes in the solution and form
newer solutions. The algorithm then compares the fitness

of the child solutions with the rest of the members of the
population thus using the principle of survival of the fittest
to discard the worst performing member of the population.

In this research, we have used permutation representation
for the chromosome. For parent selection, rank-based
selection method is used, while steady-state reproduction
is used to produce offspring for the next generation (Whitley
et al., 1988). For crossover operation, an order crossover
(Davis, 1985) is used as it works best with the permutation
representation by preserving the relative order of the
genes and avoids duplicate genes in the chromosome. In
the mutation operation, individual genes are swapped to
form new chromosomes. The number of swaps increases
or decreases corresponding to increase or decrease in the
mutation rate. The details about various GA components,
i.e., selection, reproduction, crossover and mutation, are
given in Chaudhry et al. (2017). The flowchart of the GA as
implemented in this research is shown in Figure 1.

Figure 1. GA implementation flow chart.
Source: Authors

Implementation Details

As stated earlier, the no-wait scheduling model in this
research is based on the start delay matrix proposed by Reddi
et al. (1972). This section describes the implementation
details of this matrix.

MiniMising total flowtiMe in a no-wait flow shop (nwfs) using genetic algorithMs

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79)72

Consider a 5-job, 4-machine flow shop problem, as
given in Table 1, where the objective is to minimise total
flowtime. The optimal job sequence to minimise flowtime
in the given problem is 4-1-5-2-3. The Gantt chart for the
problem with waiting times between successive operations
of the jobs is given in Figure 2. It can be seen from Figure 2
that Job 1 waits for 1, 4 and 3 time units between operation
1-2, 2-3 and 3-4, respectively. Waiting times between
operation 1-2, 2-3 and 3-4 of Job 5 are 3, 5 and 5 time units,
respectively. For Job 2, the waiting times are 8, 9 and 8 time
units between operations 1-2, 2-3 and 3-4, respectively,
whereas Job 3 waits for 10, 12 and 13 time units between
operation 1-2, 2-3 and 3-4, respectively. As per no-wait
constraint, all operations are required to be processed in
continuation, i.e. there should not be any waiting time
between successive operations of a particular job.

Table 1. Job data for the example problem

Job

Process time on

M1 M2 M3 M4

1 2 4 8 10

2 3 4 7 11

3 2 6 9 12

4 1 5 9 13

5 3 6 8 14

Source: Authors

In this research work, we use a two-step procedure for the
NWFS scheduling problem. The first stage calculates the
delay factor for each job sequence. The start of the job is
then delayed by as many time units as have been calculated
in stage 1. Reddi et al. (1972) equation is used to calculate
the delay factor for job i after job j.

If F (i, j) gives the minimum delay between the completion
of job Ji and the start of job Jj, then the delay F (i, j) would
be calculated by equation 2 (Reddi et al., 1972)1972, as
follows:

F i j i j i i j j

i i i

t t t t t t
t t t

(,) max(, (),........,

2 1 2 3 1 2

2 3 4
...... (.....),)

max(,)

()

im j j j m

in jn
n

k

t t t t
t t

1 2 1

2

1

0

0

n

k

k m
2

2

 (2)

From equation (2), we can observe that if job Ji proceeds
with no-wait in process, then the time to complete job Ji
is independent of the jobs that will precede and follow it.
The minimum time for starting job Jj after completion of
Ji on the first machine, i.e. F(i, j), is the function of the
parameters of job Ji and Jj only. Hence, the minimum timing
of any sequence (j1, j2, j3, …, jn) must incorporate times
F(i, j) between successive pairs of jobs Ji, Jj (Reddi et al.,
1972)1972.

The corresponding schedule for the Gantt chart in Figure 2
would be as shown in Figure 3.

Empirical Analysis

Empirical analysis was carried out to compare the
performance of the proposed GA with earlier studies.
The experiments were carried out on four different sets
of benchmark problems taken from already published
literature. The experiments were conducted on a Core i3
1,8 GHz computer with 4 GB RAM. Being a stochastic
optimisation technique, the performance of a GA is
dependent on different parameters, namely: crossover &
mutation rates and the population size. Repeated tests were
therefore conducted to determine the best set of values for
aforesaid parameters. The best values were found to be
0,65 and 0,06, and 65 for crossover & mutation rates and
the population size, respectively. Each problem was then
run for 100 000 iterations that corresponded to 3 mins on
the aforementioned computer. The results presented in
the subsequent sub-section are based on 30 simulation
runs, i.e. each problem instance is run for 30 times with
random starting solution and subsequently noting the best
value found for each instance. The % Diff is the relative
difference of the best value found by all other algorithms
(TFTmin) against the proposed GA algorithm (TFTGA) and is
calculated by equation 3:

min

min

TFT TFT
TFT

GA−
×100 (3)

Positive values indicate that the proposed GA found better
results as compared to all other previous algorithms, while
negative values indicate worse results.

Problem Set 1

Problem set 1 consists of eight problem instances adapted
from Carlier (1978). The results produced by GA have been
compared with the following algorithms:

A-1: Grouping harmony search algorithm (Gao et al.,
2011b)

A-2: Discrete differential evolution algorithm (Gao et al.,
2011b)

A-3: Improved harmony search algorithm (Gao et al.,
2011b)

A-4: Particle swarm optimisation algorithm (Dong et al.,
2010)

A-5: Differential evolution algorithm (Dong et al., 2010)

A-6: Hybrid differential evolution algorithm (Dong et al.,
2010)

The proposed GA approach found better results for
six problems, while same results for two problems.
Comparative results for total flowtime values of algorithms
A1 – A6 and the proposed GA algorithm are presented in
Table 2.

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79) 73

Chaudhry, Elbadawi, usman, and Chughtai

Problem Set 2

Problem set 2 consists of twenty-one problem instances
adapted from Reeves (1995), ranging from 20-jobs
5-machines to 75-jobs 20-machines. Apart from the
algorithms mentioned for Problem Set 1, the performance
of the proposed algorithm was also compared with three
more algorithms, as mentioned below:

Figure 2. Gantt chart for job sequence 4-1-5-2-3 with waiting times between the jobs.
Source: Authors

Figure 3. Gantt chart for job sequence 4-1-5-2-3 with no-waiting times between successive operations.
Source: Authors

Table 2. Total flowtime comparison for algorithms A-1 to A-6 for Carlier (1978) data set

Instance n x m A-1 A-2 A-3 A-4 A-5 A-6
Proposed GA

Best % Diff

car1 11 × 5 56 209 53 339 52 641 54 245 55 955 53 951 52,353 0,550

car2 13 × 4 65 199 56 833 55 717 61 638 68 768 58 968 55 541 0,317

car3 12 × 5 69 157 63 328 62 432 65 508 65 199 62 432 61 965 0,754

car4 14 × 4 81 882 81 040 74 565 79 348 79 604 75 716 74 093 0,637

car5 10 × 6 61 619 60 497 59 040 60 304 60 497 60 160 58 445 1,018

car6 8 × 9 56 004 52 946 52 946 53 470 52 946 52 946 52 798 0,280

car7 7 × 7 38 578 36 869 36 534 36 534 37 061 36 534 36 534 0

car8 8 × 8 54 273 52 912 52 703 53 175 52 912 52 703 52 703 0

Source: Authors

A-7: Harmony search algorithm (Gao et al., 2010)

A-8: Differential evolution algorithm (Gao et al., 2010)

A-9: Grouping harmony search algorithm (Gao et al., 2010)

Comparative results of the proposed approach with nine
other algorithms, i.e. from A-1 to A-9, for minimisation of
total flowtime are given in Table 3. From Table 3, we can

MiniMising total flowtiMe in a no-wait flow shop (nwfs) using genetic algorithMs

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79)74

Table 3. Total flowtime comparison for algorithms A-1 to A-9 for Reeves (1995) data set

Instance n x m A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 Min
Proposed GA

% Diff
Best Avg

rec01 20 x 5 20 029 17 874 17 874 19 556 19 938 17 594 21 063 20 873 20 289 17 594 17 187 17 508,30 2,368

rec03 20 x 5 18 163 15 248 15 098 17 417 17 869 16 235 19 615 19 689 18 358 15 098 14 682 14 919,60 2,833

rec05 20 x 5 19 034 17 785 17 793 19 210 19 055 17 910 20 554 20 261 19 149 17 785 17 142 17 409,50 3,751

rec07 20 x 10 28 914 26 045 25 647 28 407 28 841 24 978 28 914 28 841 26 912 24 978 25 105 25 770,53 -0,506

rec09 20 x 10 27 229 24 347 24 347 26 796 29 254 26 234 29 355 29 254 25 965 24 347 23 861 24 088,10 2,037

rec11 20 x 10 25 657 23 248 22 706 25 362 25 657 23 324 27 466 27 619 25 510 22 706 22 218 22 469,90 2,196

rec13 20 x 15 37 755 34 382 33 136 36 669 35 091 33 279 38 668 38 307 35 091 33 136 32 524 33 016,80 1,882

rec15 20 x 15 35 753 34 286 33 066 35 905 35 035 32 451 37 200 38 240 35 035 32 451 32 218 32 760,35 0,723

rec17 20 x 15 36 709 31 956 31 901 35 215 35 563 33 178 38 084 37 626 33 847 31 901 31 528 31 678,30 1,183

rec19 30 x 10 58 866 52 564 51 080 59 231 62 458 53 609 61 578 62 458 56 667 51 080 50 395 50 900,10 1,359

rec21 30 x 10 58 925 50 364 48 935 57 782 60 206 51 234 61 195 60 206 55 279 48 935 47 733 48 884,50 2,518

rec23 30 x 10 55 056 51 981 47 921 56 316 57 992 47 901 55 060 57 992 55 056 47 901 45 935 47 588,80 4,280

rec25 30 x 15 77 467 70 280 65 926 76 201 78 315 66 566 79 310 78 315 72 610 65 926 64 805 65 913,60 1,730

rec27 30 x 15 73 564 65 425 63 788 73 432 74 699 66 679 76 868 74 699 69 739 63 788 62 792 63 735,20 1,586

rec29 30 x 15 74 560 59 655 59 655 - - - 80 378 79 649 69 178 59 655 58 221 59 608,60 2,463

rec31 50 x 10 153 276 120 133 118 184 - - - 156 544 160 666 151 279 118 184 117 368 121 406,20 0,695

rec33 50 x 10 157 020 131 960 125 914 - - - 165 615 166 772 161 474 125 914 123 601 128 132,50 1,871

rec35 50 x 10 157 527 125 474 124 035 - - - 171 974 177 408 160 466 124 035 123 667 127 157,90 0,298

rec37 75 x 20 464 985 355 803 344 797 - - - 472 305 471 108 466 048 344 797 368 785 378 189,60 -6,505

rec39 75 x 20 486 774 370 643 356 681 - - - 488 338 487 011 483 443 356 681 378 596 385 217,70 -5,788

rec41 75 x 20 487 457 369 798 355 808 - - - 498 551 493 196 492 006 355 808 383 363 393 873 -7,188

Source: Authors

see that the proposed approach produced better results for
17 instances out of a total of 21. The proposed approach
could not find better results for instance ‘rec07’, where
the percentage error was 0,506%, as compared to the
best-known value, i.e. to algorithm A-6. Furthermore, the
performance of the proposed approach was also worse for
problem size 75 × 20, i.e. instances rec37, rec39 and rec41,
where the percentage errors were 6,505%, 5,788% and
7,188%, respectively, compared to the best-known value
among algorithms A1 to A-9. Only for algorithms A-2 and
A-3, the results were superior to the proposed approach for
problem size 75 × 20. For all other problems, the results
obtained by the proposed approach were superior to all
other nine algorithms (A-1 to A-9). The best values found
for each instance by various algorithms is marked in bold.

Problem Set 3

Problem set 3 consists of two problem instances adapted
from Heller (1960). The first problem instance is a large
sized problem with 100 jobs and 10 machines, while the
second instance is a small sized problem with 20 jobs
and 10 machines. For Problem Set 3, comparison of the
GA was also done with nine algorithms (A-1 to A-9), as
mentioned previously. The proposed GA was able to find
superior results compared to all nine previous algorithms
for problem instance 20 × 10, while the performance was
worse only in algorithms A6 and A9 for problem instance
100 × 10. The comparative total flowtime values are
presented in Table 4. The best values for each of the two
instances are marked in bold.

Table 4. Tomtal flowtime comparison for algorithms A-1 to A-9 for
Heller (1960) data set

Instance hel1 hel2

n x m 100 x 10 20 x 10

A-1 54 683 2 466

A-2 54 833 2 476

A-3 54 216 2 384

A-4 54 216 2 459

A-5 39 693 2 236

A-6 37 285 2 105

A-7 54 168 2 373

A-8 54 833 2 476

A-9 39 422 2 201

Proposed GA 39 455 2 070

% Diff -5,500 1,691

Source: Authors

Problem Set 4

Problem set 4 consists of sixty problem instances adapted
from Taillard (1993). mThe set consists of six subsets of
problems with n x m combination of 20 × 5, 20 × 10, 20
× 20, 50 × 5, 50 × 10 and 50 × 20. Each set consists of
10 instances. The following heuristics were used for the
comparison of results with the proposed GA algorithm:

A-10: Improved std dev heuristic proposed by Gao et al.
(2011a)

A-11: Job insertion based heuristic algorithm proposed by
Bertolissi (2000)

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79) 75

Chaudhry, Elbadawi, usman, and Chughtai

A-12: Constructive heuristic, based on the idea of job
insertion, proposed by Laha et al. (2008)

A-13: Heuristic algorithms proposed by Aldowaisan et al.
(2004)

A-14: ISDH algorithm with local search by Gao et al. (2013)

A-15: IBH with local search algorithm by Gao et al. (2013)

A-16: ISDH algorithm with an iteration operator by Gao et
al. (2013)

A-17: IBH algorithm with iteration operator by Gao et al.
(2013)

Table 5 to Table 10 give the comparative results for the
total flowtimes found by various algorithms for the flow
shop instances proposed by Taillard (1993). The best values
among all instances are marked in bold.

From the preceding tables, we can see that the proposed
GA approach was able to find better solution for 33
instances out of a total of 60 problem instances solved,
while for 27 instances the performance was worse. For
smaller size problems, i.e. for n = 20 (total of 30 instances),
the proposed GA approach produced superior results
for 24 instances, while worse only for six instances. For
only two problem instances, i.e. tail2 and tail3, the %Diff

Table 5. Total flowtime comparison for algorithms A-10 to A-17 for 20 x 5 data set from (Taillard, 1993)

Instance A-10 A-11 A-12 A-13 A-14 A-15 A-16 A-17 GA % Diff

tail1 16 553 16 562 16 421 16 357 16 414 16 230 16 381 16 302 15 674 3,4258

tail2 16 749 16 435 16 551 16 268 16 164 16 172 16 220 16 230 17 250 -6,7186

tail3 15 160 15 197 14 959 15 258 14 943 15 024 15 051 15 018 15 855 -6,1032

tail4 18 989 18 864 19 048 18 644 18 732 18 679 18 788 18 782 17 970 3,6151

tail5 17 293 16 587 16 570 16 353 16 684 16 475 16 385 16 467 15 317 6,3352

tail6 16 268 15 841 15 974 15 669 16 109 15 832 15 620 15 841 15 501 0,7618

tail7 16 302 16 533 16 538 16 116 15 990 15 898 16 117 16 312 15 693 1,2895

tail8 17 836 17 509 17 277 17 528 17 403 17 499 17 340 17 421 15 955 7,6518

tail9 16 802 17 096 17 186 16 760 16 551 16 736 16 802 16 588 16 394 0,9486

tail10 15 693 15 897 15 776 15 688 15 785 15 051 15 208 15 373 15 329 -1,8471

Source: Authors

Table 6. Total flowtime comparison for algorithms A-10 to A-17 for 20 x 10 data set from (Taillard, 1993)

Instance A-10 A-11 A-12 A-13 A-14 A-15 A-16 A-17 GA % Diff

tail11 27 043 25 664 26 431 25 410 26 582 25657 25410 25 664 25 319 0,3581

tail12 26 976 27 037 26 794 26 847 26 748 26774 26773 26 586 26 363 0,8388

tail13 25 033 24 509 24 856 24 377 24 230 24509 24260 24 277 22 910 5,4478

tail14 23 323 23 353 23 284 22 905 22 976 23120 22905 23 138 22 243 2,8902

tail15 24 056 24 185 23 824 23 779 23 611 23838 24056 23 998 23 191 1,7788

tail16 23 503 23 416 23 319 23 743 23 187 23016 23503 23 380 22 011 4,3665

tail17 24 371 24 236 24 574 24 344 24 264 23967 24372 24 500 21 939 8,4616

tail18 24 614 24 416 24 878 24 294 24 294 24315 24294 24 294 24 265 0,1194

tail19 24 947 25 128 25 535 25 799 25 040 24663 24771 25 107 23 522 4,6264

tail20 26 688 25 638 25 966 26 243 25 864 25703 25704 25 638 24 605 4,0292

Source: Authors

Table 7. Total flowtime comparison for algorithms A-10 to A-17 for 20 x 20 data set from (Taillard, 1993)

Instance A-10 A-11 A-12 A-13 A-14 A-15 A-16 A-17 GA % Diff

tail21 41 278 40 426 40 080 40 207 40 929 39 522 41 464 39 688 38 697 2,0874

tail22 38 537 38 780 38 880 38 791 38 524 38 400 38 509 38 268 37 571 1,8214

tail23 40 972 40 439 39 807 39 845 39 564 39 911 40 327 40 037 38 312 3,1645

tail24 38 015 38 300 37 157 38 562 37 251 37 300 37 295 37 376 38 829 -4,4998

tail25 39 798 40 711 39 811 39 750 39 761 40 360 39 593 39 680 39 071 1,3184

tail26 38 900 38 667 39 372 38 652 38 419 38 787 38 900 38 660 38 620 -0,5232

tail27 40 556 39 865 40 663 39 902 40 170 39 849 40 183 39 902 39 718 0,3287

tail28 37 983 37 685 38 579 37 389 37 979 37 128 37 304 37 295 37 000 0,3448

tail29 38 294 38 616 38 669 38 145 38 649 38 555 38 230 38 616 39 228 -2,8392

tail30 38 400 38 406 37 956 38 404 38 362 38 297 38 479 38 033 37 953 0,0079

Source: Authors

MiniMising total flowtiMe in a no-wait flow shop (nwfs) using genetic algorithMs

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79)76

between the proposed approach and the best solution by
earlier approaches was more than 6%, while for the rest
of the four problems the %Diff was 1,85%, 4,50%, 0,52%
and 2,84% for problem instances tail10, tail24, tail26 and
tail29, respectively.

As mentioned earlier, the performance worsened for large
sized problem instances. For n = 50, a total of 30 instances
were solved, but the GA found a better solution only for
9 of them. However, for the 21 instances where proposed
GA approach was not able to find a better solution than
the best solution value among earlier approaches, the

maximum %Diff was less than 5% with maximum %Diff
being 4,48%. It may be noted here that the best value
found by the proposed GA algorithm was not worse than
all the previous algorithms under discussion. The proposed
approach did find better solution compared to some of the
earlier algorithms.

Although the proposed approach was not able to find
better solutions for all the instances, the performance of
the algorithm can be considered robust. The general-
purpose nature and the ability to handle any objective
function without changing the basic GA routine makes it a

Table 8. Total flowtime comparison for algorithms A-10 to A-17 for 50 x 5 data set from (Taillard, 1993)

Instance A-10 A-11 A-12 A-13 A-14 A-15 A-16 A-17 GA % Diff

tail31 82 183 81 613 80 843 79 569 79 471 78 746 78 675 79 562 80 701 -2,5752

tail32 90 846 91 092 89 181 89 391 88 454 87 771 88 192 86 395 86 105 0,3357

tail33 82 738 83 096 82 351 81 796 82 218 80 939 82 108 81 122 80 561 0,4670

tail34 86 173 83 711 84 422 83 572 84 250 82 681 82 807 83 257 84 991 -2,7939

tail35 87 367 88 054 85 446 86 504 85 680 83 558 84 430 85 763 86 789 -3,8668

tail36 89 192 87 431 88 293 87 577 85 739 84 831 84 653 86 354 84 781 -0,1512

tail37 85 884 85 001 82 610 84 657 82 335 83 210 82 063 83 010 81 998 0,0792

tail38 85 103 85 607 87 387 83 344 83 365 82 538 84 816 84 082 81 934 0,7318

tail39 80 444 80 683 82 794 79 804 79 978 78 646 77 996 77 992 77 916 0,0974

tail40 88 675 87 376 86 849 87 237 85 946 85 878 84 389 84 142 85 670 -1,8160

Source: Authors

Table 10. Total flowtime comparison for algorithms A-10 to A-17 for 50 x 20 data set from (Taillard, 1993)

Instance A1-0 A-11 A-12 A-13 A-14 A-15 A-16 A-17 GA % Diff

tail51 17 8954 17 2365 17 4116 17 2570 17 3683 17 2252 17 1545 17 2254 17 8630 -4,1301

tail52 16 9880 17 0373 17 0720 16 7220 16 6390 16 9428 16 8870 16 6792 16 6887 -0,2987

tail53 17 5244 17 3685 17 5598 17 0515 17 2739 17 1590 17 0143 17 0554 16 7089 1,7950

tail54 17 2895 17 2186 17 1659 17 2193 16 8989 17 1063 16 8895 17 1055 16 7904 0,5868

tail55 17 2514 17 1821 16 8248 17 1365 16 6783 16 7471 16 8437 16 9655 17 3415 -3,9764

tail56 17 2492 17 2528 17 0262 17 1498 16 9714 16 8527 17 1708 17 0539 16 8755 -0,1353

tail57 17 7382 17 6812 17 7987 17 6985 17 1602 17 2083 17 1442 17 4218 17 3165 -1,0050

tail58 16 9268 16 9049 17 3768 16 7918 16 5782 16 6297 16 5887 16 5601 17 3020 -4,4800

tail59 17 4213 17 1749 17 2095 17 3293 16 9524 16 9937 17 0904 17 1078 17 2826 -1,9478

tail60 17 8270 17 4981 17 5283 17 4576 17 3446 17 3288 17 4594 17 3635 17 5483 -1,2667

Source: Authors

Table 9. Total flowtime comparison for algorithms A-10 to A-17 for 50 x 10 data set from (Taillard, 1993)

Instance A-10 A-11 A-12 A-13 A-14 A-15 A-16 A-17 GA % Diff

tail41 12 0090 11 7480 11 7234 11 6704 11 6969 11 5561 11 5753 11 6122 11 7654 -1,8112

tail42 11 8203 11 6111 11 6199 11 4548 11 3873 11 3447 11 3481 11 2619 11 7445 -4,2852

tail43 11 7403 11 7158 11 4350 11 5547 11 4235 11 4242 11 4754 11 4880 11 0999 2,8328

tail44 12 2769 12 0536 12 0652 11 7684 11 8586 11 7617 11 5956 11 6836 11 7599 -1,4169

tail45 12 0773 12 3084 12 2743 11 9960 12 0242 11 9692 11 9953 11 9499 12 0528 -0,8611

tail46 12 0201 11 8519 11 9088 11 8942 11 6570 11 6549 11 8320 11 8467 11 6090 0,3938

tail47 12 2457 12 3182 12 3595 12 2566 11 9751 11 9805 11 8958 12 0075 12 2151 -2,6841

tail48 11 6975 11 7187 11 5611 11 6316 11 6003 11 5041 11 4624 11 5720 11 8636 -3,5001

tail49 11 8063 11 6116 11 7939 11 5975 11 6323 11 6036 11 4759 11 6140 11 5648 -0,7747

tail50 12 1804 11 9112 12 1418 11 8504 11 8031 11 8225 11 7610 11 6781 11 8053 -1,0892

Source: Authors

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79) 77

Chaudhry, Elbadawi, usman, and Chughtai

truly general purpose scheduling approach. Furthermore,
arrangement of data and schedule in familiar spreadsheet
environment also makes it easy to use in shop floor
environment. The general-purpose nature and robustness
of the algorithm to address a large number of problems has
been the key advantage of the proposed approach.

Conclusions

In this paper, a no-wait flow shop scheduling problem
was considered where the objective was to minimise
total flowtime. The problem has practical applications in
process industries and is considered to be NP-hard even for
3-machine cases (Hans, 1984).

Though the performance of the proposed approach though
was inferior in some cases, it found solutions that were equal
or better than those of previous studies in a wide range of
problems. The empirical analysis shows that the proposed
approach can solve large sized flow shop problems with
reasonable accuracy. The %Diff was calculated between
the solution found by the proposed approach and the best
value among all the previous solution techniques. For
problem set 1, the proposed GA found better solution for
six instances out of eight problem instances, while the same
solution for the remaining two. For problem set 2, out of
twenty-one instances, the proposed approach found better
solutions for 17 instances and worse for four of them with
maximum % Diff less than 10%. Problem set 3 consisted of
only two problems. The proposed approach found a better
solution for the small-sized problem, while for large-sized
problem the % Diff was 5,50%. For problem set 4, the
proposed approach found better solutions for 33 instances
out of sixty problems and worse for the remaining 27 with
a maximum % Diff of 6,72%. It may be noted here that the
best value found by the proposed GA algorithm was not
worse to all the previous algorithms under discussion. The
proposed approach did find better solution compared to
some of the earlier algorithms.

It was demonstrated that the proposed algorithm is simple
to implement and easily customisable to include additional
jobs or machines. The proposed GA approach has been
implemented in a familiar spreadsheet interface and
has the ability to generate Gantt chart, thus presenting a
graphical representation of the schedules which is easily
understandable by shop floor managers.

Acknowledgements

This research is supported by the Deanship of Academic
Research at University of Hail by a grant for Project Number
160769.

References

Akhshabi, M., Tavakkoli-Moghaddam, R., & Rahnamay-Roo-
dposhti, F. (2014). A hybrid particle swarm optimization
algorithm for a no-wait flow shop scheduling problem with
the total flow time. The International Journal of Advanced
Manufacturing Technology, 70(5-8), 1181-1188. DOI:
10.1007/s00170-013-5351-9.

Aldowaisan, T., & Allahverdi, A. (2004). New heuristics for
m-machine no-wait flowshop to minimize total comple-
tion time. Omega, 32(5), 345-352. DOI: 10.1016/j.ome-
ga.2004.01.004.

Astaiza A, L. G. (2005). A practical approach to scheduling
examinations. Ingeniería e Investigación, 25(3), 92-100.

Bertolissi, E. (2000). Heuristic algorithm for scheduling in
the no-wait flow-shop. Journal of Materials Processing
Technology, 107(1–3), 459-465. DOI: 10.1016/S0924-
0136(00)00720-2.

Bewoor, L., Chandra Prakash, V., & Sapkal, S. (2017a). Evo-
lutionary Hybrid Particle Swarm Optimization Algorithm
for Solving NP-Hard No-Wait Flow Shop Scheduling Pro-
blems. Algorithms, 10(4), 121. DOI: 10.3390/a10040121.

Bewoor, L. A., Prakash, V. C., & Sapkal, S. U. (2017b). Compa-
rative Analysis of Metaheuristic Approaches for m-Machine
No Wait Flow Shop Scheduling for minimizing Total Flow
Time with Stochastic Input. International Journal of Engi-
neering and Technology, 8(6), 3021-3026. DOI: 10.21817/
ijet/2016/v8i6/160806265.

Bewoor, L. A., Prakash, V. C., & Sapkal, S. U. (2018). Produc-
tion scheduling optimization in foundry using hybrid Par-
ticle Swarm Optimization algorithm. Procedia Manufactu-
ring, 22, 57-64. DOI: 10.1016/j.promfg.2018.03.010.

Carlier, J. (1978). Ordonnancements a contraintes disjonctives.
R.A.I.R.O. Recherche operationelle/Operations Research,
12(4), 333-350. DOI: 10.1051/ro/1978120403331.

Chaudhry, I. A., Ahmed, R., & Khan, A. M. (2014). Genetic
Algorithm to minimize flowtime in a no-wait flowshop
scheduling problem. IOP Conference Series: Materials
Science and Engineering, 65(1), 1-6. DOI: 10.1088/1757-
899X/65/1/012007.

Chaudhry, I. A., & Elbadawi, I. A. Q. (2017). Minimisation of
total tardiness for identical parallel machine scheduling
using genetic algorithm. Sadhana - Academy Proceedings
in Engineering Sciences, 42(1), 11-21. DOI: 10.1007/
s12046-016-0575-7.

Chaudhry, I. A., & Khan, A. M. (2012). Minimizing makespan
for a no-wait flowshop using genetic algorithm. Sadhana -
Academy Proceedings in Engineering Sciences, 37(6), 695-
707. DOI: 10.1007/s12046-012-0105-1.

Davis, L. (1985). Job Shop Scheduling with Genetic Algori-
thms. Paper presented at the Proceedings of the 1st Inter-
national Conference on Genetic Algorithms.

Delgado, E., Rodríguez, C. J. C., & Velasco, Ó. G. D. (2005).
Applying genetic algorithms for programming manufacto-
ring cell tasks. Ingeniería e Investigación, 25(2), 24-31.

Díaz Ramírez, J., & Huertas, J. I. (2018). A continuous time
model for a short-term multiproduct batch process sche-

MiniMising total flowtiMe in a no-wait flow shop (nwfs) using genetic algorithMs

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79)78

duling. Ingeniería e Investigación, 38(1), 96-104. DOI:
10.15446/ing.investig.v38n1.66425.

Dong, B., Gao, K.-z., Pan, Q.-k., & Sun, Q.-q. (2010). Hybrid
differential evolution optimization algorithm for no-wait
flow shop problem with total flow time criterion. Appli-
cation Research of Computers, 27(8), 2875-2877. DOI:
10.1007/978-3-642-24728-6_81.

Framinan, J. M., & Leisten, R. (2003). An efficient constructi-
ve heuristic for flowtime minimisation in permutation flow
shops. Omega - International Journal of Management Scien-
ce, 31(4), 311-317. DOI: 10.1016/s0305-0483(03)00047-1.

Frutos, M., & Tohmé, F. (2012). Evolutionary multi-objective
scheduling procedures in non-standardized production
processes. DYNA, 79(172), 101-107.

Gao, K.-Z., Pan, Q.-K., & Li, J.-Q. (2011a). Discrete harmony
search algorithm for the no-wait flow shop scheduling pro-
blem with total flow time criterion. International Journal of
Advanced Manufacturing Technology, 56(5-8), 683-692.
DOI: 10.1007/s00170-011-3197-6.

Gao, K.-Z., Pan, Q.-K., Li, J.-Q., & Jia, B.-X. (2011b). Impro-
ved Harmony Search Algorithm for No-Wait Flow Shop
Schedule. Computer Engineering, 37(8), 178-180. DOI:
10.3969/j.issn.1000-3428.2011.08.061.

Gao, K.-Z., Pan, Q.-K., Li, J.-Q., Wang, Y.-T., & Liang, J. (2012).
A hybrid harmony search algorithm for the no-wait flow-
shop scheduling problems. Asia-Pacific Journal of Opera-
tional Research, 29(2), 1250012/1250011-1250023. DOI:
10.1142/S0217595912500121.

Gao, K.-z., Pan, Q., Li, J., & He, Y. (2010). A novel grouping
harmony search algorithm for the no-wait flow shop sche-
duling problems with total flow time criteria. Paper pre-
sented at the 2010 International Symposium on Computer
Communication Control and Automation (3CA) Tainan,
Taiwan. DOI: 10.1109/3CA.2010.5533729.

Gao, K.-z., Pan, Q., Suganthan, P. N., & Li, J. (2013). Effective
heuristics for the no-wait flow shop scheduling problem
with total flow time minimization. International Journal
of Advanced Manufacturing Technology, 66(9-12), 1563-
1572. DOI: 10.1007/s00170-012-4440-5.

Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a One
State-Variable Machine: A Solvable Case of the Traveling
Salesman Problem. Operations Research, 12(5), 655-679.
DOI: 10.1287/opre.12.5.655.

Guang, X., & Junqing, L. (2012). Evolved Discrete Harmony
Search Algorithm for Multi-objective No-wait Flow Shop
Scheduling Problem. Paper presented at the 2nd Interna-
tional Conference on Computer Application and System
Modeling, Taiyuan Institute of Science and Technology,
Taiyuan, Shanxi, China. DOI: 10.2991/iccasm.2012.200.

Gupta, J. N. D., & Stafford Jr, E. F. (2006). Flowshop sche-
duling research after five decades. European Journal of
Operational Research, 169(3), 699-711. DOI: 10.1016/j.
ejor.2005.02.001.

Hall, N., & Sriskandarajah, C. (1996). A Survey of Machi-
ne Scheduling Problems with Blocking and No-Wait in
Process. Operations Research, 44(3), 510-525. DOI:
10.2307/171711.

Hans, R. (1984). The Three-Machine No-Wait Flow Shop is
NP-Complete. Journal of the Association for Computing
Machinery, 31(2), 336-345. DOI: 10.1145/62.65.

Heller, J. (1960). Some Numerical Experiments for an M × J
Flow Shop and Its Decision - Theoretical Aspects. Opera-
tions Research, 8(2), 178-184. DOI: 10.1287/opre.8.2.178.

Holland, J. H. (1975). Adaptation in natural and artificial sys-
tems. Ann Arbor, MI: University of Michigan Press.

Huang, R.-H., Yang, C.-L., & Liu, S.-C. (2015). No-Wait
Flexible Flow Shop Scheduling with Due Windows.
Mathematical Problems in Engineering, 9 pages. DOI:
10.1155/2015/456719.

Johnson, S. M. (1954). Optimal two- and three-stage pro-
duction schedules with setup times included. Naval Re-
search Logistics Quarterly, 1(1), 61-68. DOI: 10.1002/
nav.3800010110.

Laha, D., & Chakraborty, U. K. (2008). A constructive heuristic
for minimizing makespan in no-wait flow shop scheduling.
International Journal of Advanced Manufacturing Techno-
logy, 41(1-2), 97-109. DOI: 10.1007/s00170-008-1454-0.

Laha, D., Gupta, J. N. D., & Sapkal, S. U. (2014a). A penal-
ty-shift-insertion-based algorithm to minimize total flow
time in no-wait flow shops. Journal of the Operational
Research Society, 65(10), 1611-1624. DOI: 10.1057/
jors.2013.118.

Laha, D., & Sapkal, S. U. (2011). An Efficient Heuristic Algori-
thm for m-Machine No-wait flow shops. Paper presented at
the International MultiConference of Engineers and Com-
puter Scientists, Hong Kong.

Laha, D., & Sapkal, S. U. (2014b). An improved heuristic to
minimize total flow time for scheduling in the m-machine
no-wait flow shop. Computers & Industrial Engineering, 67,
36-43. DOI: 10.1016/j.cie.2013.08.026.

Miyata, H. H., Nagano, M. S., & Gupta, J. N. D. (2018). In-
corporating preventive maintenance into the m-machine
no-wait flow-shop scheduling problem with total flow-time
minimization: a computational study. Engineering Optimi-
zation, 1-19. DOI: 10.1080/0305215X.2018.1485903.

Nagano, M. S., Miyata, H. H., & Araújo, D. C. (2015). A
constructive heuristic for total flowtime minimization in a
no-wait flowshop with sequence-dependent setup times.
Journal of Manufacturing Systems, 36, 224–230. DOI:
10.1016/j.jmsy.2014.06.007.

Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algo-
rithm for the m-machine, n-job flow-shop sequencing pro-
blem. Omega - International Journal of Management Scien-
ce, 11(1), 91-95. DOI: 10.1016/0305-0483(83)90088-9.

Qi, X., Wang, H., Zhu, H., Zhang, J., Chen, F., & Yang, J. (2016).
Fast local neighborhood search algorithm for the no-wait
flow shop scheduling with total flow time minimization. In-
ternational Journal of Production Research, 54(16), 4957-
4972. DOI: 10.1080/00207543.2016.1150615.

Rajendran, C., & Chaudhuri, D. (1990). Heuristic al-
gorithms for continuous flow-shop problem. Na-
val Research Logistics, 37(5), 695-705. DOI:
10.1002/1520-6750(199010)37:5<695::AID-NA-
V3220370508>3.0.CO;2-L.

IngenIería e InvestIgacIón vol. 38 no. 3, december - 2018 (68-79) 79

Chaudhry, Elbadawi, usman, and Chughtai

Reddi, S. S., & Ramamoorthy, C. V. (1972). On the Flow-Shop
Sequencing Problem with No Wait in Process. Journal of
the Operational Research Society, 23(3), 323-331. DOI:
10.1057/jors.1972.52.

Reeves, C. R. (1995). A genetic algorithm for flowshop se-
quencing. Computers & Operations Research, 22(1), 5-13.
DOI: 10.1016/0305-0548(93)E0014-K.

Sapkal, S. U., & Laha, D. (2013). A heuristic for no-wait flow
shop scheduling. International Journal of Advanced Manu-
facturing Technology, 68(5-8), 1327-1338. DOI: 10.1007/
s00170-013-4924-y.

Shafaei, R., Moradinasab, N., & Rabiee, M. (2011). Efficient
meta heuristic algorithms to minimize mean flow time in
no-wait two stage flow shops with parallel and identical
machines. International Journal of Management Scien-
ce and Engineering Management, 6(6), 421-430. DOI:
10.1080/17509653.2011.10671192.

Taillard, E. (1993). Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64(2), 278-285.
DOI: 10.1016/0377-2217(93)90182-M.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Buyukda-
gli, O. (2013). A variable iterated greedy algorithm with
differential evolution for the no-idle permutation flowshop
scheduling problem. Computers & Operations Research,
40(7), 1729-1743. DOI: 10.1016/j.cor.2013.01.005.

Tyagi, N., Varshney, N. G., & Chandramouli, A. B. (2013).
Six decades of flowshop scheduling research. Internatio-
nal Jouranal of Scientific & Engineering Research, 4(9),
854-864.

Whitley, D., & Kauth, K. (1988). GENITOR: A different genetic
algorithm. Paper presented at the Proceedings of the 1988
Rocky Mountain Conference on Artificial Intelligence.

Ying, K.-C., Lin, S.-W., & Wu, W.-J. (2016). Self-adaptive
ruin-and-recreate algorithm for minimizing total flow time
in no-wait flowshops. Computers & Industrial Engineering,
101(C), 167-176. DOI: 10.1016/j.cie.2016.08.014.

Zhu, X., & Li, X. (2015). Iterative search method for total flow-
time minimization no-wait flowshop problem. Internatio-
nal Journal of Machine Learning and Cybernetics, 6(5),
747–761. DOI: 10.1007/s13042-014-0312-7.

