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Abstract. One of the main topics in computer science is how to perform data clas-
sification without requiring plenty of resources and time. The sorting algorithms
Quicksort, Mergesort, Timsort, Heapsort, Bubblesort, Insertion Sort, Selection
Sort, Tree Sort, Shell Sort, Radix Sort, Counting Sort, are the most recognized
and used. The existence of different sorting algorithm options led us to ask: What
is the algorithm that us better execution times? Under this context, it was necessary
to understand the various sorting algorithms in C and Python programming lan-
guage to evaluate them and determine which one has the shortest execution time.
We implement algorithms that help create four types of integer arrays (random,
almost ordered, inverted, and few unique). We implement eleven classification
algorithms to record each execution time, using different elements and iterations
to verify the accuracy. We carry out the research using the integrated development
environments Dev-C++ 5.11 and Sublime Text 3. The products allow us to identify
different situations in which each algorithm shows better execution times.

Keywords: Sorting - Sorting algorithms - Standard dataset - Integrated
development environment - Execution time

1 Introduction

One of the fundamental issues related to computer science is how to perform data sorting
without requiring a lot of resources and time. We can define sorting as organizing a
disordered collection of items to increase or decrease order [1]. Sorting and, by extension,
sorting algorithms are critical to several tasks. Sorting algorithms can help remove or
merge data through sorting by the primary uniqueness criterion; they are also useful in
finding out where two broad sets of elements differ. By the same logic, sorting algorithms
can also determine which data appears in both datasets.

Over time sorting algorithms have been implemented in almost all programming
languages; therefore, they combine multiple language components with helping new
programmers learn how to code. Additionally, it is nearly impossible to discuss sorting
without mentioning performance. Performance is the key for all systems to function
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efficiently; thus, we can claim that sorting helps us understand performance, which
leads to an improvement in software structures and designs.

Since the early days of computer science, the sorting and classifying problem has
been a prevalent topic of research due to the complexity of efficiently using precise and
straightforward coding statements.

One of the purposes intended to achieve using sorting is to minimize the execution
time of a group of tasks. Hence multiple algorithms have been developed and improved
to sort faster, and for this, it is necessary to know the computer specifications, program
design methodology, and software architecture [2].

Some algorithms can be very complex depending on their execution; as an example,
we have the “Bubblesort” that since 1956 is the subject of study [3], and that can be
very complex compared to the “ShellSort” that presents less execution time required to
perform a sorting [4].

We selected the sorting algorithms Quicksort, Mergesort, Timsort, Heapsort, Bub-
blesort, Insertion Sort, Selection Sort, Tree Sort, Shell Sort, Radix Sort, Counting Sort,
because they are the most recognized and used around the world. In this research, it is
necessary to stipulate that we do not implement memory management algorithms, as we
will only measure the performance of the classification algorithms without additional
code.

There are two types of sorting data, internal sorting and external sorting. Internal
sorting methods store sorted values in main memory; therefore, we assume that the time
required to access any item is the same. On the other hand, external sorting methods
store the values to sort in secondary memory; Assuming that the time required to access
any item depends on the last position obtained.

The classification algorithms have two classifications, which are comparative and
non-comparative [5]. In the comparison-based sorting algorithm, the disordered data
is sort by comparing the data pairs repeatedly. If the data is out of order, they are
interchanged with each other [6]. This exchange operation of this sort is known as a
comparison exchange. Non-comparison ordering algorithms are responsible for classi-
fying data using the data’s specific well-established properties, such as data distribution
or binary representation [7]. Four parameters are necessary for the sorting algorithms,
which are determined: stability, adaptability, time complexity, space complexity [8].

Comparison-based sorting algorithms generally have two subdivisions: complexity
O(n?) and complexity O(n log n). In general, the O(n?) sorting algorithms have a slower
execution than the O(n log n) algorithms; despite this, the O(n?) sorting algorithms are
still fundamental in computer science. One of O(n?) algorithms’ benefits is that they
are non-recursive, requiring much less RAM. Another application of the O(n?) ordering
algorithm is in the sorting of small matrices. Because the O (n log n) sorting algorithms
are recursive, it is inappropriate to sort small arrays as they perform poorly (Table 1).

We can highlight that among the O(n?) sorting algorithms, Selection Sort and
Insertion Sort are the best-performing algorithms in general data distributions [9].

Several authors have carried out experiments to define which one or which of these
algorithms have better execution times; most of them indicate that Quicksort is the
ideal one; however, the authors of these experiments only venture to make comparisons
between a maximum of 9 sorting algorithms at a time [10-13]. Also, it is necessary to
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Table 1. Sorting algorithms used and their complexity.

Sorting algorithms | Complexity | Memory | Method
Bubblesort [BS] | O(n2) o(1) Exchanging
Insertion sort [IS] O(n2) O(l) Insertion
Counting sort [CS] | O(n + k) O(n + k) | Non-comparison
Mergesort [MS] O(nlogn) | O(n) Merging
Tree sort [TrS] O(nlogn) |O(n) Insertion
Radix sort [RS] O(nk) O(n) Non-comparison
Shell sort [ST] O(nl.25) Oo(1) Insertion
Selection sort [SS] O(nz) O(1) Selection
Heapsort [HS] O(nlogn) |0O() Selection
Quicksort [QS] O(nlogn) |O(logn) | Partitioning
Timsort [TS] O(nlogn) | O(n) Insertion &
Merging

mention that the response times may vary depending on the CPU characteristics, RAM,
and other computer specifications on which are run the algorithms. In this context, to
obtain concrete results, a different number of data is required to execute the sorting. It
also executes the process repeatedly to verify the integrity of the results. Consequently,
the existence of different options of sorting algorithms leads us to ask: What is the
algorithm that gives us better execution times? Does the programming language have
any impact on the performance of the sorting algorithms? Furthermore, how to verify
the integrity of said results?

Due to the above reasons, it is necessary to carry out a complete experiment that
indicates which of the sorting algorithms is the one with the best execution times. Thus,
the research objective was to compile the various existing sorting algorithms in the C
and Python programming languages to evaluate them. The research consists of three
main steps. First, the algorithms’ implementation helped create four types of different
integer arrangements (random data, nearly sorted data, reverse sorted data, random data
sorted by categories), which forms standard datasets. The second step is to implement
the eleven sorting algorithms and sort the standard datasets, recording each algorithm’s
times using a different number of elements and iterations to check the results’ integrity.

Moreover, the final step is the analysis of the obtained results. We will describe the
methodology of the experiment in more detail; what were the steps to follow? We will
explain the results in each stage, the tools used, and the results obtained.

2 Materials and Methods

Runtimes may vary depending on the characteristics of the CPU, RAM, and other spec-
ifications of the computer running at the time. Therefore, it is necessary to indicate the
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specifications of the equipment used. We used a 64-bit computer with an Intel i5 pro-
cessor, 8 GB RAM, and a Windows 10 operating system in this research. To start the
investigation, the codes of the algorithms that generate the integer arrays had to be stud-
ied, considering that the ordering algorithms were going to be used to sort in ascending
order four different types of integer arrays. The algorithms to generate the collections
are [14]:

o Random - It generates random numbers with uniform distribution.

e Nearly Sorted — It generates an array of numbers sorted in ascending order and then
introduces some randomness; 20% of the data, in no specific position, is changed by
altering them with other random data.

e Reversed — It generates an array of descending ordered numbers.

e Few Unique — It generates an array by setting the value of the categories m. In this
case, there will only be five categories; then, select several random numbers gave a
size N (N is the size of the array). M represents the size of the types and implements
the formula M = N/m. Finally, repeat each random number (obtained in the second
step) M times to complete the matrix N; there is no sort.

Once we implemented these algorithms, the arrays were stored in a text file (txt),
to use the same dataset for each sorting algorithm. It is expected in this research that
the algorithms generate data sets with 100, 1,000, 10,000, 100,000, 1,000,000 elements
for each algorithm. Still, some of these algorithms threw errors at the moment of trying
to generate integer arrays of more than 100.000 items in both Dev-C++ and Python
(Table 2).

Table 2. List of files with data generated by algorithms

Algorithms for generating integer arrays 100 |1,000 |10,000 |100,000 | 1,000,000
Random v v v v X
Nearly sorted v v v v X
Reversed v v v v X
Few unique v v v v v

Discerning that creating data sets with 1,000,000 items was impossible with all
algorithms, the best decision is to use a data set of up to 100,000 items.

To later obtain the classification algorithm (the references of the codes are in [15]).
The algorithms code was modified in Dev-C++ and Python, so that they consume the
previously generated data files and that the system has a certain number of iterations
(Fig. 1).

The process is carried out with 1, 10, 100, 1,000, 10,000 iterations, recording the
execution times in a spreadsheet file to be analyzed. It is essential to mention that the
execution time of the algorithms is in milliseconds.

As a result of the analysis of execution times, we obtained four tables, one for
each type of integer arrays generator algorithm, with the average values of each sorting
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Fig. 1. Experiment process diagram

algorithm group’s execution times by the number of iterations. Furthermore, with these
files, graphs or figures were made using r programming. The tables and figures will show
and explain in the next section.

3 Results

The eight tables with the execution times were summarized in two tables to facilitate the
results’ comprehension and analysis.

Appendix 1 shows the execution time averages of the random, Nearly Sorted, Few
Unique, and Reversed data in C. In most algorithms, the execution and classification
were satisfactory, but there were cases where there was a considerable consumption of
a resource, so the program returned an error message.

Appendix 2 shows the execution time averages of the random, Nearly Sorted, Few
Unique, and Reversed data in Python. An error occurred in Python due to excessive
memory consumption, which did not allow the total execution of the sorting with 10.000
and 100.000 datasets.

Some algorithms have a more extensive range of execution times than others. There-
fore, to organize it more thoroughly and efficiently to understand, we divide the sorting
algorithms into two categories, “efficient algorithms” with a standard range of execution
times and the “inefficient algorithms” with a much more extensive range of execution
times. “Efficient algorithms” are defined as those whose execution times exceed that of
the other algorithms by a margin of at least 100 ms.

The “inefficient algorithms” are Bubblesort, Insertion sort, and Selection sort; the
remaining algorithms are considered “efficient algorithms.”

There are differences between C and Python; one of the differences is that the range
of Python runtimes is much more extensive.

Considering the average execution times for sorting random data for the “efficient
algorithms,” Heapsort is the one with the higher execution times. On the other hand,
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Timsort is the sorting algorithm that presents the lowest execution times in Python; in
C, Tree sort is the most efficient one.

In the case of the average execution times for sorting nearly sorted data for the
“efficient algorithms,” Heapsort is the one with the higher execution times in C and
only up to 1.000 iterations. When the number of iterations surpasses 1.000, Radix sort
becomes the worst one. In Python, Tree sort is the one with the worst execution times.

In all the cases while working with “inefficient algorithms,” Bubblesort was the one
that got the worst execution times.

Table 3. Most efficient & least efficient algorithms

Efficient algorithms

Algorithms Most efficient Least efficient
Programming language | C Python |C Python
Random Tree sort | Timsort | Heapsort | Heapsort
Nearly Sorted Tree sort | Timsort | Radix sort | Tree sort
Reversed Tree sort | Timsort | Heapsort | Tree sort
Few Unique Tree sort | Timsort | Heapsort | Heapsort

Inefficient algorithms

Algorithms Most efficient Least efficient

Programming | C Python C Python

language

Random Insertion | Selection | Bubblesort | Bubblesort
sort sort

Nearly Sorted | Insertion |Insertion | Bubblesort | Bubblesort

sort sort
Reversed Insertion | Selection | Bubblesort | Bubblesort
sort sort

Few Unique | Insertion | Selection | Bubblesort | Bubblesort
sort sort

Table 3 specifies the final results for each type of integer array according to the
programming language and the sorting algorithms’ efficiency.

Figure 2 shows that Tree Sort is the most efficient sorting algorithm in C; however,
it has higher execution times than Timsort in Python.

It is crucial to point out that Timsort and Counting sort in C had bad execution times,
and they will have been the most efficient ones, but they failed to sort more than 1000
elements. Thus, we can still say that Timsort and Counting sort are the most efficient
algorithms in C when we try to type a few items.

Contrary to Fig. 2, Fig. 3 shows that both programming languages have Bubblesort
as the most inefficient algorithm, and its execution times are longer in Python than in C.
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Fig. 3. Most inefficient sorting algorithms

With everything established above, we now know what algorithms give us the best
execution times, no matter the number of elements and iterations.

4 Discussion

This research paper found out that the programming language significantly impacts how
the sorting algorithms behave and how much data they can sort. An example of this is
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that Timsort is the most efficient sorting algorithm in Python, while Tree Sort is the best
one in C. Both have the same complexity O(n log n). Also, Bubblesort O(n?) is the one
that has the worst execution times, no matter the number of elements or iterations.

In the paper “Analysis and Review of Sorting Algorithms” [1], the authors only used
five sorting algorithms. Bubblesort, Insertion Sort, Selection Sort, and Quicksort. Their
research also concluded that Bubblesort is only suitable for small lists or arrays because
it has the worst performance. Another paper that had similar results was “Analysis and
Testing of Sorting Algorithms on a Standard Dataset” [10] in which once more, Bubble-
sort had the worst execution times. In their case, they worked with nine sorting algorithms
programmed with C++. They also use different datasets, and the best algorithms in their
case were Counting sort, which also gave us good execution times but did not run with
larger arrays. Timsort and Tree Sort do not appear in the document mentioned above.

In “Experimental study on the five sort algorithms,” they demonstrated that the num-
ber of items in the dataset or array has a considerable impact on the sorting algorithm’s
performance. Each sorting algorithm is suitable for a specific situation. If any patterns or
rules are found in the input sequence, inserting and sorting bubbles is a suitable option.
However, when the input scale is large, Merge Sort and Quicksort are the main choices
[12].

Timsort was created in 2002 by Tim Peters [16] for use in the Python language. A
hybrid classification algorithm based on the Insertion Sort and Merge Sort algorithm
works are in blocks that sort using the insertion order one by one. Then the sorted blocks
are merged using the merge operation used in the merge [17].

Thus, its popularity has increased, which opens the way to a series of investigations
on its operation such as the investigation of “Monte Carlo simulation of polymerization
reactions: optimization of the computational time” in which they analyzed the Monte
Carlo simulation of a steady-state polymerization process to reduce the overall com-
putational time, where the authors compare four ordering algorithms such as Timsort,
Bubblesort, Insertion Sort, and Selection Sort, resulting in that Timsort was the most
efficient algorithm in that implementation and Bubblesort the one with the worst time
[18].

The authors of “Binary Tree Sort is More Robust Than Quick Sort in Average Case”
[19] explained that we could use Binary tree sort if the sorted elements do not need a
uniform. They proved that the robustness of Tree sort is a decisive factor instead of just
focusing on the algorithm’s complexity. The aforementioned makes it easier for us to
explain why Trees Sort was better with larger C language arrays.

“Best sorting algorithm for nearly sorted lists” compares five algorithms, Insertion
Sort, Shell sort, Merge Sort, Quicksort, and Heapsort on nearly sorted lists. Their test
results showed that Insertion Sort is best for small or very nearly-sorted lists and that
Quicksort is better otherwise [20]. Insertion Sort was also the best “Inefficient Algo-
rithm” in our experiment. They concluded that there is no one sorting method that is best
for every situation. For that reason, it is necessary to keep experimenting and comparing
a new sorting algorithm, which is why we used more sorting algorithms.

With quantum computing, multiple implementations can be made, such as quan-
tum treemaps used to visualize large hierarchical datasets. In an application such as
using a recursive technique motivated by the Quicksort algorithm, these algorithms
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offer compensation, producing partially sorted designs that are reasonably stable and
have relatively low aspect ratios [21].

However, the question often arises. How fast can quantum computers sort? A quan-
tum computer only needs to compare O(0.526n log2 n) + O(n) times. Performing an
improvement to the lower limit to (n log n), we obtain that the best comparison-based
quantum classification algorithm can be at most a constant time faster than the best
classical algorithm [22].

We encourage experimenting with those interrogations similar to those shown in this
research article and implementing quantum classification methods in future work.

5 Conclusion

This research’s primary purpose was to evaluate and analyze variations in execution
times of sorting algorithms written in C and Python. We were interested in the resulting
execution times when a sorting algorithm is run multiple times for a given dataset, and
if those times differ depending on a programming language.

The experiment’s orientation was for eleven classification algorithms: Quicksort,
Merge-sort, Timsort, Heapsort, Bubblesort, Insertion Sort, Selection Sort, Tree Sort,
Shell Sort, Radix Sort, Counting Sort. For each sorting algorithm, a range of array sizes
was created and then examined.

One of the main results is that distributions of the execution times were discrete,
with relatively few distinct values. Another important finding is that the execution time
increased as the array size increased for all sorting algorithms. Also, organizing the data
affects execution times, showing that some algorithms are better for sorting random data
than inverted data, Etc. Finally, the programming language has a significant impact on
how the sorting algorithms behave and how much data they can sort without the code
throwing an error message. A concrete example of this is that Timsort is the most efficient
sorting algorithm in Python, while Tree Sort is the best one in C. Both have the same
complexity O(n log n). In both cases, Bubblesort O(n?) is the one that has the worst
execution times, no matter the number of elements or iterations.

Appendix

Appendix 1. Execution Time Averages in C

Random (ms)

Data Iter Qs MS TS HS BS IS SS TrS ST RS Cs

100 1]0.0149 | 0.0102 | 0.0057 | 0.0121 0.0284 0.0074 0.0163 | 0.0140 | 0.0075 | 0.0037 | 0.0024
10 | 0.0035 | 0.0069 | 0.0039 | 0.0072 0.0229 0.0070 0.0142 | 0.0036 | 0.0057 | 0.0034 | 0.0020
100 | 0.0026 | 0.0061 | 0.0032 | 0.0051 0.0220 0.0072 0.0141 | 0.0026 | 0.0045 | 0.0034 | 0.0017

1000 | 0.0023 | 0.0053 | 0.0027 | 0.0057 0.0189 0.0046 0.0136 | 0.0042 | 0.0040 | 0.0096 | error

10000 | 0.0021 | 0.0053 | 0.0022 | 0.0054 0.0157 0.0023 0.0133 | 0.0041 | 0.0029 | 0.0146 | error
1000 1]0.0705 | 0.1129 | 0.2143 | 0.2210 2.1418 0.6657 1.2248 | 0.0635 | 0.1102 | 0.0471 | 0.0071
10 | 0.0650 | 0.1081 | 0.0762 | 0.1509 2.1651 0.6505 1.2236 | 0.0401 | 0.1153 | 0.0514 | 0.0071

(continued)
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(continued)

Random (ms)

Data Iter Qs MS TS HS BS 1S SS TrS ST RS Cs
100 | 0.0635 | 0.1005 | 0.0712 | 0.1514 2.5847 0.6459 1.2322 | 0.0379 | 0.1129 | 0.0470 | 0.0072
1000 | 0.0494 | 0.0869 | 0.0507 | 0.1325 1.6873 0.3392 1.2153 | 0.0460 | 0.0712 | 0.0883 | error
10000 | 0.0287 | 0.0681 | 0.0317 | 0.0816 1.2030 0.0388 1.2111 | 0.0470 | 0.0296 | 0.1677 | error
10000 1|0.7475 | 1.2682 | error 1.8875 298.9984 64.8266 121.1839 | 0.1820 | 1.5020 | 0.4770 | 0.0718

10 | 0.7458 | 1.2530 | error 1.9217 295.5248 66.9882 127.1354 | 0.1408 | 1.4965 | 0.4644 | error
100 | 0.7383 | 1.3059 | error 1.9203 292.9857 65.0310 123.7623 | 0.1393 | 1.5423 | 0.4886 | error
1000 | 0.5518 | 1.0522 | error 1.6540 205.6387 32.9524 117.5058 | 0.1454 | 0.9564 | 0.9526 | error
10000 | 0.3743 | 0.8348 | error 1.2170 120.8390 3.3560 117.3990 | 0.1475 | 0.4116 | 1.3971 | error
100000 1| 7.5794 | 14.6408 | error 21.4637 | 33941.2179 | 6434.9664 | 11729.1623 | 0.6891 | 17.9443 | 4.8676 | 0.5679
10 | 8.0029 | 14.6789 | error 22.8292 | 33618.3597 | 6464.3184 | 11766.5191 | 0.6403 | 17.6360 | 4.7118 | error
100 | 7.6986 | 14.3785 | error 21.3103 | 33650.1493 | 6421.5479 | 11690.4792 | 0.6535 | 18.2611 | 4.6397 | error
1000 | 6.0036 | 12.0452 | error 19.1913 | 22651.4197 | 3362.4318 | 11858.7491 | 0.6524 | 11.0385 | 0.9526 | error
10000 | 4.4945 | 9.9346 | error 17.0932 | 12265.4345 | 335.2610 | 11444.6697 | 0.6552 | 5.0353 | 14.5989 | error

Nearly sorted (ms)

Data Iter Qs MS TS HS BS N SS TrS ST RS Cs

100 1| 0.0065 | 0.0084 | 0.0036 | 0.0591 0.0157 0.0026 0.0498 | 0.0152 | 0.0053 | 0.0054 | 0.0023
10 | 0.0031 | 0.0072 | 0.0024 | 0.0076 0.0211 0.0021 0.0145 | 0.0039 | 0.0040 | 0.0142 | 0.0020
100 | 0.0022 | 0.0051 | 0.0023 | 0.0055 0.0140 0.0019 0.0143 | 0.0028 | 0.0043 | 0.0051 | 0.0059

1000 | 0.0023 | 0.0056 | 0.0023 | 0.0056 0.0148 0.0021 0.0170 | 0.0044 | 0.0032 | 0.0118 | error

10000 | 0.0022 | 0.0057 | 0.0022 | 0.0058 0.0150 0.0021 0.0132 | 0.0043 | 0.0030 | 0.0175 | error
1000 1 10.0664 | 0.0804 | 0.0436 | 0.1232 1.4216 1.0850 5.0960 | 0.0648 | 0.1264 | 0.0635 | 0.0167

10 | 0.0587 | 0.0746 | 0.0473 | 0.1278 1.5113 0.2016 1.2170 | 0.0368 | 0.1130 | 0.1570 | error

100 | 0.0566 | 0.0725 | 0.0385 | 0.1294 1.4778 0.2065 1.2323 | 0.0335 | 0.1099 | 0.0614 | error

1000 | 0.0461 | 0.0707 | 0.0343 | 0.1209 1.2948 0.1138 1.2140 | 0.0436 | 0.0700 | 0.1040 | error

10000 | 0.0282 | 0.0658 | 0.0303 | 0.0820 1.1436 0.0170 1.1859 | 0.0486 | 0.0293 | 0.1695 | error
10000 1 10.6643 | 0.9435 | error 1.5351 208.4337 | 19.6579 119.1224 | 0.2130 | 1.7079 | 0.6386 | 0.1365

10 | 0.6865 | 0.9634 | error 1.6610 193.4145 | 20.0551 121.1661 | 0.1514 | 1.7112 | 0.6426 | error
100 | 0.7111 | 0.9634 | error 1.5482 190.4780 | 20.0197 118.8711 | 0.1548 | 1.7194 | 0.7056 | error
1000 | 0.5480 | 0.8773 | error 1.4625 152.2325 10.1305 118.5112 | 0.1528 | 1.0949 | 1.1911 | error
10000 | 0.3759 | 0.8214 | error 1.2002 116.1112 1.0735 120.0545 | 0.1482 | 0.4238 | 1.4127 | error
100000 1 ]5.6883 | 11.0523 | error 17.2255 | 14051.2450 | 501.8177 | 11832.1875 | 0.8658 | 10.1685 | 9.4685 1.2621
10 | 5.5417 | 11.5409 | error 17.9486 | 14027.0252 | 495.1589 | 11814.0204 | 0.6930 | 10.4666 | 9.4292 | error
100 | 5.6053 | 10.7023 | error 17.3267 | 14028.2937 | 496.3286 | 11930.1854 | 0.6568 | 10.2494 | 9.2739 | error
1000 | 5.4688 | 10.2111 | error 17.0733 | 12630.6195 | 255.7339 | 11939.0698 | 0.6492 | 8.6424 | 9.8717 | error
10000 | 4.5268 | 9.7984 | error 16.0976 | 11489.6494 | 27.4709 | 12013.5563 | 0.6699 | 5.0404 | 17.1336 | error

Few unique (ms)

Data Iter Qs MS TS HS BS IN SS TrS ST RS (&
100 10.0202 | 0.0102 | 0.0036 | 0.0122 0.0990 0.0082 0.0159 | 0.0133 | 0.0071 | 0.0053 | 0.0026
10 | 0.0035 | 0.0080 | 0.0024 | 0.0067 0.0245 0.0074 0.0144 | 0.0042 | 0.0061 | 0.0062 | 0.0017
100 | 0.0023 | 0.0057 | 0.0023 | 0.0050 0.0227 0.0073 0.0138 | 0.0029 | 0.0047 | 0.0051 | 0.0017
1000 | 0.0024 | 0.0058 | 0.0023 | 0.0054 0.0197 0.0050 0.0138 | 0.0049 | 0.0063 | 0.0093 | error
10000 | 0.0021 | 0.0055 | 0.0023 | 0.0054 0.0165 0.0027 0.0135 | 0.0056 | 0.0028 | 0.0175 | error
1000 110.0707 | 0.1079 | 0.0431 | 0.1654 2.3080 0.6995 1.8619 | 0.0681 | 0.1057 | 0.0459 | 0.0092
10 | 0.0678 | 0.1103 | 0.1216 | 0.1584 2.2054 0.6461 1.2374 | 0.0417 | 0.1082 | 0.0480 | error
100 | 0.0655 | 0.1042 | 0.0395 | 0.1496 23190 0.6789 1.2425 | 0.0410 | 0.1055 | 0.0464 | error
1000 | 0.0473 | 0.0930 | 0.0343 | 0.1322 1.6716 0.3478 1.2311 | 0.0485 | 0.0677 | 0.0959 | error
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Few unique (ms)
Data | Iter | QS MS TS HS BS IS Ss TS | ST RS cs
10000 | 0.0282 | 0.0693 | 0.0304 | 0.0809 1.1960 0.0392 1.2142 | 0.0560 | 0.0291 | 0.1670 | error
10000 1] 07346 | 13134 | error 19435 | 303.0240 | 64.6072 | 120.0242 | 0.1886 | 1.4950 | 0.4800 | 0.0673
10 | 0.7173 | 1.2638 | error 1.8604 | 2914519 | 652157 | 121.5685 | 0.1542 | 1.5188 | 0.4765 | error
100 | 0.7241 | 1.2929 | error 1.8939 | 288.5536 | 643683 | 120.4502 | 0.3016 | 1.5972 | 0.4880 | error
1000 | 05528 | 1.0575 | error 15950 | 2027150 | 32.8495 |  120.1730 | 0.1609 | 0.9759 | 1.1033 | error
10000 | 0.3741 | 0.8454 | error 1.1478 | 128.2706 33390 | 120.0205 | 0.1595 | 0.4123 | 13959 | error
100000 1| 7.5547 | 147736 | error | 20.7879 | 35097.0922 | 6494.1620 | 12027.4861 | 0.6967 | 17.5160 | 4.9567 | 0.6649
10 | 7.6227 | 15.0838 | error | 225534 | 34684.1799 | 6477.7336 | 12157.8741 | 0.7044 | 17.8177 | 4.7438 | error
100 | 7.6268 | 14.5629 | error | 20.9330 | 33167.3059 | 6477.3688 | 12295.0094 | 0.6874 | 17.2473 | 4.6473 | error
1000 | 6.0191 | 12.1864 | error | 18.7028 | 22996.9892 | 3293.4073 | 11399.2589 | 0.6687 | 10.9321 | 9.6269 | error
10000 | 4.3826 | 10.4619 | error | 14.6550 | 12252.0630 | 328.5804 | 11635.6127 | 0.6777 | 5.0300 | 8.0059 | error
Reversed (ms)
Data | Tter | QS MS TS HS BS IS ss ™S | ST RS cs
100 1]0.0027 | 0.0065 | 0.0063 | 0.0099 0.0284 0.0143 0.0135 | 0.0331 | 0.0037 | 0.0053 | 0.0013
10 | 0.0017 | 0.0053 | 0.0068 | 0.0197 0.0276 0.0140 0.0130 | 0.0041 | 0.0075 | 0.0050 | error
100 | 0.0078 | 0.0050 | 0.0053 | 0.0187 0.0300 0.0137 0.0140 | 0.0024 | 0.0029 | 0.0052 | error
1000 | 0.0022 | 0.0051 | 0.0039 | 0.0055 0.0226 0.0083 0.0132 | 0.0041 | 0.0031 | error | error
10000 | 0.0019 | 0.0052 | 0.0023 | 0.0055 0.0159 0.0030 0.0130 | 0.0038 | 0.0029 | error | error
1000 1]00226 | 0.1109 | 0.0647 | 02971 27470 1.3273 1.1790 | 0.0615 | 0.0480 | 0.0618 | 0.0127
10 | 0.0237 | 0.0673 | 0.0667 | 0.5297 2.8306 1.3362 1.1401 | 0.0409 | 0.0568 | 0.0625 | error
100 | 0.0611 | 0.0655 | 0.0657 | 0.2134 2.8199 1.3104 1.1621 | 0.0382 | 0.0472 | 0.0630 | error
1000 | 0.0277 | 0.0665 | 0.0481 | 0.1321 1.9682 0.6799 1.1688 | 0.0458 | 0.0379 | error | error
10000 | 0.0267 | 0.0656 | 0.0314 | 0.0832 12151 0.0732 1.1825 | 0.0467 | 0.0259 | error | error
10000 1]03014 | 08716 | error 15572 | 2761865 | 1309751 | 112.9974 | 0.2141 | 2.7750 | 0.7980 | 0.0938
10 | 03137 | 0.8425 | error 14730 | 2723418 | 1320642 | 113.7755 | 0.1464 | 0.0266 | 0.7612 | error
100 | 0.3342 | 0.9739 | error 14701 | 2712186 | 1300438 | 1127412 | 0.1429 | 0.0322 | 0.8062 | error
1000 | 0.3610 | 0.8166 | error 13609 | 193.0997 66.9404 | 1149121 | 0.1435 | 0.0781 | error | error
10000 | 0.3577 | 0.8106 | error 11514 | 120.3492 6.6871 | 1167057 | 0.1478 | 03679 | error | error
100000 1| 43624 | 102862 | error | 17.1909 | 27093.0421 | 13115.8318 | 11257.0213 | 0.6813 | 8.5972 | 9.3526 | 0.9130
10 | 4.1092 | 10.0653 | error | 17.2984 | 27077.2859 | 13081.0810 | 11274.6340 | 0.7093 | 8.4274 | 9.2778 | error
100 | 4.0350 | 9.7103 | error | 17.3921 | 27186.5398 | 14016.1420 | 114163516 | 0.6549 | 8.4440 | 9.1002 | error
1000 | 47252 | 9.6941 |error | 17.0638 | 191207744 | 6722.9272 | 111265332 | 0.6694 | 8.1070 | error | error
10000 | 4.4514 | 95313 | error | 14.1699 | 11716.5482 | 701.1256 | 11351.2102 | 0.6577 | 5.0600 | error | error
Appendix 2. Average Execution Times in Python
Random (ms)
Data | Iter | QS Ms TS HS BS Is ss TS ST RS cs
100 1| 03253 | 03447 | 00591 | 04410 1.1796 05673 05574 | 03174 | 01840 | 02072 | 0.1802
10 | 03017 | 03551 | 0.0669 | 04495 12176 06299 05537 | 03325 | 01903 | 0.1953 | 0.1933
100 | 03021 | 03713 | 0.0619 | 04433 12246 05906 05450 | 03358 | 0.1988 | 0.1963 | 0.1975
1000 | 02894 | 03552 | 0.0587 | 0.4239 1.1696 05829 05387 | 03265 | 01901 | 0.1884 | 0.1887
10000 | 02854 | 03510 | 0.0574 | 04171 1.1606 05755 05348 | 03225 | 01871 | 0.1862 | 0.1857
1000 1| 68990 | 57842 | 32887 | 277787 | 1264296 | 608604 | 540734 | 44141 | 3.6280 | 3.6659 | 3.5635
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Random (ms)
Data Tter Qs MS TS HS BS 1S SS TrS ST RS Ccs
10 5.2033 4.8432 | 0.0599 6.8569 117.3365 67.3682 57.1244 4.5659 3.6835 3.7556 3.8659
100 5.1562 4.9112 | 0.0632 6.7423 118.1921 62.6277 55.6794 4.6610 3.7779 3.8228 3.8511
1000 5.2211 5.0086 | 0.0634 6.8367 118.8780 62.8142 55.6440 4.6790 3.8310 3.8301 3.8293
10000 5.1168 4.8983 | 0.0618 6.6996 116.7939 61.8774 54.6691 4.5610 3.7491 3.7441 3.7489
10000 1 | 657770 | 64.1239 | 0.0826 | 92.0450 | 12220.2270 | 6697.4468 | 5814.6917 | 66.2586 | 61.9572 | 61.7803 | 59.2173
10 | 654447 | 63.9647 | 0.0557 | 91.5492 | 11902.5500 | 6492.1609 | 5677.3800 | 66.9012 | 59.5979 | 59.4189 | 59.5188
100 | 65.5597 | 63.9213 | 0.0570 | 91.6201 | 11895.0791 | 6488.8347 | 5668.4324 | 66.8955 | 59.7671 | 59.8399 | 59.7862
1000 | 64.8800 | 63.1248 | 0.0558 | 90.4387 | 11782.7659 | 6437.5941 | 5604.8044 | 66.4650 | 59.1533 | 59.1234 | 59.2495
Nearly sorted (ms)
Data Tter Qs Ms TS HS BS 1S SS TrS ST RS Ccs
100 1 1.1844 1.0452 | 0.0676 1.3179 1.6930 0.2420 1.3455 2.1746 | 03287 | 0.3209 | 0.3215
10 0.7243 | 0.5087 | 0.0345 0.6955 0.9980 0.1390 0.7778 1.2902 | 0.2029 | 0.2069 | 0.2066
100 0.4552 | 0.3148 | 0.0179 0.4435 0.7052 0.1023 0.5591 0.9060 | 0.1393 0.1369 | 0.1355
1000 0.4654 | 0.3222 | 0.0186 0.4527 0.7142 0.1019 0.5728 0.9260 | 0.1412 | 0.1382 | 0.1362
10000 04716 | 0.3275 | 0.0189 0.4556 0.7184 0.1029 0.5726 0.9268 | 0.1412 | 0.1406 | 0.1389
1000 1 10.8394 | 4.6520 | 0.0205 7.0100 69.8064 6.8512 56.4958 10.9039 | 2.8341 2.8221 2.7761
10 10.9654 | 4.7921 | 0.0189 7.1691 70.2443 6.8958 56.7438 11.1606 | 2.8516 | 2.8236 | 2.8254
100 11.4077 | 49532 | 0.0211 7.3079 72.9078 7.2542 58.1838 11.5669 | 29910 | 3.5081 2.9799
1000 11.1879 | 4.8518 | 0.0200 7.3080 72.8122 7.0869 57.4603 11.3708 3.0061 3.0101 3.0027
10000 10.9778 | 4.7643 | 0.0199 7.1918 71.3234 6.9853 56.8876 11.2388 29574 | 29469 | 2.9455
10000 1 | 1145071 | 66.4808 | 0.0300 | 96.9319 | 8102.2887 | 1585.7202 | 6222.0002 | 167.6363 | 53.5893 | 53.5187 | 52.6985
10 | 117.0330 | 68.2153 | 0.0593 | 103.4408 | 8083.3021 | 1580.7920 | 6064.5560 | 172.4053 | 53.5670 | 52.6310 | 53.3516
100 | 120.6905 | 68.6117 | 0.0331 | 104.5879 | 8640.4002 | 1626.8096 | 5884.9889 | 171.6287 | 59.5668 | 58.7390 | 58.7437
1000 | 123.7589 | 70.8472 | 0.0357 | 107.8657 | 8954.4318 | 1656.2141 | 5880.9480 | 174.2174 | 61.6672 | 61.6568 | 61.9305
Few unique (ms)
Data Tter Qs MS TS HS BS 1S SS TrS ST RS Ccs
100 1 0.3721 0.3560 | 0.0556 0.4137 1.4227 0.5369 0.5403 0.3509 0.1649 0.1860 0.1669
10 0.4057 0.3991 | 0.0680 0.4757 1.3225 0.5262 0.5530 0.3265 0.1851 0.1822 0.2084
100 0.5676 0.6119 | 0.0696 0.4768 1.3199 0.8597 1.0294 0.5607 0.2395 0.2119 0.1994
1000 0.5602 0.5160 | 0.0752 0.6533 1.7388 0.5955 0.7250 0.4020 0.2350 0.2094 0.2768
10000 0.5746 0.5548 | 0.0908 0.6689 1.6950 0.7248 0.7463 0.4634 0.2872 0.2697 0.2813
1000 1 5.7344 5.0763 | 0.0744 7.5250 2059111 84.5285 80.0704 5.6699 4.2742 | 13.8807 4.8759
10 7.9406 7.4175 | 0.1013 | 13.6953 207.4326 99.4368 83.0363 6.7028 5.5434 9.5328 6.5981
100 8.3593 87713 | 0.1213 | 10.8606 202.8462 99.3244 77.9542 7.5102 6.0344 5.8915 5.8995
1000 6.9183 6.8396 | 0.0989 9.2002 170.5048 84.4819 65.6271 6.3029 4.9429 5.0778 5.0393
10000 6.6683 6.6184 | 0.0998 9.0623 162.9227 81.4049 64.7323 6.0444 4.7744 4.7598 4.6863
10000 1 | 80.3642 | 67.9960 | 0.0608 9.1993 | 14215.9962 | 7218.1729 | 5719.4402 | 74.5561 | 59.7071 | 71.6940 | 61.3581
10 | 80.9916 | 69.8744 | 0.0727 | 99.7600 | 13450.4785 | 6995.5644 | 5610.6605 | 77.7963 | 64.7814 | 64.0847 | 59.8606
100 | 82.1668 | 68.2175 | 0.0671 | 98.8513 | 13436.4983 | 6998.2024 | 5619.0589 | 78.1411 | 65.0833 | 64.8308 | 64.8462
1000 | 82.4485 | 69.0838 | 0.0701 | 99.6724 | 13432.9928 | 6984.6595 | 5626.1705 | 78.1879 | 64.5584 | 64.7239 | 65.0979
Reversed (ms)
Data | Iter Qs MS TS HS BS 1S SS TrS ST RS Cs
100 1 0.9847 | 0.3123 | 0.1072 | 0.4099 1.7469 1.1418 0.5919 1.5278 | 0.1836 | 0.1529 | 0.1860
10 1.0336 | 0.3278 | 0.1047 | 0.3778 1.7754 1.1482 0.5783 1.5313 | 0.1573 | 0.1600 | 0.1901
100 0.9726 | 0.3119 | 0.1100 | 0.3828 1.6976 1.1333 0.5612 1.5143 | 0.1626 | 0.1708 | 0.1569
1000 1.0845 | 0.3518 | 0.1158 | 0.4133 1.9028 1.2136 0.5934 1.6322 | 0.1764 | 02057 | 02171
10000 1.3242 | 04352 | 0.1520 | 0.5311 2.2667 1.3632 0.7002 1.9623 | 0.2422 | 02267 | 0.2269
1000 1 75.7457 | 5.6057 | 0.1055 | 11.1159 270.5590 235.2450 | 106.6613 | 163.7858 | 3.6045 | 3.6041 | 4.3029
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Reversed (ms)

Data Tter Qs MS TS HS BS N SS TrS ST RS Ccs
10 94.1954 | 7.9541 | 0.1553 | 10.7789 280.5937 179.2550 75.0042 154.2006 | 4.5140 | 4.4940 | 5.0139
100 95.9501 7.1001 | 0.1571 | 10.0475 297.5478 198.9861 85.0806 160.2506 | 5.7619 | 5.0435 | 5.7760
1000 89.6183 | 6.3754 | 0.2016 | 9.4727 266.8225 175.1879 74.5492 141.6040 | 5.0087 | 4.9125 | 4.8975
10000 70.1469 | 4.8713 | 0.1340 | 7.3407 209.4537 138.6884 60.2487 111.9173 | 37716 | 3.7280 | 3.7273
10000 1 986.7406 | 56.0200 | 0.0809 | 99.4892 | 20500.1853 | 14292.7860 | 5826.8927 | 1665.4201 | 39.2121 | 43.4552 | 56.8798
10 | 1015.5719 | 56.0925 | 0.0862 | 91.3458 | 19832.2244 | 13878.7156 | 5695.0407 | 1675.0777 | 47.4680 | 48.8717 | 45.0589
100 | 1013.4446 | 57.3001 | 0.0939 | 94.1872 | 19825.9403 | 13865.9834 | 5687.1142 | 1676.9498 | 46.1496 | 47.3867 | 47.0581
1000 | 1016.1134 | 58.0542 | 0.0951 | 94.4595 | 19894.5795 | 13881.4600 | 5685.3320 | 1680.7228 | 47.5433 | 47.6109 | 47.5726
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